Optique physique - solution

AAV n°1 : être capable d'appliquer les conditions d'interférences constructives et destructives à un système physique simple

1 savoir-faire

Savoir utiliser les conditions d'interférence destructive et constructive

Exercice 1 : Conditions d'interférence

Il faut étudier l'état d'interférence aux points A, B et C. Il faut donc calculer la différence de marche optique entre les deux rayons en A, B et C.

Au point B : $\delta = 2, 5\lambda$, la condition d'interférence destructive est donc respectée au point B.

Au point $A:\delta=0$, la condition d'interférence constructive est donc respectée au point A.

Au point C: $\delta = \sqrt{(400\lambda)^2 + ((300 + 1.25)\lambda)^2} - \sqrt{(400\lambda)^2 + ((300 - 1.25)\lambda)^2}$ A l'ordre 1, nous avons donc:

$$\delta = \lambda \left(\sqrt{400^2 + 300^2 \left(1 + 2\frac{1.25}{300} \right)} - \sqrt{400^2 + 300^2 \left(1 - 2\frac{1.25}{300} \right)} \right)$$

$$= \lambda \left(500\sqrt{1 + \frac{3}{2500}} 2.5 - 500\sqrt{1 - \frac{3}{2500}} 2.5 \right)$$

$$= \frac{3 \times 2.5}{5}$$

$$= 1.5$$

la condition d'interférence destructive est donc respectée au point C.

Exercice 2 : Conditions d'interférence 2

1. Il faut distinguer deux cas : le point d'observation est en dehors de S_1S_2 et le point d'observation est dans l'intervalle S_1S_2 .

En dehors de l'intervalle S_1S_2 , la différence de marche est constante et vaut $\delta=1600\,\mathrm{nm}$. Nous avons $\frac{\delta}{\lambda}\simeq 2,5$. Les interférences sont destructives en dehors de S_1S_2 .

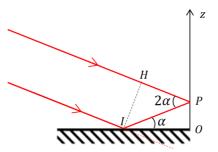
Dans l'intervalle, nous notons x la position du point d'observation. La différence de marche a pour expression $\delta=(800+x)-(800-x)=2x$. La position des franges lumineuses est données par l'équation $2x=m\lambda$ avec m un entier relatif. Les valeurs de x correspondantes aux franges lumineuses comprises dans l'intervalle sont donc x=0 nm, $x=\pm 316,4$ nm, $x=\pm 632,8$ nm. La position des franges sombres est données par l'équation $2x=(m+\frac{1}{2})\lambda$ avec m un entier relatif. Les valeurs de x correspondantes aux franges lumineuses comprises dans l'intervalle sont donc $x=\pm 158,2$ nm, $x=\pm 474,6$ nm, $x=\pm 791$ nm.

2. Le long de l'axe Oy, les interférences sont toujours constructives puisque la différence de marche entre les deux rayons est nulle.

Savoir calculer l'ordre d'interférence

Exercice 3 : Interférences avec un miroir parfait en lumière parallèle

1. La figure suivante montre que la différence de marche a pour expression $\delta = (IP) - (HP) + \frac{\lambda_0}{2} = \frac{z}{\sin \alpha} - \cos(2\alpha)(IP) + \frac{\lambda_0}{2} = \frac{z}{\sin \alpha} - \frac{z(1-2\sin^2\alpha)}{\sin \alpha} + \frac{\lambda_0}{2} = 2z\sin\alpha + \frac{\lambda_0}{2}.$

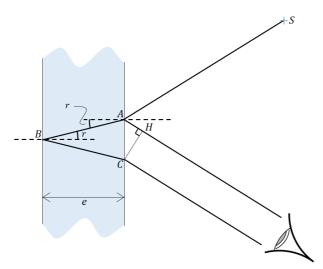


- $2. \ p = \frac{\delta}{\lambda_0} = \frac{2z\sin\alpha}{\lambda_0} + \frac{1}{2}.$
- 3. $\Delta p=\frac{2\Delta z\sin\alpha}{\lambda_0}$. On cherche l'interfrange qui est donnée par $\Delta p=1$ d'où $\Delta z=\frac{\lambda_0}{2\sin\alpha}$.

Savoir utiliser la notion de chemin optique

Exercice 4: Interférences par réflexion sur une lame de verre

- 1. $(ABC) = \frac{2ne}{\cos r}$.
- 2. La figure suivante montre que $(AH) = AC \sin i = 2e \tan r \sin i = \frac{2e \sin r \sin i}{\cos r} = \frac{2ne \sin^2 r}{\cos r}$



- 3. $\delta = (ABC) (AH) + \frac{\lambda_0}{2} = \frac{2ne 2ne\sin^2 r}{\cos r} + \frac{\lambda_0}{2} = 2ne\cos r + \frac{\lambda_0}{2}$.
- 4. Pour i << 1, on a r << 1 donc $\delta = 2ne\left(1-\frac{r^2}{2}\right)+\frac{\lambda_0}{2}$. La loi de Descarte aux petits angles a pour expression i=nr donc $\delta = 2ne\left(1-\frac{i^2}{2n^2}\right)+\frac{\lambda_0}{2}$ d'où $p=\frac{2ne}{\lambda_0}-\frac{ei^2}{\lambda_0n}+\frac{1}{2}$.

2 La mise en œuvre

Exercice 5: Fentes d'Young

- 1. (a) $\delta = r_2 r_1 = \sqrt{d^2 + \left(y + \frac{a}{2}\right)^2} \sqrt{d^2 + \left(y \frac{a}{2}\right)^2}$. Les conditions d'observation sont telles que y << d et a << d. A l'ordre 1, nous avons $\delta = \frac{ya}{d}$
 - (b) $p = \frac{\delta}{\lambda_0} = \frac{ya}{\lambda_0 d}$. La position de la frange centrale (p=0) sur l'écran est à y=0.
 - (c) Les deux franges brillantes sur l'écran de part et d'autre de la frange centrale sont données pour p=1 et p=-1 donc $y=\pm \frac{\lambda_0 d}{a}$.
- 2. (a) Soit I le point de sortie du rayon de la lame. Nous avons $(S_1P)=(S_1I)+IP=(S_1I)-S_1I+S_1I+IP=(n-1)e+r_1$. La différence de marche optique entre les deux rayons a pour expression $\delta=(S_2P)-(S_1P)=r_2-r_1+(1-n)e=\frac{ya}{d}+(1-n)e$.
 - (b) $p = \frac{\delta}{\lambda_0} = \frac{ya}{\lambda_0 d} + \frac{(1-n)e}{\lambda_0}$. La frange centrale (p=0) se situe à $y = \frac{(n-1)ed}{a}$.
 - (c) Les deux franges brillantes sur l'écran de part et d'autre de la frange centrale sont données pour p=1 et p=-1 donc $y=\pm \frac{\lambda_0 d}{a}+\frac{(n-1)ed}{a}$.