

Neural stem cells & Retinal regeneration

Muriel Perron muriel.perron@cnrs.fr

Institut des Neurosciences Paris-Saclay NeuroPSI CNRS - Université Paris-Saclay

Retinal development in vertebrates

Goldman & al., 2014

Patients with retinal degenerative diseases in Europe

- AMD: > 10 millions (25% at 75 years-old; 60% at 90 years-old)
- Retinitis pigmentosa: 400 000
- Glaucoma: > 9 millions

Yvon et al., 2015

THERAPIES

Zhang et al., Experimental Eye Research 2020

Transplantation from stem cellderived retinal cells

Regeneration from endogenous stem cells

Cellular sources for retina regeneration

Müller glia regenerative potential in the fish retina

- Can amphibian also recruit their Müller cells in case of injury?
- What are the mechanisms that sustain or constrain Müller cell response to injury?
- Are intrinsic and/or extrinsic factors key regulators of regeneration?
- Can we awake mammalian dormant Müller cells for therapeutic purposes?

Langhe et al., Glia 2017

Neuro

PARIS-SACLAY INSTITUTE OF NEUROSCIENCE

CRISPR-dependent photoreceptor degeneration as a model of retinitis pigmentosa

Proliferative response after retinal injury

0

Control Injured

Mtz

0

Control

0

Control

CRISPR

Müller cell-dependent photoreceptor regeneration

Tg(Rho:GFP-NTR) + Mtz

Langhe et al., Glia 2017 Parain et al., Cells 2022

Müller glial cell potential for retinal tissue repair

Karl et al., PNAS 2008

What are the mechanisms that sustain or constrain Müller cell proliferation upon injury?

Hoang Science 2020

The Hippo pathway

From Piccolo et al., 2014

Todd Heallenet al. 2011

Pan et al. 2007

Pan et al. 2007

335

Inhibition of YAP prevents Müller glia proliferation upon acute retinal damage

Photoreceptors Proliferation Nuclei

Forced YAP expression in mouse Müller glia cells stimulates their proliferation

Forced YAP expression in mouse Müller glia cells stimulates their proliferation *in vivo*

What about neuron regeneration?

LETTER

https://doi.org/10.1038/s41586-018-0425-3

Restoration of vision after de novo genesis of rod photoreceptors in mammalian retinas

Kai Yao¹, Suo Qiu^{1,2}, Yanbin V. Wang^{3,4}, Silvia J. H. Park³, Ethan J. Mohns⁵, Bhupesh Mehta^{4,6}, Xinran Liu⁷, Bo Chang⁸, David Zenisek^{3,4}, Michael C. Crair^{3,5}, Jonathan B. Demb^{3,4} & Bo Chen^{1,9,10}*

ShH10-GFAP-mediated gene transfer of Otx2, Crx, and NrI

Contardo et al. *Biomedicines* 2022

Cell

Glia-to-Neuron Conversion by CRISPR-CasRx Alleviates Symptoms of Neurological Disease in Mice

Authors

Haibo Zhou, Jinlin Su, Xinde Hu, ..., Haishan Yao, Linyu Shi, Hui Yang

Cell 2020 181590-603.e16DOI: (10.1016/j.cell.2020.03.024)

Cell Reports

Genetic loss of function of *Ptbp1* does not induce glia-to-neuron conversion in retina

- Ptbp1 is genetically disrupted selectively in adult mouse Müller glia
- The fate of cells lacking *Ptbp1* is analyzed with lineage tracing and molecular markers
- *Ptbp1* deletion does not lead to glia-to-neuron conversion in retina
- scRNA-seq shows that glial identity is maintained after *Ptbp1* deletion

Report

Thanh Hoang, Dong Won Kim, Haley Appel, ..., Minzhong Yu, Neal S. Peachey, Seth Blackshaw

Authors

Cell Reports

Critical examination of Ptbp1-mediated glia-toneuron conversion in the mouse retina

Authors

Ye Xie, Jing Zhou, Bo Chen

•AAV-based Cre recombination is unsuitable for examining MG-to-RGC conversion

• Lineage-traced MG are not converted into RGCs after *Ptbp1* downregulation

NMDA-induced injury does not facilitate MG-to-RGC conversion after *Ptbp1* downregulation
Stringent fate mapping is required for critical examination of glia-to-neuron conversion

Report

ScienceAdvances

Current Issue First release papers Archive About V

HOME > SCIENCE ADVANCES > VOL. 8, NO. 47 > REPROGRAMMING MÜLLER GLIA TO REGENERATE GANGLION-LIKE CELLS IN ADULT MOUSE RETINA WITH DE-...

B RESEARCH ARTICLE | DEVELOPMENTAL BIOLOGY

f Y in 🌚 🗣 🖾

Reprogramming Müller glia to regenerate ganglion-like cells in adult mouse retina with developmental transcription factors

LEVI TODD ^(D), WESLEY JENKINS ^(D), CONNOR FINKBEINER, MARCUS J. HOOPER ^(D), PHOEBE C. DONALDSON, MARINA PAVLOU ^(D), JULIETTE WOHLSCHLEGEL ^(D), NORIANNE INGRAM ^(D), FRED RIEKE, AND THOMAS A. REH ^(D) Authors Info & Affiliations SCIENCE ADVANCES · 23 Nov 2022 · Vol 8, Issue 47 · DOI: 10.1126/sciadv.abg7219

SCIENCE ADVANCES | RESEARCH ARTICLE

REGENERATION

Robust reprogramming of glia into neurons by inhibition of Notch signaling and nuclear factor I (NFI) factors in adult mammalian retina

Nguyet Le¹, Trieu-Duc Vu^{2,3}, Isabella Palazzo¹, Ritvik Pulya¹, Yehna Kim¹, Seth Blackshaw^{1,4,5,6,7}*, Thanh Hoang^{2,3,8}*

July 2024

neurogenesis from adult Müller glia in vivo

AAV-mediated expression of proneural factors stimulates

Marina Pavlou, Marlene Probst, Elizaveta Filippova,
 Lew Kaplan, Aric R. Prieve,
 Fred Rieke,
 Thomas A. Reh

Viral-mediated Oct4 overexpression and inhibition of Notch signaling synergistically induce neurogenic competence in mammalian Muller glia.

Nguyet Le, Sherine Awad, Isabella Palazzo, Thanh Hoang, 🕩 Seth Blackshaw

key step forward in developing a cellular reprogramming approach to regenerative medicine

Posted September 15, 2024

Posted September 19, 2024

Retinectomy
$$\xrightarrow{X. laevis} RPE + CMZ$$

 $X. tropicalis \rightarrow CMZ$

Do Müller cells from *X. laevis* and *X. tropicalis* respond similarly to retinal injury?

Adapted from Karl & Reh 2010

CRISPR-dependent photoreceptor degeneration as a model of retinitis pigmentosa

Neuro (PSI

PARIS-SACLAY INSTITUTE OF NEUROSCIENCE

Müller cell response to photoreceptor degeneration in X. laevis and X. tropicalis

A

Parain et al. Cells 2022

Müller cell response also differs at different stages in *X. laevis*

X. laevis

Comparing the transcriptome following injury at refractory and permissive stages

Neuro

PARIS-SACLAY INSTITUTE OF NEUROSCIENCE

Immune response is upregulated only at permissive stages following injury

Neuro PSI

Evolution of microglia at different stages in physiological conditions

Retinal infiltration with microglia coincides with a shift in the proliferative capacity of Müller cells

Dynamic retinal colonization of microglia during development

Stages

Two waves of microglia colonization in the Xenopus retina

Are Müller cells refractory because of a limited inflammatory microenvironment?

Can we trigger Müller cell proliferative response at the refractory stage by generating neuroinflammation?

CoCl₂ : a novel model to induce retinal degeneration in *Xenopus*

CoCl₂ intraocular injections leads to a severe inflammatory response

The increase in microglia is higher in CoCl₂ tadpoles than in *rho* crispant

Microglia activation mediates CoCl₂ dependent proliferative response of refractory Müller cells

Unpublished

Can an immune challenge awake refractory Müller cells in other species?

CoCl₂ triggers a proliferation response of *X. tropicalis* Müller cells

An immune challenge promotes mouse Müller cell proliferation

What about the neurogenic potential of LPS-induced proliferative Müller glia?

PLX3397

Garcia Garcia, Science Advances 2024

Caroline Borday Odile Bronchain Albert Chesneau Alicia Donval Morgane Locker Léa Siron Jing Xian Lun Karine Parain

Collaborators

Yann Audic Université de Rennes

Deniz Dalkara Institut de la Vision, Paris

de France

Juliette Bitard Sophie Lourdel Patrick Pla **Julien Ricard** Jérôme Roger Demi Van Westendorp

Solène Pottin Christian Cozma

Alumni

Diana Garcia-Garcia Depoina Kazani Xavier Sanchez Saez Lorena Vidal