Électromagnétisme - solution

AAV n°2 : être capable d'utiliser les équations locales de l'électrostatique

1 Savoir-faire

Savoir retrouver la forme locale du théorème de Gauss

Exercice 1 : Formes locales du théorème de Gauss et loi de Poisson

- 1. Voir cours.
- 2. Voir cours.

Savoir utiliser le théorème de Gauss local

Exercice 2 : Densité volumique de charge

- 1. $\rho = 4a\varepsilon_0$
- 2. $\rho = 0$
- 3. $\rho = \varepsilon_0 4ar + \frac{\varepsilon_0 b}{r^2} \frac{\cos^2 \theta \sin^2 \theta}{\sin \theta}$

Savoir utiliser la loi de Laplace et les relations de passage

Exercice 3: Condensateur plan

- 1. La loi de Poisson devient $\Delta V = 0$.
- 2. V dépend uniquement de x, la solution de l'équation précédente s'écrit V=ax+b. Les conditions aux limites que doit respecter le potentiel dans le condensateur s'écrivent $V(x=-d/2)=-V_1$ et $V(x=d/2)=V_1$ d'où $V=\frac{2V_1}{d}x$.
- 3. On utilise $\vec{E} = -\vec{\nabla}V$ d'où $\vec{E} = -\frac{2V_1}{d}\hat{u}_x$.
- 4. Le potentiel électrique a toujours pour expression V=ax+b mais le potentiel doit resté fini donc a=0, la continuité du potentiel implique $b=+V_1$ à l'extérieur du condensateur du coté droit et $b=-V_1$ à l'extérieur du condensateur du coté gauche.
- 5. On utilise $\vec{E} = -\vec{\nabla}V$ avec V = constante d'où $\vec{E} = \vec{0}$.
- 6. La relation de passage du champ électrique est bien vérifiée. Il y a discontinuité de la composante normale du champ électrique. Nous pouvons en déduire la densité surfacique de charges puisque le saut de la composante normale doit-être égale à $\frac{\sigma}{\varepsilon_0}$. Nous en déduisons $\sigma = \frac{2\varepsilon_0 V_1}{d}$.

Savoir utiliser la loi de Poisson

Exercice 4 : Ecrantage d'un champ électrostatique dans un électrolyte

- 1. La densité volumique de charges est égale à la charge multipliée par la densité d'ions. Nous avons donc $\rho = en_+ + (-e)n_- = n_0 e\left(e^{-\frac{eV}{k_BT}} e^{\frac{eV}{k_BT}}\right) = -2n_0 e \sinh\left(\frac{eV}{k_BT}\right)$.
- 2. La forme locale du théorème de Gauss a pour expression $div \vec{E} = \frac{\rho}{\varepsilon_0}$. Nous avons par ailleurs $\vec{E} = -\vec{\nabla}V$ d'où $\Delta V + \frac{\rho}{\varepsilon_0} = 0$.
- 3. On suppose que $eV(z) << k_BT$. Nous pouvons ainsi faire un développement limité des expressions n_+ et n_- à l'ordre 1 en $\frac{eV}{k_BT}$ pour obtenir $\rho=n_0e\left(1-\frac{eV}{k_BT}-\left(1+\frac{eV}{k_BT}\right)\right)=-2n_0e\frac{eV}{k_BT}$. Puisque V dépend uniquement de z, l'équation de Poisson se réécrit $\frac{d^2V}{dz^2}-\frac{2n_0e^2}{\varepsilon_0k_BT}V=0$ soit $\frac{d^2V}{dz^2}-\frac{V}{\delta^2}=0$ avec δ une longueur caractéristique donnée par $\delta=\sqrt{\frac{\varepsilon_0k_BT}{2n_0e^2}}$.
- 4. La solution générale de l'équation différentielle précédente s'écrit $V(z) = Ae^{-\frac{z}{\delta}} + Be^{\frac{z}{\delta}}$. Le potentiel est nul en $z = +\infty$, nous en déduisons que B = 0. Nous avons également $V(z = 0) = V_0$ d'où $V(z) = V_0 e^{-\frac{z}{\delta}}$.
- 5. Le champ électrique \vec{E} est donnée par $\vec{E} = -\vec{\nabla}V = \frac{V_0}{\delta}e^{-\frac{z}{\delta}}$. La solution électrolytique a pour effet d'écranter le champ électrique produit par la plaque, il décroit exponentiellement.

2 La mise en œuvre

Exercice 5: Condensateur cylindrique

- 1. Voir cours.
- 2. Voir cours.
- 3. $\Delta V = 0$.
- 4. $\frac{1}{r}\frac{d}{dr}\left(r\frac{dV}{dr}\right)=0$ implique que $r\frac{dV}{dr}=C_1$ d'où $dV=C_1\frac{dr}{r}$ soit $V=C_1\ln(r)+C_2$. On détermine les constantes en utilisant les conditions aux limites $V(r=R_1)=V_1$ et $V(r=R_2)=V_2$. On obtient :

$$V_1 = C_1 \ln(R_1) + C_2$$
$$V_2 = C_1 \ln(R_2) + C_2$$

Nous en déduisons $C_1 = \frac{V_1 - V_2}{\ln(\frac{R_1}{R_2})}$ et $C_2 = V_2 - C_1 \ln R_2$ pour obtenir : $V = V_2 + \frac{V_1 - V_2}{\ln(\frac{R_1}{R_2})} \ln \left(\frac{r}{R_2}\right)$

- 5. Le champ électrique dans le condensateur est donnée par $\vec{E} = -\frac{dV}{dr} \hat{u}_r$ d'où $\vec{E} = -\frac{V_1 V_2}{\ln\left(\frac{R_1}{R_2}\right)} \frac{1}{r} \hat{u}_r$.
- 6. A l'extérieur, nous avons toujours $r\frac{dV}{dr} = C_1$ d'où $V = C_1 \ln(r) + C_2$ mais le potentiel doit resté fini lorsque $r \to +\infty$ d'où $C_1 = 0$. Ainsi, V = Cst à l'extérieur. La continuité du potentiel implique que $V = V_2$ à l'extérieur.
- 7. Le champ électrique est nul à l'extérieur.
- 8. Le saut de la composante normale du champ électrique vaut $\frac{\sigma}{\varepsilon_0}$ au passage de la surface extérieure du condensateur. Or, le saut du champ électrique a pour expression $E_{ext} Eint = -\frac{V_1 V_2}{\ln\left(\frac{R_1}{R_2}\right)} \frac{1}{R_2} = \frac{V_1 V_2}{\ln\left(\frac{R_2}{R_1}\right)} \frac{1}{R_2}$ d'où $\sigma = \varepsilon_0 \frac{V_1 V_2}{\ln\left(\frac{R_2}{R_1}\right)} \frac{1}{R_2}$

2

Exercice 6: Orage!

- 1. $\rho = 0$ entre h_0 et h_1 donc $E = Cst = E_0$.
- 2. la densité volumique de charge varie linéairement de $-\rho_0$ en $h_1=2$ km à ρ_0 en $h_2=10$ km. Autrement dit, ρ est déterminée par le système :

$$\begin{cases} -\rho_0 = ah_1 + b \\ \rho_0 = ah_2 + b \end{cases}$$

Nous en déduisons que $\rho = \rho_0 \frac{2z - (h_2 + h_1)}{h_2 - h_1}$.

3. Le théorème de Gauss local s'écrit $\frac{\partial E}{\partial z} = \frac{\rho_0}{\varepsilon_0} \frac{2z - (h_2 + h_1)}{h_2 - h_1}$ d'où $E = \frac{\rho_0}{\varepsilon_0} \left(\frac{z^2}{h_2 - h_1} - \frac{h_2 + h_1}{h_2 - h_1} z \right) + C$. Nous avons $E(z = h_1) = E_0$ d'où $C = E_0 + \frac{\rho_0}{\varepsilon_0} \frac{h_2 h_1}{h_2 - h_1}$.