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Neural stem cells & Retinal regeneration



Ali & Sowden, Nature 2011

Retinal development in vertebrates



Goldman & al., 2014



§ AMD: > 10 millions (25% at 75 years-old; 60% at 90 years-old)

§ Retinitis pigmentosa: 400 000

§ Glaucoma: > 9 millions

Yvon et al., 2015

AMD RP

Patients with retinal degenerative diseases in Europe



Zhang et al., Experimental Eye Research 2020

THERAPIES



CELL THERAPIES

§ Transplantation from stem cell-
derived retinal cells

§ Regeneration from endogenous 
stem cells



No regeneration

Cellular sources for retina regeneration

Müller glia cells

Ciliary marginal zone

Adapted from Karl & Reh 2010

RPE



Ciliary marginal zone stem cells



Continuous growth in fish and amphibians
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Retinal stem cells in the ciliary marginal zone



Araki et al., 2014

Xenopus tropicalis

Regeneration in Xenopus tropicalis



Only amacrine and bipolar cells are produced by 
progenitors at the retinal margin of postnatal chicks

Cell Identification of a Proliferating Marginal Zone of Retinal Progenitors in Postnatal Chickens



Kuwahara et al., 2015 Nature Com

Generation of a ciliary margin-like stem cell niche from self-organizing human retinal tissue





Eldred et al., Cell Reports 2025 

Cells in the CMZ remain mitotically active after the rest of the retina is no longer proliferating

Developing human retina maintains a zone of proliferating cells at the ciliary margin



Eldred et al., Cell Reports 2025 

Early progenitors, located at the 
tip of the CMZ, give rise to early-
born cell types such as ganglion 
cells. 

Late progenitors, located further 
out in the far periphery of the 
retinosphere, give rise to late-
born cell types such as rods.



Diagram of timing of 
CMZ development 
across organisms

Eldred et al., Cell Reports 2025 



Retinal Pigment Epithelium



Regeneration in the Newt from the RPE

Del Rio-Tsonis and Tsonis, 2003 



retinectomy regeneration

Regeneration in post-metamorphic Xenopus

Yoshii et al., 2007

Xenopus laevis



Regeneration in post-metamorphic Xenopus

Hidalgo et al., 2014

Xenopus laevis



Müller cells





Müller glia regenerative potential in the fish retina



§ Can amphibian also recruit their Müller cells in case of  injury?

§ What are the mechanisms that sustain or constrain Müller cell 
response to injury?

§ Are intrinsic and/or extrinsic factors key regulators of  
regeneration?

§ Can we awake mammalian dormant Müller cells for therapeutic 
purposes?
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New models of  retinal injury/degeneration in Xenopus
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New models of  retinal injury/degeneration in Xenopus

Langhe et al., Glia 2017
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CRISPR-dependent photoreceptor degeneration as a model of  retinitis pigmentosa

unpublished

New models of  retinal injury/degeneration in Xenopus
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Proliferative response after retinal injury
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Müller glial cell potential for retinal tissue repair in Xenopus

injury

Langhe et al., Glia 2017
Parain et al., Cells 2022
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Müller glial cell potential for retinal tissue repair
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EGF triggers Müller glia proliferation in adult mouse retina following NMDA damage

Karl et al., PNAS 2008



Some of  these BrdU+ cells developed characteristics of  retinal neurons

Karl et al., PNAS 2008



Mike O. Karl
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What are the mechanisms that sustain or constrain Müller cell proliferation upon injury?



Hoang Science 2020





The Hippo pathway

From Piccolo et al., 2014

Pan et al. 2007

Pan et al. 2007

Todd Heallenet al. 2011



YAP is expressed in Xenopus Müller cells

Müller cellsYAP Merge

GS
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Forced YAP expression in mouse Müller glia cells stimulates their proliferation
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§ What about neuron regeneration?
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Restoration of vision after de novo genesis of rod 
photoreceptors in mammalian retinas
Kai Yao1, Suo Qiu1,2, Yanbin V. Wang3,4, Silvia J. H. Park3, Ethan J. Mohns5, Bhupesh Mehta4,6, Xinran Liu7, Bo Chang8,  
David Zenisek3,4, Michael C. Crair3,5, Jonathan B. Demb3,4 & Bo Chen1,9,10*

In zebrafish, Müller glia (MG) are a source of retinal stem cells 
that can replenish damaged retinal neurons and restore vision1. In 
mammals, however, MG do not spontaneously re-enter the cell cycle 
to generate a population of stem or progenitor cells that differentiate 
into retinal neurons. Nevertheless, the regenerative machinery may 
exist in the mammalian retina, as retinal injury can stimulate MG 
proliferation followed by limited neurogenesis2–7. Therefore, there 
is still a fundamental question regarding whether MG-derived 
regeneration can be exploited to restore vision in mammalian 
retinas. Gene transfer of β-catenin stimulates MG proliferation 
in the absence of injury in mouse retinas8. Here we report that 
following gene transfer of β-catenin, cell-cycle-reactivated MG can 
be reprogrammed to generate rod photoreceptors by subsequent 
gene transfer of transcription factors essential for rod cell fate 
specification and determination. MG-derived rods restored visual 
responses in Gnat1rd17Gnat2cpfl3 double mutant mice, a model of 
congenital blindness9,10, throughout the visual pathway from the 
retina to the primary visual cortex. Together, our results provide 
evidence of vision restoration after de novo MG-derived genesis of 
rod photoreceptors in mammalian retinas.

In cold-blooded vertebrates such as zebrafish, Müller glia (MG) 
act as retinal stem cells that readily proliferate to replenish damaged  
retinal neurons, establishing a powerful self-repair mechanism11–13. 
In mammals, however, MG lack regenerative capability as they do not 
spontaneously re-enter the cell cycle. Injuring the mammalian retina 
does activate the proliferation of MG, but with limited neurogenesis2–7, 
and the required injury is obviously counterproductive for regeneration 
as it kills retinal neurons. Furthermore, there has been no convincing 
evidence that MG-derived regeneration improves vision in mammals. 
To test whether MG-derived neurogenesis improves vision without 
the necessity for retinal injury, we reprogrammed MGs in vivo to gen-
erate new rod photoreceptors in mature mouse retinas. We previously 
reported that gene transfer of β-catenin under control of the GFAP pro-
moter using the ShH10 adeno-associated virus (AAV; ShH10-GFAP-
β-catenin) in MG stimulates these cells to re-enter the cell cycle in 
uninjured mouse retina8. To reprogram the cell-cycle-reactivated MG 
into rod photoreceptors, we tested a combination of three transcription 
factors (Otx2, Crx and Nrl) that are essential for determining rod cell 
fate during development14–17.

In the developing mouse retina, generation of cell types is complete 
by two postnatal weeks18. To investigate whether new rod photo-
receptors could be generated from MG in the mature retina, we used 
a two-step reprogramming method to first stimulate MG proliferation 
by intravitreal injection of ShH10-GFAP-β-catenin at four weeks of 
age. This was followed two weeks later by a second injection of ShH10-
GFAP-mediated gene transfer of Otx2, Crx and Nrl. We first examined 
whether MG could undergo successive rounds of cell division after 

the initial gene transfer of β-catenin. Following a double-labelling  
procedure using 5-ethynyl-2′-deoxyuridine (EdU) and 5-bromo- 
2′-deoxyuridine (BrdU), developed to analyse the clonal expansion of 
horizontal cells19, proliferating MG were labelled with EdU 10 days 
after the injection of ShH10-GFAP-β-catenin, and 24 h later S phase 
cells were labelled with BrdU. Retinas were collected four days later to 
determine whether EdU+ cells had progressed through another cell 
division, into a second round of S phase. Very few cells were labelled 
with both EdU and BrdU (Extended Data Fig. 1), indicating that the 
vast majority of MG undergo only one cell division after β-catenin 
gene transfer.

To identify MG that may undergo rod photoreceptor differentiation 
after the second injection of ShH10-GFAP-mediated gene transfer of 
Otx2, Crx and Nrl, we included ShH10-rhodopsin-tdTomato—a 2.1-kb  
rhodopsin promoter20 driving the expression of tdTomato—in the 
first injection, together with ShH10-GFAP-GFP to label all transduced  
MG (Fig. 1a). On the basis of morphological changes observed from 
different retinal samples after the second injection for rod induction, 
the progression of MG-derived rod differentiation was categorized into 
initial, intermediate and terminal stages. At the initial stage, tdTomato+ 
cells resembled MG, with the upper processes ending at the outer  
limiting membrane, and the lower processes (MG endfeet) extending 
to the nerve-fibre layer (Fig. 1b–d). At the intermediate stage, there was 
an asymmetric cell division whereby each tdTomato+ cell produced 
two daughter cells with different fates (Fig. 1e–g). One daughter cell 
apparently differentiated to a rod photoreceptor with its soma localized 
to the outer nuclear layer (ONL), and, notably, the MG-derived rod cell 
generated outer and inner segments, a specialized cellular structure that 
is essential for phototransduction. The second daughter cell remained 
in the inner nuclear layer (INL) with a typical MG morphology. At the 
terminal stage, the tdTomato+ cell appeared to have differentiated to a 
mature rod, resembling native rods with outer and inner segments, and 
an enlarged synaptic-bouton-like terminal. The second daughter cell 
remained as an MG and shut off tdTomato expression (as it is driven 
by the rod-specific rhodopsin promoter) (Fig. 1h–j). MG-derived rod 
differentiation was observed throughout the treated retina, whereas no 
tdTomato+ cells were observed in control retinas that received the same 
treatments except for ShH10-GFAP-β-catenin, which was omitted from 
the first injection (Extended Data Fig. 2).

We quantified the progression of rod differentiation over time 
(1,000–1,200 tdTomato+ cells, 6–8 retinas per time point; with addi-
tional examples in Extended Data Fig. 3). One week after the second 
injection (Fig. 1k), most tdTomato+ cells (73.5%) were in the initial 
stage, with a smaller number in the intermediate (20.6%) and termi-
nal stages (5.9%). Two weeks after the second injection (Fig. 1l), most 
tdTomato+ cells (74.8%) were in the terminal stage. Four weeks after 
the second injection (Fig. 1m), nearly all tdTomato+ cells were in the 
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ShH10-GFAP-mediated gene 
transfer of  Otx2, Crx, and Nrl



Contardo et al. Biomedicines 2022
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Ptbp1 downregulation converts MG into RGCs by direct transdifferentiation



Blackshaw & Sanes, JCI 2021



Cell Reports 2022 39DOI: (10.1016/j.celrep.2022.110849) 

• Ptbp1 is genetically disrupted selectively in adult 
mouse Mϋller glia

• The fate of cells lacking Ptbp1 is analyzed with 
lineage tracing and molecular markers

• Ptbp1 deletion does not lead to glia-to-neuron 
conversion in retina

• scRNA-seq shows that glial identity is maintained 
after Ptbp1 deletion
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•AAV-based Cre recombination is unsuitable for 
examining MG-to-RGC conversion
•Lineage-traced MG are not converted into 
RGCs after Ptbp1 downregulation
•NMDA-induced injury does not facilitate MG-to-
RGC conversion after Ptbp1 downregulation
•Stringent fate mapping is required for critical 
examination of  glia-to-neuron conversion
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key step forward in developing a cellular reprogramming approach to regenerative medicine



Do Müller cells from X. laevis
and X. tropicalis respond 
similarly to retinal injury?

Retinectomy
X. laevis à RPE + CMZ

X. tropicalis à CMZ

Adapted from Karl & Reh 2010
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CRISPR-dependent photoreceptor degeneration as a model of  retinitis pigmentosa
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Müller cell response to photoreceptor degeneration in X. laevis and X. tropicalis
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Parain et al. Cells 2022



Müller cell response also differs at different stages in X. laevis

Refractory stages Permissive stages
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Comparing the transcriptome following injury at refractory and permissive stages

Stage 45-47
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Stage 54-57
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Stage 45-47
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Refractory stage Permissive stage

RNAseq analysis



Immune response is upregulated only at permissive stages following injury

PermissiveRefractory



Evolution of  microglia at different stages in physiological conditions

Retinal infiltration with microglia coincides with a shift in the proliferative capacity of  Müller cells
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Dynamic retinal colonization of microglia during development
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Two waves of microglia colonization in the Xenopus retina
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Are Müller cells refractory because of  a limited inflammatory 
microenvironment?

Can we trigger Müller cell proliferative response at the refractory stage by 
generating neuroinflammation?



CoCl2 : a novel model to induce retinal degeneration in Xenopus 
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CoCl2 intraocular injections leads to a severe inflammatory response
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CoCl2 rho crispant

The increase in microglia is higher in CoCl2 tadpoles 
than in rho crispant
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Microglia activation triggers a proliferation response of  refractory Müller cells
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Microglia activation mediates CoCl2 dependent proliferative response of  
refractory Müller cells
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Can an immune challenge awake refractory Müller cells 
in other species?

X. tropicalis Mouse
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Parain et al., Glia 2024



An immune challenge promotes mouse Müller cell proliferation

+ LPS

Contro
l

LPS
TNFα IL

6

TNFα
 + 

IL
-6

0

100

200

300

S
ox

9+
E

dU
 c

el
ls

 / 
fie

ld

✱✱

✱✱✱

✱✱

Pr
ol

ife
ra

tiv
e 

M
ül

le
r c

el
ls

Control LPS



Microglia are necessary for YAP-dependent proliferative effects on Müller cells
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What about the neurogenic potential of  LPS-induced 
proliferative Müller glia?



LPS-induced proliferative Müller cell are not neurogenic
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Ablation of  microglia following an immune challenge triggers Ascl1 expression
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Quiescent 
Müller cells

Proliferative 
Müller cells

Neurogenic 
Müller cells

Microglia Activated microglia

Garcìa Garcìa, Science Advances 2024
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