
EPREUVE D'EXERCICE D'APPLICATION

Exercice N° 5 (40 points)

Enoncé

Le sodium $24\binom{24}{11}Na$ est un radionucléide émetteur bêta moins (β^-) de période radioactive T = 15,0 h dont le schéma de désintégration simplifié est représenté ci-dessous :

Données:

- constante d'Avogadro : N_A = 6,02.10²³ mol⁻¹
- équivalent énergétique de l'unité de masse atomique : 1 u = 931,5 MeV/c²
- numéro atomique de quelques éléments :

Z	9	10	11	12	13	14
Symbole	F	Ne	Na	Mg	Al	Si
Nom	fluor	néon	sodium	magnésium	aluminium	silicium

Questions

QUESTION Nº 1:

Ecrire l'équation de désintégration du sodium 24. Identifier le noyau X en précisant son symbole, son numéro atomique et son nombre de masse.

QUESTION N° 2:

Calculer l'énergie cinétique maximale E_{β^-max} (en MeV) emportée par le rayonnement β^- . On donne les masses des atomes :

$$M(^{24}Na) = 23,99061 \text{ u et } M(^{A}_{Z}X) = 23,985042 \text{ u}$$

EPREUVE D'EXERCICE D'APPLICATION Exercice N° 5 (40 points)

QUESTION N° 3:

Quelles sont les énergies $E_{\gamma 1}$ et $E_{\gamma 2}$ (en MeV) des photons émis lors de la désexcitation du noyau X ?

QUESTION Nº 4:

Calculer la constante radioactive λ (en h⁻¹) et la durée de vie moyenne t (en h) du sodium 24.

QUESTION N° 5:

On dispose d'une solution de sodium 24 d'activité $A_0 = 3.7$ MBq. Calculer son activité A_1 (en MBq) au bout de 24,0 h.

QUESTION Nº 6:

On souhaite mesurer le volume de diffusion du sodium chez un patient. Pour cela, une infirmière lui injecte une activité A = 2,0 MBq de sodium 24.

- a. A quelle masse (en pg) de sodium 24 correspond cette activité A = 2,0 MBq?
- b. Lorsque le sodium 24 est réparti de manière homogène dans l'organisme, l'activité volumique du plasma est a = 120 Bq.mL⁻¹. Sachant que l'activité éliminée dans les urines pendant la durée de l'examen est A_U = 100 kBq et qu'il n'est pas nécessaire de tenir compte de la décroissance radioactive, calculer le volume (en L) de diffusion du sodium chez ce patient.
- c. Indiquer les conditions de mesure de la radioactivité des échantillons (avant et après injection) pour qu'il ne soit pas nécessaire d'effectuer la correction de décroissance radioactive.

QUESTION Nº 7:

Sachant que le débit de dose équivalente au contact de la seringue qui a servi à l'injection est de 2,2.10⁻² µSv.h⁻¹ pour une activité de 1 Bq, calculer la dose équivalente (en µSv) reçue par l'infirmière pendant l'injection dont la durée est de 0,5 min.