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7.5 Cartesian Symmetry 203

Substituting (7.16) into (7.17) gives

F (v) =
∑
k

b∫
a

dv′ψk(v)ψ∗
k (v′)F (v′). (7.18)

This confirms (7.15) with

Fk =
b∫

a

dv′ψ∗
k (v′)F (v′). (7.19)

Finally, consider F (v) = ψj (v) in (7.15). This forces Fk = δkj and substitution into (7.19) gives the
orthonormality relation

b∫
a

dv ψ∗
k (v)ψj (v) = δkj . (7.20)

7.5 Cartesian Symmetry

For potential problems with natural rectangular boundaries, the trial solution ϕ(x, y, z) =
X(x)Y (y)Z(z) converts Laplace’s equation,

∇2ϕ = ∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
= 0, (7.21)

into

X′′(x)

X(x)
+ Y ′′(y)

Y (y)
+ Z′′(z)

Z(z)
= 0. (7.22)

Each of the three ratios in (7.22) is a function of only one variable. Therefore, their sum can be zero
only if each is separately equal to a distinct constant. This gives

d2X

dx2
= α2X,

d2Y

dx2
= β2Y, and

d2Z

dx2
= γ 2Z, (7.23)

where the separation constants α2, β2, and γ 2 are real5 and satisfy

α2 + β2 + γ 2 = 0. (7.24)

The methodology outlined in Section 7.4 directs us to identify all the elementary solutions of the
differential equations in (7.23). The separation constants can be zero or non-zero, so

Xα(x) =
{
A0 + B0x α = 0,
Aαe

αx + Bαe
−αx α �= 0,

(7.25)

Yβ (y) =
{
C0 +D0y β = 0,
Cβe

βy +Dβe
−βy β �= 0,

(7.26)

Zγ (z) =
{
E0 + F0z γ = 0,
Eγ e

γ z + Fγ e
−γ z γ �= 0.

(7.27)

5 The possibility that α, β, and γ are neither purely real nor purely imaginary is precluded by the boundary conditions
for all the problems we will encounter in this book.
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204 LAPLACE’S EQUATION: THE POTENTIAL PRODUCED BY SURFACE CHARGE

Figure 7.4: An empty box with five walls maintained at zero potential and the z = 0 bottom wall maintained at
potential V (x, y).

The linearity of Laplace’s equation permits us to superpose the products of these elementary solutions.
Therefore, using a delta function to enforce (7.24), the general solution reads

ϕ(x, y, z) =
∑
α

∑
β

∑
γ

Xα(x)Yβ (y)Zγ (z)δ(α2 + β2 + γ 2). (7.28)

The form of (7.25) shows that α can be restricted to positive real values if α2 > 0 and to positive
imaginary values if α2 < 0. Similar remarks apply to β and γ .

As an example, let us use (7.28) to find the electrostatic potential inside the rectangular box shown
in Figure 7.4. We assume that all the walls are fixed at zero potential except for the z = 0 wall, where
the potential takes specified values V (x, y).6 The homogeneous Dirichlet boundary conditions on the
vertical side walls are not difficult to satisfy if we write α = iα′ and β = iβ ′ in (7.25) and (7.26). We
then choose α′, β ′, and the expansion coefficients to make Xα(x) and Yβ (y) sine functions that vanish
at x = a and y = b, respectively. Bearing in mind the delta function constraint, (7.28) takes the form

ϕ(x, y, z) =
∞∑
m=1

∞∑
n=1

sin
(mπx

a

)
sin

(nπy
b

) [
Emn exp(γmnz) + Fmn exp(−γmnz)

]
, (7.29)

where

γ 2
mn =

(mπ
a

)2
+
(nπ
b

)2
. (7.30)

Our next task is to choose Emn and Fmn so the potential vanishes at z = c. If Vmn are coefficients still
to be determined, a convenient way to write the result is

ϕ(x, y, z) =
∞∑
m=1

∞∑
n=1

Vmn sin
(mπx

a

)
sin

(nπy
b

) sinh[γmn(c − z)]

sinh(γmnc)
. (7.31)

It remains only to impose the final boundary condition that ϕ(x, y, 0) = V (x, y). This gives

V (x, y) =
∞∑
m=1

∞∑
n=1

Vmn sin
(mπx

a

)
sin

(nπy
b

)
, (7.32)

which is a double Fourier sine series representation of V (x, y). To find the coefficients Vmn, multiply
both sides of (7.32) by sin(m′πx/a) sin(n′πy/b) and integrate over the intervals 0 ≤ x ≤ a and
0 ≤ y ≤ b. This completes the problem because the orthogonality integral

π∫
0

ds sin(ms) sin(ns) = π

2
δmn (7.33)

6 We assume that a thin strip of insulating material isolates the bottom wall from the others.
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7.5 Cartesian Symmetry 205

Figure 7.5: The potential in a box with three ϕ = 0 walls and three ϕ �= 0 walls represented as the sum of three
box potentials, each with five ϕ = 0 walls and one ϕ �= 0 wall.

shows that

Vmn = 4

ab

a∫
0

b∫
0

dxdy V (x, y) sin
(mπx

a

)
sin

(nπy
b

)
. (7.34)

It was not an accident that a Fourier series appeared in (7.32) when the need arose to represent the
arbitrary boundary data V (x, y). The key was the homogeneous Dirichlet (zero potential) boundary
condition imposed on each of the vertical walls in Figure 7.4. This transformed the differential
equations for X(x) and Y (y) into eigenvalue problems with complete sets of orthogonal sine functions
as their eigenfunctions.

Our example raises the question of how to “arrange” a complete set of eigenfunctions if we
had specified non-zero potentials on any (or all) of the vertical side walls. The solution (indicated
schematically in Figure 7.5) is to superpose the separated-variable solutions to several independent
potential problems, each like the one we have just solved but with a different wall held at a non-zero
potential. This general approach works for other coordinate systems also. Application 7.1 illustrates
another method.

Application 7.1 A Conducting Duct

Figure 7.6 is a cross sectional view of an infinitely long, hollow, conducting duct. The walls are main-
tained at the constant potentials indicated and our task is to find the electrostatic potential everywhere
inside the duct. A straightforward approach to this problem mimics Figure 7.5 and superposes the
solutions of three different potential problems, each with only one wall held at a non-zero potential.
The reader can confirm that only two problems actually need be superposed: one with V ′ = 0 and
another with V = 0. In this Application, we follow a third path and use the β = 0 solution in (7.26)
to remove the inhomogeneous boundary condition ϕ(x, L) = V ′. More generally, we use a system-
atic “inspection” method which retains every elementary solution in (7.25), (7.26), and (7.27) until a
boundary condition or other physical consideration forces us to remove it. Uniqueness guarantees that
the solutions obtained by these three approaches will agree numerically at every point, despite their
different analytic appearances.

′

Figure 7.6: Cross sectional view of a conducting duct with Dirichlet boundary conditions.
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Figure 7.8: An origin-centered ring in the z = 0 plane with uniform charge per unit length λ = Q/2πR. The
dashed sphere separates space into a region with r < R and a region with r > R.

The zero-curvature condition guarantees that the solutions of Laplace’s equation are not bounded in
at least one Cartesian direction. Nevertheless, as both the duct and cage examples demonstrate, true
divergence never occurs because a steadily increasing potential along some direction always signals
the eventual appearance of a region of source charge where Laplace’s equation is no longer valid. The
only possible solution to ∇2ϕ = 0 in completely empty space is ϕ = const., which corresponds to no
electric field at all.

7.6 Azimuthal Symmetry

In Example 4.5, we found the potential of a uniformly charged ring (Figure 7.8) by evaluating all of its
electrostatic multipole moments. Another way to solve this problem exploits separation of variables in
spherical coordinates. The azimuthal symmetry of the ring implies that ϕ(r, θ, φ) = ϕ(r, θ ). Therefore,
for this problem (and any problem with azimuthal symmetry), the Laplace equation reduces to

∇2ϕ = 1

r2

∂

∂r

(
r2 ∂ϕ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)
= 0. (7.52)

With a change of variable to x = cos θ , the trial solution ϕ(r, x) = R(r)M(x) separates (7.52) into the
two ordinary differential equations

d

dr

(
r2 dR

dr

)
− κR = 0 (7.53)

and

d

dx

[
(1 − x2)

dM

dx

]
+ κM = 0. (7.54)

If we write the real separation constant as κ = ν(ν + 1), it is straightforward to verify that (7.53) is
solved by

Rν(r) = Aν r
ν + Bν r

−(ν+1). (7.55)

The same substitution in (7.54) produces Legendre’s differential equation:

(x2 − 1)
d2M

dx2
+ 2x

dM

dx
− ν(ν + 1)M = 0. (7.56)

The linearly independent solutions of (7.56) are called Legendre functions of the first and second
kind. We denote them by Pν(x) and Qν(x), respectively. This yields the general solution to Laplace’s
equation for a problem with azimuthal symmetry as

ϕ(r, θ ) =
∑
ν

[
Aνr

ν + Bνr
−(ν+1)

]
[CνPν(cos θ ) +DνQν(cos θ )] . (7.57)
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210 LAPLACE’S EQUATION: THE POTENTIAL PRODUCED BY SURFACE CHARGE

For arbitrary values of ν, the Legendre functions have the property that Pν(−1) = Qν(± 1) = ∞.
These divergences are unphysical, so (7.57) in full generality applies only to problems where the
domain of interest does not include the z-axis. An example is the space between two coaxial cones
which open upward along the positive z-axis with their common vertex at the origin of coordinates. If
we ask for the potential inside one such cone, (7.57) can include all the Pν(x)—but none of the Qν(x).

It remains only to provide a representation of the potential that can be used for problems where the
entire z-axis is part of the physical domain. The answer turns out to be (7.57), provided we exclude
the Qν(x) functions and restrict the values of ν to the non-negative integers, � = 0, 1, 2, . . . The latter
choice reduces the Pν(cos θ ) functions to the Legendre polynomials P�(cos θ ) (see Section 4.5.1),
which are finite and well behaved over the entire angular range 0 ≤ θ ≤ π . The Q�(cos θ ) functions
remain singular at θ = π .

7.6.1 A Uniformly Charged Ring
The charged ring in Figure 7.8 is a problem where the potential is required over the full angular range
0 ≤ θ ≤ π . In such a case, the preceding paragraph tells us that only the Legendre polynomials may
appear in (7.57). Accordingly,

ϕ(r, θ ) =
∞∑
�=0

[
A� r

� + B� r
−(�+1)

]
P� (cos θ ). (7.58)

On the other hand, neither r� nor r−(�+1) is finite throughout the entire radial domain 0 ≤ r < ∞. This
suggests a divide-and-conquer strategy: construct separate, regular solutions to Laplace’s equation in
the disjoint regions r < R and r > R and match them together at the surface of the ring (r = R). We
will do this for a general (but specified) charge density σ (θ ) applied to a spherical surface at r = R

and then specialize to the uniformly charged ring.
A representation which ensures that ϕ(r, θ ) is both regular at the origin and goes to zero as

r → ∞ is

ϕ(r, θ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
�=0

c�

( r
R

)�
P� (cos θ ) r ≤ R,

∞∑
�=0

c�

(
R

r

)�+1

P� (cos θ ) r ≥ R.

(7.59)

Notice that (7.59) builds in the continuity of the potential at r = R as specified by (7.3). Using an
obvious notation, the matching condition (7.4) is9

ε0

[
∂ϕ<

∂r
− ∂ϕ>

∂r

]
r=R

= σ (θ ). (7.60)

When applied to (7.59), this gives

ε0

∞∑
�=0

c�

R
(2�+ 1)P�(cos θ ) = σ (θ ). (7.61)

9 The representation (7.59) is valid for any value of R. We choose the radius of the ring in order to exploit the matching
condition (7.60).
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The final step is to multiply (7.61) by Pm(cos θ ) and integrate over the interval 0 ≤ θ ≤ π using the
orthogonality relation for the Legendre polynomials,

1∫
−1

dxP� (x)Pm (x) = 2

2� + 1
δ�m. (7.62)

This yields the expansion coefficients in the form

cm = R

2ε0

π∫
0

dθ sin θ σ (θ )Pm(cos θ ). (7.63)

We infer from Example 4.5 that the surface charge density of the uniformly charged ring sketched in
Figure 7.8 is σ (θ ) = (λ/R) δ(cos θ ). Plugging this into (7.63) gives cm = QPm(0)/4πε0R. Therefore,
the electrostatic potential (7.59) of the ring is

ϕ(r, θ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Q

4πε0

∞∑
�=0

r�

R�+1
P� (0)P� (cos θ ) r ≤ R,

Q

4πε0

∞∑
�=0

R�

r�+1
P� (0)P� (cos θ ) r ≥ R.

(7.64)

This agrees with the multipole solution obtained in Example 4.5.

Application 7.2 Going Off the Axis

It is not absolutely necessary to use the matching condition (7.60) to find the expansion coefficients
c� in (7.59). An alternative method exploits the uniqueness of the solutions to Laplace’s equation. The
idea is to compare the general formula (7.59) with an easily computable special case. For the latter,
we let φ be the azimuthal variable, specialize to the charged ring, and use the Coulomb integral (7.1)
to find the potential on the z-axis:

ϕ(z) = λ

4πε0

2π∫
0

Rdφ√
R2 + z2

= Q

4πε0

1√
R2 + z2

. (7.65)

This expression can be rewritten using the generating function for the Legendre polynomials (see
Section 4.5.1):

1√
1 − 2xt + t2

=
∞∑
�=0

t� P� (x) |x| ≤ 1, 0 < t < 1. (7.66)

When |z| < R, use of (7.66) with x = 0 in (7.65) gives

ϕ(z) = Q

4πε0

1√
R2 + z2

= Q

4πε0R

∞∑
�=0

(z
/
R)�P� (0). (7.67)

Comparing this with (7.59) specialized to the z-axis (where r = z and θ = 0) gives c� =
QP� (0)/4πε0R as before because P� (1) = 1. Given the c� , we can now use (7.59) to “go off the
axis” and find the potential everywhere. This procedure shows that any azimuthally symmetric poten-
tial is uniquely determined by its values on the symmetry axis. �
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Example 7.2 In 1936, Lars Onsager constructed a theory of the dielectric constant for a polar
liquid using a model of a point dipole p placed at the center of a spherical cavity of radius a scooped
out of an infinite medium with dielectric constant κ . Find the electric field that acts on the dipole
if the entire system is exposed to a uniform external electric field E0 ‖ p.

Solution: Let the polar axis in spherical coordinates point along E0 and p. The presence of the
external field guarantees that ϕ(r → ∞) → −E0r cos θ . The presence of the point dipole at the
center of the cavity guarantees that ϕ(r → 0) = p cos θ/(4πε0r

2). Everywhere else, the potential
satisfies Laplace’s equation. Therefore, because both sources behave as P1(cos θ ) = cos θ , only
cos θ terms can be present in the general solution (7.59). In other words,

ϕ(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
Ar + p

4πε0r2

]
cos θ r ≤ a,

[
−E0r + B

r2

]
cosθ r ≥ a.

There is no free charge at the cavity boundary, so the matching conditions (7.3) and (7.4) are

ϕin(a, θ ) = ϕout(a, θ )
∂ϕin

∂r

∣∣∣∣
r=a

= κ
∂ϕout

∂r

∣∣∣∣
r=a

.

Therefore, we find without complication that

A = − 3κ

2κ + 1
E0 − 2p

4πε0a3

κ − 1

2κ + 1
and B = −a3E0

κ − 1

2κ + 1
+ p

4πε0

3

2κ + 1
.

The electric field that acts on the dipole is E = −∇ϕ for r ≤ a minus the contribution from p itself:

E(0) = 3κ

2κ + 1
E0 + 2p

4πε0a3

κ − 1

2κ + 1
.

7.7 Spherical Symmetry

In this section, we solve Laplace’s equation for problems with natural spherical boundaries that
lack full azimuthal symmetry. These situations require the complete Laplacian operator in spherical
coordinates:

∇2ϕ = 1

r2

∂

∂r

(
r2 ∂ϕ

∂r

)
+ 1

r2 sin θ

∂

∂θ

(
sin θ

∂ϕ

∂θ

)
+ 1

r2 sin2 θ

∂2ϕ

∂φ2
= 0. (7.68)

The trial solution ϕ(r, θ, φ) = R(r)Y (θ, φ) separates (7.68) into the ordinary differential equation

d

dr

(
r2 dR

dr

)
= �(�+ 1)R (7.69)

and the partial differential equation

− 1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
− 1

sin2 θ

∂2Y

∂φ2
= �(�+ 1)Y. (7.70)

The choice of the separation constant as �(� + 1) allows us to borrow the solution of the radial
equation (7.69) from Section 7.6:

R� (r) = A� r
� + B� r

−(�+1). (7.71)
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The notation indicates that we have already specialized to the case where � is a non-negative inte-
ger. In practice, this case applies to the vast majority of non-contrived electrostatics problems with
spherical boundaries. Moreover, when � = 0, 1, 2, . . . , (7.70) is exactly the eigenvalue equation for
the (dimensionless) quantum mechanical orbital angular momentum operator L̂2:

L̂2Y�m(θ, φ) = �(� + 1)Y�m(θ, φ). (7.72)

The complex-valued eigenfunctions Y�m(θ, φ) are the spherical harmonics introduced in
Section 4.5.2. From the point of view of separation of variables, the constant m2 separates (7.70)
into two ordinary differential equations when we write Y (θ, φ) = B(θ )G(φ). The choice of m as an
integer in the range −� ≤ m ≤ � guarantees that the spherical harmonics are finite and well behaved
when 0 ≤ θ < π and 0 ≤ φ < 2π . Appendix C gives a table of spherical harmonics and lists a few of
their properties. Here, we exhibit only the orthogonality integral,10∫

d� Y ∗
� ′m′ (�)Y�m(�) = δ�� ′δmm′ , (7.73)

and the phase relation

Y�,−m(θ, φ) = (−)mY ∗
�m(θ, φ). (7.74)

Combining all the above, the general solution to Laplace’s equation in spherical coordinates is

ϕ(r, θ, φ) =
∞∑
�=0

�∑
m=−�

[
A�mr

� + B�mr
−(�+1)

]
Y�m(θ, φ). (7.75)

A typical problem requires a partition of the radial space as in (7.59) to ensure that the solution is
regular at the origin and at infinity. Thus, (7.75) shows why the exterior multipole expansion (4.86)
represents the potential for r > R when charge occurs only inside an origin-centered sphere of radius
R:

ϕ(r, θ, φ) = 1

4πε0

∞∑
�=0

�∑
m=−�

A�m

Y�m(θ, φ)

r�+1
r > R. (7.76)

The solution (7.75) also shows why the interior multipole expansion (4.89) represents the potential for
r < R when charge occurs only outside an origin-centered sphere of radius R:

ϕ(r, θ, φ) = 1

4πε0

∞∑
�=0

�∑
m=−�

B�m r
� Y ∗

�m(θ, φ) r < R. (7.77)

These expansions are valid only in regions of space free from the source charge which defines the
multipole moments A�m and B�m.

Application 7.3 The Unisphere

The stainless steel “Unisphere” is the largest representation of the Earth ever constructed (Figure 7.9).
Let this object be a model for a spherical conducting shell from which finite portions of the surface
have been removed. The real Unisphere is grounded for safety. Here, we assume the shell is charged
to a potential ϕ0 and show that the difference in the surface charge density inside and outside the shell
is a constant over the entire surface.

10 d� ≡ sin θdθdφ.
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Figure 7.9: The “Unisphere” was the symbol of the 1964 World’s Fair. The sphere radius is R ≈ 18 m.
Photograph from www.fotocommunity.de.

Place the origin of coordinates at the center of the shell. A representation that guarantees that ϕ(r)
is regular, continuous, and satisfies Laplace’s equation everywhere off the shell is

ϕ(r, θ, φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
�m

A�m

( r
R

)�
Y�m(θ, φ) r ≤ R,

∑
�m

A�m

(
R

r

)�+1

Y�m(θ, φ) r ≥ R.

(7.78)

The Dirichlet boundary condition is

ϕ0 =
∑
�m

A�m Y�m(θ, φ)|on , (7.79)

where the subscript “on” indicates that the equality holds only for angles (θ, φ) which coincide with
the conducting surface of the shell. Therefore, the charge density difference �σ (θ, φ) = σout(θ, φ) −
σin(θ, φ) between the outer and inner surfaces of the shell is

�σ (θ, φ) = ε0

[
∂ϕ>

∂r
+ ∂ϕ<

∂r

]
on

= −ε0

R

∑
�m

A�m Y�m(θ, φ)|on = −ε0 ϕ0

R
. (7.80)

As advertised, this is indeed a constant, independent of (θ, φ). �

Example 7.3 An origin-centered sphere has radius R. Find the volume charge density ρ(r, θ, φ)
(confined to r < R) and the surface charge density σ (θ, φ) (confined to r = R) which together
produce the electric field given below. Express the answer using trigonometric functions.

E = −2V0x

R2
x̂ + 2V0y

R2
ŷ − V0

R
ẑ x2 + y2 + z2 ≤ R2.

Solution: Integrating each component of E = −∇ϕ gives

x̂ : ϕ = V0

R2
x2 + f (y, z)

ŷ : ϕ = − V0

R2
y2 + g(x, z)

ẑ : ϕ = V0

R
z + h(x, y).

FOR ENDORSEMENT PURPOSES ONLY. DO NOT DISTRIBUTE



P1: SFK/UKS P2: SFK Trim: 246mm × 189mm Top: 10.544mm Gutter: 18.98mm

CUUK1954-07 CUUK1954/Zangwill 978 0 521 89697 9 August 9, 2012 16:29

7.8 Cylindrical Symmetry 215

Therefore,

ϕin(x, y, z) = V0

R2

(
x2 − y2

)+ V0

R
z + const. x2 + y2 + z2 ≤ R2.

Direct computation in Cartesian coordinates shows that ϕin satisfies Laplace’s equation. Since
ρ = −ε0∇2ϕ, we conclude that there is no volume charge inside the sphere. On the other hand,
in spherical coordinates, we know that solutions of Laplace’s equation take the form (7.78). This
means that the x2 − y2 term in ϕin is (at worst) a linear combination of � = 2 terms. The z term in
ϕin is an � = 1 term. Therefore, because x = r sin θ cosφ, y = r sin θ sinφ, and z = r cos θ ,

ϕ(r, θ, φ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
V0

r

R
cos θ + V0

( r
R

)2
sin2 θ cos 2φ r ≤ R,

V0

(
R

r

)2

cos θ + V0

(
R

r

)3

sin2 θ cos 2φ r ≥ R.

The charge density follows from the matching condition

σ (θ, φ) = ε0

[
∂ϕin

∂r
− ∂ϕout

∂r

]
r=R

= ε0
V0

R

(
3 cos θ + 5 sin2 θ cos 2φ

)
.

7.8 Cylindrical Symmetry

Laplace’s equation in cylindrical coordinates is

∇2ϕ = 1

ρ

∂

∂ρ

(
ρ
∂ϕ

∂ρ

)
+ 1

ρ2

∂2ϕ

∂φ2
+ ∂2ϕ

∂z2
= 0. (7.81)

For problems with cylindrical boundaries or, more generally, for problems with a unique preferred
axis, the trial solution ϕ(ρ, φ, z) = R(ρ)G(φ)Z(z) separates (7.81) into three ordinary differential
equations with two real separation constants α2 and k2:

ρ
d

dρ

(
ρ
dR

dρ

)
+ (k2ρ2 − α2)R = 0 (7.82)

d2G

dφ2
+ α2G = 0 (7.83)

d2Z

dz2
− k2Z = 0. (7.84)

Boundary and regularity (finiteness) conditions may or may not decide for us whether to choose α2

and k2 positive or negative. If both are chosen positive, the elementary solutions for G(φ) and Z(z) are

Gα(φ) =
{
x0 + y0φ α = 0,
xα exp(iαφ) + yα exp(−iαφ) α �= 0,

(7.85)

and

Zk(z) =
{
s0 + t0z k = 0,
sk exp(kz) + tk exp(−kz) k �= 0.

(7.86)
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7.8.1 Bessel Functions
The radial equation (7.82) is Bessel’s differential equation. If we let k = iκ , the elementary solutions
of this equation are

Rk
α(ρ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A0 + B0 ln ρ k = 0, α = 0,

Aαρ
α + Bαρ

−α k = 0, α �= 0,

Ak
αJα(kρ) + Bk

αNα(kρ) k2 > 0,

Ak
αIα(κρ) + Bk

αKα(κρ) k2 < 0.

(7.87)

Jα(x) and Nα(x) are called Bessel functions of the first and second kind, respectively. The modified
Bessel functions Iα(x) and Kα(x) are Bessel functions with pure imaginary arguments:

Iα(κρ) = i−αJα(ikρ) Kα(κρ) = π

2
iα+1[Jα(ikρ) + iNα(ikρ)]. (7.88)

We define Jα(x), Nα(x), Iα(x), and Kα(x) for x ≥ 0 only and refer the reader to Appendix C for more
information. However, when α is real, it is important to know that Jα(x) is regular everywhere, Nα(x)
diverges as x → 0, and the asymptotic behavior (x � 1) of both is damped oscillatory:

Jα(x) →
√

2

πx
cos(x − απ

/
2 − π

/
4)

Nα(x) →
√

2

πx
sin(x − απ

/
2 − π

/
4).

(7.89)

The modified Bessel function Iα(x) is finite at the origin and diverges exponentially as x → ∞. Kα(x)
diverges as x → 0 but goes to zero exponentially as x → ∞.

The general solution of Laplace’s equation in cylindrical coordinates is a linear combination of the
elementary solutions

ϕ(ρ, φ, z) =
∑
α

∑
k

Rk
α(ρ)Gα(φ)Zk(z). (7.90)

The results of the previous paragraph show that the choice k2 > 0 produces a solution (7.90) which pairs
oscillatory Bessel function behavior for R(ρ) with real exponential functions for Z(z). Conversely,
the choice k2 < 0 pairs a Fourier representation for Z(z) with modified Bessel functions and thus
real exponential behavior for R(ρ). The fact that ϕ(ρ, φ, z) always exhibits simultaneous oscillatory
and exponential behavior in its non-angular variables is the cylindrical manifestation of the “zero-
curvature” property of the solutions to Laplace’s equation discussed in Section 7.5.2. Finally, the
matching conditions produce two natural constraints on the angular variation in (7.90). The first,
G(0) = G(2π ), is a consequence of the continuity of the potential (7.3). The second,G ′(0) = G ′(2π ) ,
is a consequence of (7.4) if the full angular range 0 ≤ φ ≤ 2π is free of charge. Using (7.85), both
conditions together force α = n where n = 0, 1, 2, . . . is a non-negative integer.

7.8.2 Fourier-Bessel Series
An interesting class of potential problems asks us to solve ∇2ϕ = 0 inside a cylinder of radius
R when the potential is specified on two cross sections, say, ϕ(ρ ≤ R, φ, z = z1) = f1(ρ, φ) and
ϕ(ρ ≤ R, φ, z = z2) = f2(ρ, φ). In the spirit of the problem defined by Figure 7.4, this calls for
complete sets of eigenfunctions in the variables ρ and φ. Periodic boundary conditions are appropriate
for the angular variable and a glance at (7.85) shows that the functions Gm(φ) = exp(imφ) suffice
if m = 0,±1,±2, . . . This forces α = m in (7.87) and we are further restricted to functions Rk

m(ρ)
which are finite at the origin. Accordingly, the radial eigenfunctions are the set of functions which
satisfy the homogeneous boundary condition Jm(kR) = 0. This condition fixes the allowed values
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of the separation constant at kmn = xmn/R where xmn is the nth zero of the Bessel function Jm(x).
Invoking completeness, we conclude it must be possible to construct a Fourier-Bessel series where,
say,

f1(ρ, φ) =
∞∑

m=−∞

∞∑
n=1

cmnJm(xmnρ/R) exp(imφ). (7.91)

To compute the cmn, multiply both sides of (7.91) by ρJm(kmn′ρ) exp(−im′φ) and integrate over the
intervals 0 ≤ ρ ≤ R and 0 ≤ φ < R. This is sufficient because the exponential and Bessel functions
satisfy the orthogonality relations

1

2π

2π∫
0

dφ ei(m−m′)φ = δmm′ (7.92)

and
R∫

0

dρ ρJm(kmnρ)Jm(kmn′ρ) = δnn′
1

2
R2[Jm+1(kmnR)]2. (7.93)

Application 7.4 An Electrostatic Lens

In 1931, Davisson and Calbick discovered that a circular hole in a charged metal plate focuses electrons
exactly like an optical lens focuses light.11 In fact, all electrostatic potentials with cylindrical symmetry
have this property. Figure 7.10 shows another common electron lens: two adjacent and coaxial metal
tubes of radius R separated by a small gap d. A potential difference VR − VL is maintained between
the tubes. In this Application, we calculate the potential inside the tubes (in the d → 0 limit) and
briefly discuss their focusing properties.

d

LV RVR
z

Figure 7.10: A two-tube electron lens.

If we separate variables in Laplace’s equation in cylindrical coordinates, the rotational symmetry
of the tubes fixes the separation constant in (7.83) at α = 0. The choices x0 = 1 and y0 = 0 in (7.85)
reduce ϕ(ρ, φ, z) to ϕ(ρ, z). Here, we write k = iκ and show (by construction) that the problem can
be solved using radial functions with k2 < 0 only. We invite the reader to show that a solution which
looks different (but which is numerically equal by uniqueness) can be constructed using only radial
functions with k2 > 0. The potential must be finite at ρ = 0. Therefore, the discussion in Section 7.8.1
tells us that the most general form of the potential at this point is

ϕ(ρ, z) = 1

2π

∫ −∞

−∞
dκA(κ)I0(|κ|ρ)eiκz + const. (7.94)

The extracted factor of 2π emphasizes that (7.94) is a Fourier integral. Therefore, an application of
Fourier’s inversion theorem (i.e., the orthogonality of the complex exponential functions) gives

A(κ) = 1

I0(|κ|ρ)

∫ ∞

−∞
dzϕ(ρ, z)e−iκz. (7.95)

11 C.J. Davisson and C.J. Calbick, “Electron lenses”, Physical Review 38, 585 (1931).
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To evaluate (7.95), we let d → 0 in Figure 7.10 so ϕ(R, z) = VL when z < 0 and ϕ(R, z) = VR when
z > 0. This gives12

A(κ) = 1

I0(|κ|R)

[
VL

∫ 0

−∞
dze−iκz + VR

∫ ∞

0
dze−iκz

]
= 1

iκ

VR − VL

I0(|κ|R)
. (7.96)

Consequently,

ϕ(ρ, z) = VR − VL

2πi

∫ ∞

−∞

dκ

κ

I0(|κ|ρ)

I0(|κ|R)
eiκz + const. (7.97)

The real part of the integrand in (7.97) is an odd function of κ . Therefore, the potential inside the tube
is

ϕ(ρ, z) = VR + VL

2
+ VR − VL

π

∫ ∞

0

dκ

κ

I0(κρ)

I0(κR)
sin κz. (7.98)

The additive constant in (7.97) was chosen to make ϕ(ρ, 0) = 1
2 (VR + VL) in (7.98).

LV RV0z =

Figure 7.11: A two-tube electron lens with the symmetry axis (dashed) and a few equipotentials (light
solid lines) indicated. The heavy solid lines are two particle trajectories drawn for VR > VL. Figure
adapted from Heddle (1991).

Figure 7.11 is a cut-open view of the two tubes with a few equipotentials of (7.98) drawn as light solid
lines. The dark solid lines are the trajectories of two charged particles. Although they move in opposite
directions, both initially follow straight-line paths parallel to the z-axis in the E = 0 region inside
one tube. Both particles bend in the vicinity of the gap and then cross the z-axis during subsequent
straight-line motion in the E = 0 region of the other tube. In the language of optics, the E �= 0 regions
of space on opposite sides of z = 0 deflect particles moving from left to right in Figure 7.11 first
like a converging lens and then like a diverging lens. Particles moving from right to left are deflected
first like a diverging lens and then like a converging lens. The diverging effect is weaker than the
converging effect.13 Therefore, particles are always focusing toward the symmetry axis on the far side of
the gap. �

7.9 Polar Coordinates

There are many physical situations where the electrostatic potential is effectively a function of two
(rather than three) spatial variables. The conducting duct (Application 7.1) and the Faraday cage
(Section 7.5.1) are examples we solved in Cartesian coordinates. When the symmetry of the problem

12 We use the regularization
∫ ±∞

0 dz e−iκz = lim
α→0

∫ ±∞
0 dz e−iκze∓αz.

13 We leave it as an exercise for the reader to show that this is a generic feature of charged particle motion near the
symmetry axis of a cylindrical potential.
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(a) (b) (c)

ββ
β

Figure 7.12: Side view of a two-dimensional wedge (0 ≤ φ ≤ β) cut out of perfectly conducting (shaded)
matter. The conductor is held at zero potential and otherwise fills all of space.

warrants it, it may be more natural to study separated-variable solutions of the two-dimensional
Laplace’s equation written in polar coordinates,

∇2ϕ = 1

ρ

∂

∂ρ

(
ρ
∂ϕ

∂ρ

)
+ 1

ρ2

∂2ϕ

∂φ2
= 0. (7.99)

Alternatively, a general, separated-variable solution to (7.99) follows from the cylindrical-coordinates
solution (7.90) with Z(z) = 1 and k = 0. If we switch from exponential functions to sinusoidal
functions of the polar angle φ, the result can be written

ϕ(ρ, φ) = (A0 + B0 ln ρ)(x0 + y0φ) +
∑
α �=0

[Aαρ
α + Bαρ

−α][xα sinαφ + yα cosαφ]. (7.100)

If, say, the potential far from the origin were due to a uniform electric field E = E0x̂, it would be
necessary to put B0 = Aα = 0 except for the single term E0ρ cosφ.

7.9.1 The Electric Field near a Sharp Corner or Edge
The electric field E(ρ, φ) inside a two-dimensional wedge (0 ≤ φ ≤ β) bounded by a grounded perfect
conductor (Figure 7.12) provides insight into the nature of electric fields near sharp conducting corners.
The potential cannot be singular as ρ → 0 so (7.100) simplifies to

ϕ(ρ, φ) = A+ Bφ +
∑
α>0

Cαρ
α sin(αφ + δα). (7.101)

We get A = B = 0 because ϕ(0, φ) = 0. Moreover, ϕ(ρ, 0) = ϕ(ρ, β) = 0 implies that δα = 0
and α = mπ

/
β where m is a positive integer. The coefficients Cm are determined by boundary or

matching conditions far from ρ = 0 which we do not specify. On the other hand, the m = 1 term
dominates the sum as ρ → 0. Therefore, up to a multiplicative constant, the potential very near the
apex is

ϕ(ρ, φ) ≈ ρπ/β sin (πφ/β). (7.102)

The associated electric field is

E = −∇ϕ = −π

β
ρπ/β−1

{
ρ̂ sin(πφ/β) + φ̂ cos(πφ/β)

}
. (7.103)

Equation (7.103) correctly gives E as a vertically directed constant vector when β = π [Fig-
ure 7.12(b)]. Otherwise, |E | → 0 as ρ → 0 when β < π [Figure 7.12(a)] but |E | → ∞ as ρ → 0
when β > π [Figure 7.12(c)]. This singular behavior is not new: we saw in (5.33) that the surface
charge density of a conducting disk has a square-root singularity at its edge. This is consistent with the
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electric field here in the limit β → 2π . A related singularity is often invoked to explain the behavior
of a lightning rod.14

Analogy with Gas Diffusion

Imagine a collection of gas particles that diffuse from infinity toward the wedge in Figure 7.12.
Each particle sticks to the wedge at the point of impact. The space and time dependence of the gas
density n(r, t) is governed by the diffusion constantD and the diffusion equation,D∇2n = ∂n/∂t .
If we continuously supply gas from infinity, the density quickly reaches a time-independent steady
state governed by ∇2n(r) = 0. The boundary condition for this equation is n(rS) = 0 at the wedge
surface because “sticking” irreversibly removes particles from the gas. This establishes a one-to-
one correspondence between the steady-state gas diffusion problem and the electrostatic problem
solved just above. The analog of the electric field for the gas problem is the particle number current
density j(r) = −D∇n. Now recall that diffusing particles execute a random walk in space. When
β > π , such particles are very likely to encounter the convex apex before any other portion of
the wedge, i.e., there is a large flux of particles to the apex. Conversely, when β < π , diffusing
particles are very unlikely to reach the concave corner before striking another portion of the wedge.
The net particle flux to the corner is very small. These are precisely the behaviors exhibited by
E(r) near the apex.

Example 7.4 Find ϕ(ρ, φ) in the region bounded by the two arcs ρ = ρ1 and ρ = ρ2 and the two
rays φ = φ1 and φ = φ2. All the boundaries are grounded except that ϕ(ρ, φ2) = f (ρ). How does
the nature of the separation constant change in the limit ρ1 → 0?

Solution: The homogeneous boundary conditions ϕ(ρ1, φ) = ϕ(ρ2, φ) = 0 eliminate the α = 0
terms in the general solution (7.100). On the other hand, it seems impossible to satisfy these
boundary conditions using the functions ρα and ρ−α until we realize that ρ±α = exp(±α ln ρ). The
choice α = iγ then turns the ρ dependence of (7.100) into a Fourier series in the variable ln ρ. The
general solution at this point is

ϕ(ρ, φ) =
∑
γ �=0

(Aγ e
iγ ln ρ + Bγ e

−iγ ln ρ)(xγ sinh γφ + yγ cosh γφ).

We satisfy ϕ(ρ2, φ) = 0 by choosing the ratio Aγ /Bγ so the radial functions are sin {γ ln(ρ/ρ2)}.
We satisfy ϕ(ρ1, φ) = 0 by choosing γ = mπ/ ln(ρ1/ρ2) where m is an integer. The condition
ϕ(r, φ1) = 0 leads to

ϕ(ρ, φ) =
∞∑

m=−∞
Am sin

{
mπ ln(ρ/ρ2)

ln(ρ1/ρ2)

}
sinh

{
mπ(φ − φ1)

ln(ρ1/ρ2)

}
.

Finally, let θ = π ln(ρ/ρ2)/ ln(ρ1/ρ2), multiply both sides of the foregoing by sin(nθ ), and integrate
over the interval 0 ≤ θ ≤ π . This completes the solution because the orthogonality of the sine
functions uniquely determines the Am.

14 The field is very large but not truly singular near a rounded edge or near the tip of a lighting rod. Our analysis is
approximately valid as long as the edge or tip is spatially isolated from other parts of the conductor and the radius of
curvature of the edge or tip is small compared to any other length scale in the problem.
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