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|- presentation of the forebrain
lI- plan of organisation and morphogenesis of the vertebrate forebrain
llI- macro-evolution: example of the lamprey and hagfish brains

I\VV- micro-evolution: example of the cavefish brain
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The forebrain is a vertebrate novelty
and synapomorphy
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Amazing diversity in forms, sizes, structures of the brains
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Transverse sections, adult brains, telencephalon:
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Shared caracters can be inherited from a common ancestor (=homology)
or can be independently-evolved (=homoplasy or convergence).

Homology Homoplasy/convergence
inheritance from a common ancestor similar caracters of independent origin

shared developmental origin (ex: bat wing/bird wing)
multitude and high degree of similarities
can be traced in the genome



Evolutionary developmental biology (evolution of development, Evo-Devo) is a
field of biology that compares the developmental processes of different
organisms/species to determine the ancestral relationship between them, and to
discover how developmental processes evolved.

It addresses the origin and evolution of embryonic development; how modifications of
development and developmental processes lead to the production of novel features
and to diversification of structures; and the developmental basis of homology and
homoplasy.

Evo-Devo is based on the idea that morphological differences observed between the
adult brains of various species must originate from variations in the developmental
processes.
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Compared « fate maps » of vertebrate neural plates
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Morphogenesis and regionalisation

mouse

neuroepithelium

|

morphogenesis (amniotes)

-neurulation

-evagination

(telencephalic vesicles, optic vesicles,
olfactory bulbs, epiphysis)

-inwards growth (ganglionic eminences)
-flexure of the longitudinal axis

+ regionalisation

+ cell/neuronal differentiation
+ extensive migrations

Dorsal view

PP
Lateral views

Il Massive deformations which notably complicate
the compared anatomical analyses!!
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> Inverted topology of the pallium
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The construction of the teleost pallium is not simply a
reversed version of the sarcopterygian pallium.

The teleost pallium does not develop by extension of
the preexisting three or four embryonic subdivisions.

Newly born neurons are progressively “stacking-up” on
top of the old ones.

All the lateral parts of the pallium containing DI and Dp
are derived from the her6+ progenitors located at the
dorsal tip of the neural tube until 2 dpf.

Hence, the teleost “MP” gives rise to neural populations
not only playing a hippocampus-like role in spatial
memory (ventral D), but also in visual sensory (dorsal
DI) and in olfactory sensory (part of Dp) processing.
Thus, in teleosts, a simple “DI = hippocampus = MP”
framework is not supported by developmental data.

Therefore, the pallium is homologous as a field in
vertebrates, but the pallial subdivisions are not
homologous: they lack shared developmental origin.



Regionalisation and genetic specification
The embryonic brain of vertebrates has a shared plan of organisation

mouse Xenopus

subpallium=

« ventral »
telencephalon
markers

pallium=

« dorsal »
telencephalon
markers

Pax

Conserved Bauplan. Shared genetic specification



» telencephalic divisions

» diencephalic prosomeres alar/basal boundary

pallium

subpalllium

Mammal Amphibian

» A shared embryological origin AND genetic specification allows
proposing the homology between pallial and subpallial regions
of the brain in different vertebrates.

Q » Looking for the ancestral craniate brain ???
Bird Teleost
fish
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No jaws,

No scales,

No paired fins,
No stomach

Lampetra

They have:
internal cartilage skeleton

complete braincase and rudimentary but true vertebrae
sucker surrounding the mouth, strenghtened by an annular cartilage
a brain including a forebrain




The lamprey adult brain
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- Poorly « migrated » brain, low cell density
- Partial evagination of the telencephalon
- No pallidum in the subpallium
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Murakami et al, Development 2001
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prosomeric organisation of the diencephalon

two pallial subdivisions

no Nkx2.1 in the subpallium, only one subpallial division



Phenocopy of the lamprey case in Nkx2.17- mouse ?
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Loss of Nkx2.1 homeobox gene function results in a ventral to dorsal
molecular respecification within the basal telencephalon: evidence for a
transformation of the pallidum into the striatum
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lamprey fish Xenopus mouse
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- Nkx in the > Alternative hypothesis?
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Genetic specification of the forebrain subdivisions in embryonic hagfish

Eptatretus burgeri

Sugahara et al, Nature 2016

A

lamprey medaka xenopus mouse
(agnathan) (actinopterygian) (amphibian) (mammal)

ﬁ G @:  Evolution can proceed by loss

hagfish loss

G » Origin of these patterning variations?

Vertebrates

» Importance of phylogenetic sampling

-
DIx-and Nkx-expressing
subpallium



Morphogen signaling

\ diencephalon

pallium

Regionalised brain

subpallium

? Loss of nkx2.1 induction by Shh in lampreys ? Evolution at regulatory level?



Jeong et al, Development 2005

SFPE1, SBE4,A SBE2, . SBE3
Shh

FO- _‘_‘_ S 5 e Modular structure of CNEs,
.« Evolvable » system
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The modular nature of cis-regulatory elements and pleiotropy of gene products

allows for selective spatio-temporal changes of expression patterns and
morphological changes

(Sean Carroll)

Carroll, Cell 2008
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Anteriorisation/ aquisition of novel
expression domains for key
morphogen signaling molecules

Rétaux et al,
Advances in Evolutionary Developmental Biology, 2013



Surface fish

Astyanax mexicanus

Cavefish

One species, ~20.000 years of evolution in cave environment

« cavefish have adapted to permanent darkness and irregular/low food supply

» they have undergone both gains and losses at the morphological, physiological, and
behavioral levels



-cavefish have evolved from surface fish-
« like » ancestors

- many caves with cavefish, all blind and
depigmented

- 2 independent colonisation events

- parallel /convergent evolution

Rio
Subterraneo

(From Jeffery, 2009)




Mechanisms underlying eye loss: genetics

Restoring sight in

: _ Complementation crosses:
blind cavefish

Richard Borowsky

0% can see

8% see

39% see

100% see

« Case of convergent evolution
« Independent events (at least in part)



Developmental mechanisms underlying eye loss

Comparative development during the first 24 hours: cavefish first develop eyes



Cavefish eyes suffer coloboma

Surface fish eye Cavefish coloboma Human coloboma

.

»

24hpf
*

Small & malformed Incidence ~1/100.000

« What is the developmental origin of this morphogenetic defect?



surface fish cavefish

Light-sheet microscopy, live imaging from 10 to 36hpf
+ H2B-mCherry mRNA injection

» Defective morphogenetic movements

Devos et al, Biology Open 2021
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Cavefish optic cells adopt aberrant trajectories



The rx3 transcription factor confers eye/retina identity in the neural plate in all vertebrates

3D dorsal view 3D ventral view
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(1) rx3 is expressed at low level (2) rx3+ eyefield is 25% smaller
> |dentity problem? > Size problem?

Agnes et al, Development 2022
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Tailbud (10hpf) transcriptome

« Down in cavefish

NS
* Up in cavefish

Fold change>1.5
FDR<1%

= ~19% of the transcriptome is differentially expressed (4483 transcripts)

» |s it due to cis- or trans- regulatory divergences?

Leclercq et al, Development 2024



Cis- versus trans- regulatory changes in cavefish?
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The two alleles are expressed in F1 hybrids One allele is predominant (biased allelic ratio) in F1 hybrids

NB: fixed polymorphisms are used to recognize transcripts of surface or cave origin in the F1 transcriptome




HybCF, 10hpf
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Allele-specific expression in F1 hybrids
(cis)

e 2.Trans only
e 3.Cis+Trans: enhancing

Key 4.Cis+Trans: compensating 54

Leclercq et al, Development 2024

e 5.Compensatory _5' 0 _2' 5 00 2'5

® 6.Conserved DEG in parents
7.Ambiguous (cis + trans)

» Cis-regulatory changes have a major contribution to evolution of developmental gene expression in
cavefish

= Acis-regulatory element has changed in the cavefish rx3 gene and is involved in the
developmental evolution of the cavefish eye
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The regulation of cellular rx3 expression level has evolved in cis and is cell-autonomously regulated




rx3 domain size

-

*%

0]
o

X¥¥%
X %% X% %

T &

| rxs
Wildtype : “ d ' .

SF ge

(Wnt overactivation) (Wnt inhibition)

D
o

Area rx3 (x10° um?)
N
(@]

Manipulation of the A : . 20 1
Wnt pathway : “ A
0 v . v v
SF CF SF CF
SF CF n=19 n=20  LiCl0.2M dkk1b inj.
LiCl 0.2M dkk1b mRNA n=18  n=16

rx3 domain size depends on non-autonomous Wnt signaling mechanisms



Surface fish Cavefish

10hpf

eyefield size

expression level

Mechanism

Change in non-autonomous
cell-cell signaling

Change in cis-regulation,
cell-autonomous

Qutcome

Change in eye size

Change in optic cells
specification and
behaviors



Wilkens,

Stemmer et al., 2014

Z001

» The coordonated cell movements of eye morphogenesis must
proceed for the rest of the forebrain to be properly formed.

Forming eyes is absolutely required for a
vertebrate embryo

There are shapes and anatomies that
developmental processes cannot produce



A conserved plan of organization for the vertebrate brain

> Morphogenetic variations in sizes and shapes (examples)

An important role for signaling centers in brain evolution

> Both for emergence of novelties and for diversification (examples)

An important role for changes in cis-regulatory sequences

> Modularity of enhancers and spatio-temporal control of gene
expression (examples)



