Exercice

Un nouveau procédé de fabrication de comprimés de paracétamol est mis au point. Pour chaque comprimé, la masse attendue est 500 mg et le diamètre attendu 5 mm. Voici les résultats des mesures de masse et de diamètre sur un échantillon de 12 comprimés.

poids (mg)	diamètre (mm)
506,3	5,02
497,3	4,85
502,3	5,02
501,2	4,88
507,5	5,09
502,4	5,12
503,9	5,11
501,5	4,87
501,2	4,96
506,5	5,11
503,6	5,22
510,3	4,94

Question 1:

- a) Donner les valeurs respectives de la moyenne, de l'écart-type d'une mesure et de l'écart-type de la moyenne pour les 12 mesures de masses.
- b) Quel est l'intervalle de confiance à 99 % de la masse moyenne de ces comprimés.

Correction (15 points)

a) (6 pts)

```
m = 503,7 mg
s (mesure) = 3,5 mg
s (moyenne) = \frac{s(mesure)}{\sqrt{12}} = 1,0 mg
```

b) (9 pts)

```
Idc = [m \pm t(Student, bilat\'eral, 1\%, 11~ddl).~s(moyenne)]lci, t = 3,106 D'o\`u~Idc = [500,5~;506,8]
```

Question 2:

La masse moyenne des comprimés est-elle significativement différente de la masse attendue au risque α = 5 % ?

Correction

Première possibilité de réponse (15 points)

La valeur attendue 500 mg n'appartient pas à l'intervalle de confiance à 99%. Comme l'intervalle à 99% est toujours plus large que celui à 95%, 500 mg n'appartient pas non plus à l'intervalle de confiance à 95 %. La masse moyenne des comprimés est donc significativement différente de la masse attendue au risque α = 5 %.

Deuxième possibilité de réponse (15 points)

Les hypothèses (3 pts)

H0: La masse moyenne des comprimés est égale à 500 mg

H1 : Elle est différente (test bilatéral).

Le test choisi et ses conditions d'application (3 pts)

La statistique suivra une loi de Student.

Calcul de la statistique (4 pts)

 $t_{obs} = (m - 500) / s(moyenne)$

 $t_{obs} = 3,63$

Conclusions (3 pts)

t_{table} (Student, bilatéral, 5%, 11 ddl) = 2,201

 t_{obs} > t_{table} donc rejet de HO au risque 5%. La masse moyenne des comprimés est significativement différente de la masse attendue au risque α = 5 %.

Rédaction et soin apporté à la réponse (2 pts)

Question 3:

La masse des comprimés est-elle significativement corrélée à leur diamètre au risque α = 5 % ?

Correction (10 points)

Les hypothèses (2 pts)

H0: Il n'existe pas de corrélation linéaire entre masse et diamètre (p=0)

H1: Il existe une corrélation linéaire $(p \neq 0)$ – Test bilatéral

Le test choisi et ses conditions d'application (2 pts)

On effectue un <mark>Test de corrélation de Pearson</mark> dont la condition d'application est la <mark>binormalité des données</mark> (qu'on supposera satisfaite).

Calcul de la statistique (2 pts)

Calcul du coefficient de corrélation de Pearson (lu directement sur la calculatrice) : r = 0.392 (= covariance / produit des écarts-type)

Calcul du t_{exp} = 4,27

 $t_{Student, 5\%, 10 dll, bilatéral} = 2,228$

Conclusions (2 pts)

 t_{exp} (en valeur absolue) > $t_{\text{Student, 5\%, 10 dll, bilatéral}}$ donc rejet de H0 au risque α de 5%. Il existe bien une corrélation linéaire entre masse et diamètre des comprimés.

Rédaction et soin apporté à la réponse (2 pts)