La séparation chromatographique de quatre composés stupéfiants retrouvés dans la salive A, B, C et D a été obtenue sur une colonne de silice greffée C18 à une température de 23°C. La phase mobile chromatographique (débit de 1mL.min⁻¹) est composée d'un mélange d'eau et d'acétonitrile 65/35 (v/v). La longueur de la colonne est de 15 cm et la pression en tête de colonne est de 93.10⁵ Pa. Le temps mort est de 58 secondes.

Nom du composé	Temps de rétention tr (min)	Largeur à mi-hauteur ω _{0,5} (sec)
A	3,76	18
В	4,48	21
С	5,56	22
D	6,48	24

Ouestion 1

Définir la paire critique correspondant à la paire de composés la moins bien séparée ?

Préciser les composés pour lesquels la séparation est satisfaisante ?

Question 2

Toutes choses étant égales par ailleurs, quelle serait la longueur de la colonne pour obtenir une résolution satisfaisante pour l'ensemble des composés ?

Question 3

Les colonnes de cette gamme sont disponibles avec des tailles multiples de 5 cm (de 10 à 50 cm), quelle colonne allez-vous sélectionner pour avoir une résolution satisfaisante et un temps d'analyse minimal? Quelle sera alors la perte de charge de cette nouvelle colonne?

Les composés A, B, C et D sont des substances stupéfiantes recherchés dans la salive d'un patient admis aux urgences avec des troubles de la vigilance.

A 1 mL de salive est ajouté 1 mL d'une solution aqueuse de pH =1,0. On réalise une double extraction par 5 mL de dichlorométhane. Le rendement de cette extraction est de 92% pour le composé A, 87% pour le composé B, 98% pour le composé C et 85% pour le composé D. Les deux extraits sont réunis, évaporés à sec et repris par 0,5 mL de phase mobile. On injecte $10 \mu L$ dans le système chromatographique. On obtient 2 pics à 4,48 min (surface du pic = 64 708 U) et 6,48 min (surface du pic = 20 671 U) avec la colonne de 15 cm.

L'injection sans extraction de $10 \,\mu\text{L}$ de chacun des composés à la concentration de $10 \,\text{mg.L}^{-1}$ donne respectivement des surfaces de pic suivantes :

- Pic à 3,76 min surface de pic = 82 818 U
- Pic à 4,48 min surface de pic = 86 227 U
- Pic à 5,56 min surface de pic = 72 436 U
- Pic à 6,48 min surface de pic = 68 902 U

Question 4

Calculer les concentrations des composés présents dans l'extrait du patient

Question 5

En déduire les concentrations salivaires des composés présents dans la salive du patient.

Proposition de réponse

Ouestion 1

```
Rs = 1,18(Tr<sub>2</sub>-Tr<sub>1</sub>)/(\omega_{0,5,1}+\omega_{0,5,2})
```

 $Rs_{A,B}=1,31$

 $Rs_{B,C} = 1,78$

 $R_{SC,D} = 1,41$

Paire critique A-B, seuls B et C sont correctement séparés (Rs > 1,5)

Question 2

Paire critique A-B $Rs_{A,B}$, x cm = 1,5

HEPT = cste

Rsxcm/Rs15cm = racine(Nx/N15)

 $N = 5,54(Tr/w0,5)^2$

 N_A = 870,2 plateaux

 $N_B = 907,7$ plateaux

N15cm = (N1+N2)/2 = 889 plateaux

Nx = 1166 plateaux

HEPT= cste

Lx = L15*Nx/N15 = 19,7cm

Question 3

Colonne de 20cm

Loi de Darcy : ΔP proportionnel à la longueur de la colonne

 $\Delta P = 124.10^5 \, Pa$

Question 4

On considère la réponse proportionnelle à la concentration

 $C_{B, ext} = 7.5 \text{ mg.L}^{-1}$

 $C_{D, ext} = 3.0 \text{ mg.L}^{-1}$

Question 5

 $C_{B, salive} = 7.5 \text{ x } 1/2 \text{ x } (1/0.87) = 4.3 \text{ mg.L}^{-1}$

 $C_{D, \text{ salive}} = 3.0 \text{ x } 1/2 \text{ x } (1/0.85) = 1.8 \text{ mg.L}^{-1}$