Nervous system development in Vertebrates

Caroline Borday 23th september 2024

Nervous system description

Nervous tissue

Nervous system development

Neurulation

- Neural induction
- Anteroposterior regionalization

Rhombencephalon

- Dorsoventral regionalization
- Migration ans synaptogenesis

Nervous system description

Nervous tissue

Nervous system development

Neurulation

- Neural induction
- Anteroposterior regionalization

Rhombencephalon

- Dorsoventral regionalization
- Migration ans synaptogenesis

The nervous system: physiological point of view

Cranial nerves

Spinal nerves

Copyright @2001 Benjamin Cummings, an imprint of Addison Wesley Longman, Inc.

Nervous tissue

Neuronal diversity

Ramon y Cajal, 1905

- Morphology
- Connectivity
- Electrical properties
- > Neurotransmitter

Glial cells and their functions

The myelination process

Dorsal view of the human brain showing the progression of myelination ("white matter") over the cortical surface during adolescence

Nervous system description

Nervous tissue

Nervous system development

Neurulation

- Neural induction
- Anteroposterior regionalization

Rhombencephalon

- Dorsoventral regionalization
- Migration ans synaptogenesis

Cleavage (amphibian)

PA

PV

Gastrulation (amphibien)

Blastoporal superior lip

Gastrulation (amphibian)

archenteron

http://www.snv.jussieu.fr/bmedia/xenope1/gastrulation/Gastrula.html

Ectoderm Mesoderm Endoderm

Many structures are derived from the three embryonic germ layers during organogenesis

Copyright @ 2005 Pearson Education, Inc., publishing as Benjamin Cummings.

Major derivatives of the ectoderm

Three subdivisions of the ectoderm:

- Surface
- Neural Crest
- Neural Tube

Major derivatives of the ectoderm

Three subdivisions of the ectoderm:

- Surface
- Neural Crest
- Neural Tube

=> Embryological point of view of the nervous system subdivisions

Primary neurulation (chick)

proliferation allowing growth in thickness

The neural crest cells

Neurulation in the *xenopus* embryo

Neurulation in human

Anencephaly = absence of a major portion of the brain resulting from a neural tube defect occurring when the rostral end of the neural tube (anterior neuropore) fails to close.

Neurulation in human

Spina Bifida (Open Defect)

Lightest form: asymptomatic

Spina Bifida = defect occurring
at the posterior part of the neural
tube. (prevalence: 1/2000)
⇒ Surgery
⇒ Often times, locomotor
disorders

Expression of N- and E-cadherin adhesion proteins during neurulation in *chick*

Expression of N- and E-cadherin adhesion proteins during neurulation in *chick*

Ncad-GFF

Rogers et al., 2018

Secondary neurulation: example in the caudal region of a 25-somite chick embryo

(D)

Shimokita and Takahashi., 2011

Secondary neurulation: in Human

Source: Neurosurg Focus © 2010 American Association of Neurological Surgeons

А

neuromesodermal common progenitor cells

neural restricted lineage

Primary Neurulation

1. Initial epithelium

в

2. Columnarization

3. Rolling/folding

4. Closure

5. Neural tube complete

Secondary neurulation

1. Dispersed mesenchyme

2. Mesenchymal condensation

3. Medullary cord/neural rod

4. Epithelial transition/cavitation

5. Neural tube complete

Mesenchymal-epithelial transition during secondary neurulation is regulated by differential roles of Cdc42 and Rac1

Control

CDC42 activation

Rac1 inhibition

D'après Shimokita and Takahashi, 2011

Electroporated cells

Early brain development

Proliferation to grow in thickness => Vesicule formation due to differential proliferation

5 Secondary vesicles

Early brain development

Adult derivatives

5 Secondary vesicles	Olfactory lobes Hippocampus Cerebrum	– Smell – Memory storage – Association ("intelligence")	Telencephalon derived
	 Optic vesicle Epithalamus Thalamus Hypothalamus 	 Vision (retina) Pineal gland Relay center for optic and auditory neurons Temperature, sleep, and breathing regulation 	Diencephalon Derived
	— Midbrain	 Fiber tracts between anterior and posterior brain, optic lobes, and tectum 	Mesencephalon derived
	Cerebellum Pons	 Coordination of complex muscular movements Fiber tracts between cerebrum and cerebellum (mammals only) 	Metencephalon derived
Spinal cord	— Medulla	 Reflex center of involuntary activities 	Myelencephalon derived

Curving of the neural tube

Nervous system description

Nervous tissue

Nervous system development

Neurulation

- Neural induction
- Anteroposterior regionalization

Rhombencephalon

- Dorsoventral regionalization
- Migration ans synaptogenesis

Neural induction

Wnt: posteriorization of the brain

NB: Same results with other markers

Sensitivity of the neural tube to FGF

Bel-Vialar et al., 2002

Regionalization defects

Example: Holoprosencephalias:

Anomalies during the subdivision of the prosencephalon to generate the telencephalon and the diencephalon. Moreover, the telencephalon does not divide totally into two hemispheres.

There are variable degrees of malformation.

To sum up

Hindbrain: an example of regionalisation

D'après Giudicelli et al., 2001

The main central pattern generators (CPGs) in the brainstem and the spinal cord

Steuer and Guertin, 2019

The PreBötzinger complex: The respiratory central pattern generator

r6r7r8: Genetic program leading to the PreBötzinger complex

Control of the dorso-ventral patterning

Modifié d'après Maden, 2007

Cascade of inductions initiated by the notochord in the ventral neural tube

HH16 Determination

Jacob and Briscoe, 2003; Le Dréau and Marti, 2012

Cyclopamine _____ Hh signaling

antagonizing Shh activity dorsally: a role for the Wnt canonical pathway signaling from the roof plate

Proliferation and differentiation

Leclerc et al., 2012

Proliferation and differentiation

Neurogenesis defects

Disease	Description	Symptoms
Megalencephaly (macroencephaly)	Brain bigger than normality	The size of the head is increased
Hemimegalencephaly	One hemisphere bigger than normality	Intelectual disorders, epilepsy, paralysis on one side of the body
Microencephaly	Brain smaller than normality	Intelectual disorders

Neuronal migration

Example: migration of glutamatergic and GABAergic neurons in the telencephalon

- Intrinsic cues: Transcription factors
- Chemical cues: semaphorines and ephrins (attracting or repelling signals)
- > chemico-mechanical guiding structures: vertical fibers of radial glial cells
- > extracellular matrix protein

Luhmann et al., 2015

Migration and gyration defects

⇒ malformations of the cerebral cortex, which is not organized in six layers, as it should do.

Variable degrees: conserved organization in layers or architecture is totally disorganized

=> Gyrus are reduced compared to normal, or totally absent.

Schizencephaly, heterotopia, polymicrogyria, lyssencephaly

Synaptogenesis

- Selective recognition of the right way and the right targets by the axon growth cone
- Formation of the synapses

Then adjustments:

- <u>Neuronal apoptosis</u>
- <u>Synaptic pruning</u>: reduction in the number of synaptic connections => conservation of more efficient synaptic configurations

Mechanical regulation

K = the apparent elastic modulus ⇔ a measure of tissue stiffness

BI2536: mitotic blocker

Development of a stiffness gradient in the Xenopus embryo brain

- precedes axon turning of ganglion cells
- is necessary for its correct elongation.

Development and therapy

=> IPSc

hiPSCs: human induced pluripotent stem cells

Inhibitory GABAergiques neurons (Nkx2.1+) are involved in autism

 \Rightarrow generation of these neurons from IPSc

BMP inhibition: SB431542 et BMPRIA Wnt inhibition: DKK-1 (Dickkopf-1) Shh activation: PM (purmorphamine) (Y-27632 for iPS survey)

REVIEW

Molecular Autism

Open Access

Exploring the mechanisms underlying excitation/inhibition imbalance in human iPSC-derived models of ASD

Lorenza Culotta^{1,3} and Peter Penzes^{1,2,3*}

Gene	Model type	Phenotype observed	Reference
ATRX, AFF2, KCNQ2, SCN2A, and ASTN2	Homozygous deletion	Reduced synaptic activity	[<u>53]</u>
CACNA1C	ASD-related mutations	Disrupted interneurons migration	[<u>54]</u>
CNTN5 and EHMT2+	Heterozygous deletion	Hyperexcitability.	[55]
CNTNAP2	Heterozygous deletion	Increased neuronal network activity	[<u>56]</u>
FMR1	Heterozygous deletion	Impaired retinoic acid (RA)-dependent homeostatic synaptic plasticity	[57]
MECP2	Heterozygous deletion or duplication	Altered synaptic density, altered calcium signaling; altered neuronal firing rate and synchronization; delayed GABA switch	[<u>58,59,60,61]</u>
NLGN4	Gene overexpression and ASD-related mutations	Increased excitatory synapse density, altered synaptic strength	[<u>62, 63]</u>
NRXN1a	Homozygous and heterozygous deletion, ASD-related mutations	Impaired synaptic strength, altered synaptic calcium signaling	[64,65,66]
SHANK2	Heterozygous deletion and ASD-related mutations	Hyperconnectivity, enhanced branching complexity, increased synapse density	[67]
SHANK3	Heterozygous deletion and ASD-related mutations	Hypoconnectivity, reduced synaptogenesis, and dendritic arborization; impaired neuronal excitability and excitatory synaptic transmission; impaired HCN channels	[<u>68,69,70,71,72,7</u> <u>3,74]</u>
TSC1/2	Homozygous and heterozygous deletion	Altered neuronal excitability and activity, altered synchrony (cortical neurons); hypoexcitability (cerebellar Purkinje cells)	[<u>75,76,77,78]</u>
Other ASD models		Aberrant neuronal maturation, altered neuronal differentiation and synaptic formation	[<u>79</u> , <u>80]</u>

Parkinson's disease: degeneration of midbrain dopaminergic neurons ⇒ Human iPS cell-derived dopaminergic neurons function in a primate Parkinson's disease model

Vehicle: monkeys that received control injection

Healthy: monkeys transplanted with cells derived from healthy individuals

PD: monkeys transplanted with cells derived from PD patients

Kikuchi et al., 2017

