Question N° 1:

Le fluor 18, ${}^{18}_{9}$ F, est un isotope radioactif émetteur d'un rayonnement β^+ .

Écrire la réaction de désintégration de cet isotope.

Quel rayonnement secondaire à cette émission β^+ sera utilisé pour la détection de cet isotope ?

Données : extrait de la classification périodique :

Question N° 2:

L'activité d'une source de ¹⁸F est mesurée au cours du temps ; les résultats sont les suivants :

Temps (minutes)	0	180
Activité (MBq)	80	25,7

Calculer la constante radioactive λ et la période T de ¹⁸F.

Question N° 3:

Le ¹⁸F sert à la préparation de médicaments radiopharmaceutiques utilisés en médecine nucléaire. Un des médicaments radiopharmaceutiques, parmi les plus utilisés, est le 2(¹⁸F)Fluoro-2-deoxy-D-glucose (¹⁸FDG). Il permet d'analyser le métabolisme du glucose dans les cancers, en cardiologie et dans diverses pathologies du cerveau.

Pour rechercher un cancer pulmonaire, on injecte 185 MBq de ¹⁸FDG à un malade. Il faut prévoir un délai de deux heures et demie entre la préparation industrielle du médicament radiopharmaceutique et son utilisation au centre hospitalier.

- a) À quelle activité, exprimée en MBq, cette injection correspond-elle au moment de sa préparation industrielle ?
- b) Quelle masse de ¹⁸FDG sera injectée au malade, sachant que la masse molaire du ¹⁸FDG est de 181 g.mol⁻¹ ?

Donnée: nombre d'Avogadro $N_A = 6,02.10^{23} \text{ mol}^{-1}$

Question N° 4:

Lors de la fabrication du ¹⁸FDG, on utilise des écrans de plomb pour se protéger du rayonnement électromagnétique mono-énergétique produit.

On admet que la loi de transmission du flux énergétique Φ en fonction de l'épaisseur \mathbf{x} d'écran traversé est exponentielle.

- a) Sachant qu'une épaisseur de plomb de 1 cm laisse passer 24 pour 100 du flux énergétique incident, calculer le coefficient d'atténuation linéaire μ du plomb.
- b) Pour protéger le préparateur, on veut que 95 pour 100 du flux énergétique soit absorbé par l'écran. Quelle épaisseur de plomb faudra-t-il utiliser ?