Raisonnement, logique, démonstration

M2 MEEF Maths et DU prépa concours

- 1) Raisonnement dans les programmes, cycle 4 et lycée
- 2) Rappels logique et raisonnement
- 3) L'initiation à la démonstration
- 4) Le cas de la démonstration par récurrence
- 5) Quelques difficultés des élèves

- 1) Raisonnement dans les programmes, cycle 4 et lycée
- 2) Rappels logique et raisonnement
- 3) L'initiation à la démonstration
- 4) Le cas de la démonstration par récurrence
- 5) Quelques difficultés des élèves

https://eduscol.education.fr/document/17224/download La compétence « raisonner » inclut plusieurs aspects :

- résoudre des problèmes impliquant des grandeurs variées (géométriques, physiques, économiques)
- mener collectivement une investigation en sachant prendre en compte le point de vue d'autrui;
- démontrer : utiliser un raisonnement logique et des règles établies (propriétés, théorèmes, formules) pour parvenir à une conclusion ;
- fonder et défendre ses jugements en s'appuyant sur des résultats établis et sur sa maîtrise de l'argumentation.

Distinction raisonnement inductif/abductif, pour la formulation de conjectures

Le raisonnement inductif consiste à généraliser une propriété observée sur des cas particuliers. Il fonctionne selon le schéma suivant : constatant sur des exemples que, lorsque A est vraie, alors B est vraie, on émet la conjecture que (A implique B) est vraie.

Le raisonnement abductif consiste à présumer une cause plausible d'un résultat observé. Il fonctionne selon le schéma suivant : pour démontrer que B est vraie, sachant que (A implique B) est vraie, on va démontrer que A est vraie.

Travailler la formulation de conjectures, leur invalidation ou leur validation.

Pour la validation, initier les élèves à la démonstration

Les raisonnements inductifs et abductifs, essentiellement mis en œuvre dans la phase de recherche, permettent d'aboutir à l'émission de conjectures qu'il s'agira ensuite de valider ou d'invalider. Si la production d'un contre-exemple suffit à invalider une conjecture*, sa validation repose sur une démonstration, moyen mathématique d'accès à la vérité. On rappelle que « démontrer », c'est « donner à voir » les différentes étapes d'une preuve par la présentation, rédigée sous forme déductive, des liens logiques qui la sous-tendent.

(* sous-entendu: conjecture portant sur une proposition universelle)

Plusieurs types de raisonnements dans la phase de démonstration Celle-ci fait appel au raisonnement déductif qui (entre autres) s'appuie sur :

- la **déduction** proprement dite (ou règle de détachement ou modus ponens), qui fonctionne selon le schéma suivant : sachant que (A implique B) est vraie et que A est vraie, on conclut que B est vraie. Le premier pas d'une déduction consiste à reconnaître une situation de référence A (une configuration géométrique, une situation de proportionnalité, une propriété de nombres, etc.) ; le second consiste à appliquer le théorème qui stipule que (A implique B) ;
- la **disjonction de cas**, qui fonctionne selon le schéma suivant : pour montrer que (A implique B), on sépare l'hypothèse A de départ en différents cas recouvrant toutes les possibilités et on montre que l'implication est vraie dans chacun des cas ;
- Le raisonnement par **l'absurde** (reductio ad absurbum) qui fonctionne selon le schéma suivant : pour montrer que A est vraie, on suppose qu'elle est fausse et par déduction on aboutit à une absurdité. [à revoir : structure du raisonnement par l'absurde avec propriété annexe]

Raisonnement et démonstration en seconde

Poursuite du travail sur la démonstration, exemples de démonstration à travailler dans les différents thèmes du programme.

Exemples:

Démonstrations

- Quels que soient les réels positifs a et b, on a : √ab=√a.√b

Démonstration

- En utilisant le déterminant, établir la forme générale d'une équation de droite.

Démonstration

- Variations des fonctions carré, inverse, racine carrée.

Raisonnement et démonstration en seconde

Travail plus spécifique sur le « vocabulaire ensembliste et la logique »

Les élèves apprennent en situation à :

- reconnaître ce qu'est une proposition mathématique, à utiliser des variables pour écrire des propositions mathématiques ;
- lire et écrire des propositions contenant les connecteurs « et », « ou » ;
- formuler la négation de propositions simples (sans implication ni quantificateurs)
- mobiliser un contre-exemple pour montrer qu'une proposition est fausse;
- formuler une implication, une équivalence logique, et à les mobiliser dans un raisonnement simple ;
- formuler la réciproque d'une implication ;
- lire et écrire des propositions contenant une quantification universelle ou existentielle (les symboles ∀ et ∃ sont hors programme).

Par ailleurs, les élèves produisent des raisonnements par disjonction des cas et par l'absurde.

Raisonnement et démonstration en première

Suite « vocabulaire ensembliste et la logique » Les élèves apprennent en situation à :

- -lire et écrire des propositions contenant les connecteurs logiques « et », « ou » ;
- mobiliser un contre-exemple pour montrer qu'une proposition est fausse ;
- formuler une implication, une équivalence logique, et à les mobiliser dans un raisonnement simple ;
- formuler la réciproque d'une implication ;
- employer les expressions « condition nécessaire », « condition suffisante » ;
- identifier le statut des égalités (identité, équation) et celui des lettres utilisées (variable, inconnue, paramètre) ;
- utiliser les quantificateurs (les symboles ∀et ∃ ne sont pas exigibles) et repérer les quantifications implicites dans certaines propositions, particulièrement dans les propositions conditionnelles ;
- formuler la négation de propositions quantifiées.

Par ailleurs, les élèves produisent des raisonnements par disjonction des cas, par l'absurde, par contraposée, et en découvrent la structure.

Raisonnement et démonstration en Terminale

Les élèves apprennent en situation à :

- reconnaître ce qu'est une proposition mathématique, à utiliser des variables pour écrire des propositions mathématiques ;
- lire et écrire des propositions contenant les connecteurs « et », « ou » ;
- formuler la négation de propositions simples, pouvant contenir un ou deux quantificateurs ;
- mobiliser un contre-exemple pour montrer qu'une proposition est fausse ;
- formuler une implication, une équivalence logique, et à les mobiliser dans un raisonnement simple ;
- formuler la réciproque d'une implication, ou sa contraposée;
- lire et écrire des propositions contenant une quantification universelle ou existentielle (les symboles \forall et \exists ne sont pas exigibles);
- raisonner par disjonctions des cas, par l'absurde, par contraposée ;
- raisonner par équivalence, utiliser une propriété caractéristique ;
- -- distinguer condition nécessaire et condition suffisante ;
- démontrer une propriété par récurrence.

- 1) Raisonnement dans les programmes, cycle 4 et lycée
- 2) Rappels logique et raisonnement
- 3) L'initiation à la démonstration
- 4) Le cas de la démonstration par récurrence
- 5) Quelques difficultés des élèves

Proposition en logique

En logique une proposition (ou assertion) est une phrase à laquelle on peut attribuer une valeur de vérité, à savoir vrai (V) ou faux (F).

Ex:

- « 1/3 est un nombre entier » est une proposition (et est fausse).
- Une phrase qui n'est ni vraie ni fausse n'est pas une proposition. (P la proposition « P est fausse »)

Notations

Négation de P, notée non P ou $\ \ P$. Connecteur de conjonction , assertion $P \land Q$, P et Q Connecteur de disjonction , assertion $P \lor Q$, P ou Q Connecteur d'implication , assertion $P \Rightarrow Q$ Connecteur d'équivalence , assertion $P \Leftrightarrow Q$

Règles logiques

(P ∧ ¬P) est fausse

Les assertions ci-dessous sont vraies

(P ∨ ¬P) tiers exclu

 $(P \Rightarrow Q) \Leftrightarrow (Q \Rightarrow P)$ contraposition

 $(P \land (P \Rightarrow Q)) \Rightarrow Q$ règle du modus ponens : si P est vraie et $P \Rightarrow Q$, alors Q est vraie.

Les types de raisonnements et leur structure

Raisonnement par contraposée

Pour montrer (P \Rightarrow Q), on montre (\rceil Q \Rightarrow \rceil P)

Raisonnement par l'absurde

Pour montrer P, on choisit une assertion annexe Q, et on montre que

Raisonnement par disjonction des cas

Pour montrer qu'une assertion donnée P est vraie, on trouve une assertion annexe Q telle que $(Q \Rightarrow P)$ et $(Q \Rightarrow P)$ soient vraies.

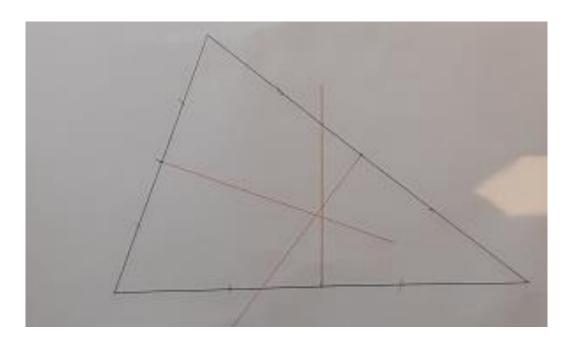
- 1) Raisonnement dans les programmes, cycle 4 et lycée
- 2) Rappels logique et raisonnement
- 3) L'initiation à la démonstration
- 4) Le cas de la démonstration par récurrence
- 5) Quelques difficultés des élèves

L'initiation à la démonstration

Convaincre les élèves de l'utilité des démonstrations!

Brousseau (1987)

Classe de sixième, construction des médiatrices d'un triangle. On obtient un « co-triangle », qu'est-ce qu'on peut en dire ? Débat...



L'initiation à la démonstration

Issu de Giorgiutti et al. (1998). La démonstration. Ecrire des mathématiques au collège et au lycée. Hachette.

En plus du raisonnement et de l'argumentation, produire des démonstrations consiste à composer des textes suivant une certaine structure.

-> L'apprentissage de la démonstration relève aussi du lien entre mathématiques et langage

L'initiation à la démonstration

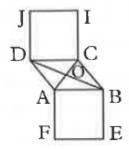
- Pratiquer les textes mathématiques dès la sixième
- Organiser des débats, travailler l'argumentation
- Travailler sur cause et conséquence, montrer les différences entre l'usage du français dans la vie courante et en mathématiques
- Commencer par des démonstrations portant sur des objets connus, mais avec plusieurs étapes, éviter de travailler sur ce que les élèves peuvent considérer comme « des évidences »
- Travailler sur des théorèmes : les élèves peuvent écrire des théorèmes
- Travailler sur une diversité de textes, varier les mots de liaison, pratiquer les démonstrations à trous

UNE DÉMONSTRATION À TROUS

Voici un énoncé de problème

ABCD est un parallélogramme de centre O. ABEF et CDJI sont des carrés situés à l'extérieur du parallélogramme ABCD.

Démontrer que O est le milieu du segment [EJ].



Compléter la démonstration suivante

O est le milieu de [BD] ABCD est un parallélogramme de centre O. Pour montrer que c'est aussi le milieu de [EJ], il montrer que EBJD est un parallélogramme. Cette propriété sera bien vérifiée EB = DJ et (EB)//(DJ).

Montrons d'abord, par une suite d'égalités, que EB = DJ. dans le carré ABEF, les côtés sont égaux et donc EB = AB. On démontrerait dans le carré DCIJ, que DC = DJ. Enfin, dans le parallélogramme ABCD AB = DC. Donc

Montrons maintenant que (EB)//(DJ); pour cela que (AB) est parallèle à (CD) ABCD est un parallélogramme. ABEF et DCIJ sont des carrés, (DJ) \bot (DC) et (EB) \bot (AB). (AB)//(DC), (DJ) \bot (AB) « si deux droites sont parallèles, toute droite perpendiculaire à l'une est perpendiculaire à l'autre ».

On en déduit bien que (EB)//(DJ) en le théorème : « si deux droites sont perpendiculaires à une troisième droite, elles sont parallèles ».

- 1) Raisonnement dans les programmes, cycle 4 et lycée
- 2) Rappels logique et raisonnement
- 3) L'initiation à la démonstration
- 4) Le cas de la démonstration par récurrence
- 5) Quelques difficultés des élèves

La démonstration par récurrence

Issu de Gardes et al. (2016). Etat des connaissances des élèves de Terminale S sur le raisonnement par récurrence. *Petit x 100,* 67-98.

On considère une propriété P dépendant d'un entier n quelconque, notée P(n).

Le principe de récurrence, énoncé formalisé

SI [il existe un entier n_0 tel que $P(n_0)$ est vraie ET pour tout $n \ge n_0$, $P(n) \Rightarrow P(n+1)$ est vraie] ALORS [pour tout $n \ge n_0$, P(n) est vraie].

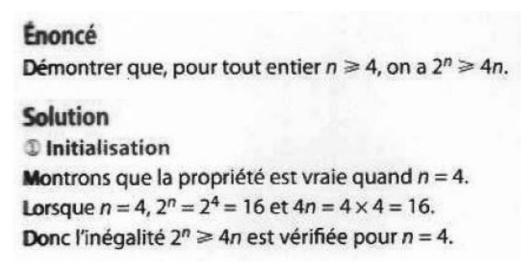
La démonstration par récurrence devrait en conséquence commencer par l'explicitation de la propriété P(n), puis comporter **trois** étapes

- 1) Démontrer [il existe un entier n_0 tel que $P(n_0)$ est vraie]
- 2) Démontrer que [pour tout $n \ge n_0$, $P(n) \Rightarrow P(n+1)$ est vraie]
- 3) En déduire que [pour tout $n \ge n_0$, P(n) est vraie].

La démonstration par récurrence

L'analyse des manuels de Terminale (cours et exercices corrigés) met au jour des défauts importants concernant la démonstration par récurrence.

- Parfois la propriété P(n) n'est pas explicitée.



- Dans la majorité des cas l'étape (1) d'initialisation n'est pas présentée comme une preuve d'existence. On commence sans discussion avec le rang 0 ou le rang 1; ou si c'est un autre rang, il est donné.

La démonstration par récurrence

- L'étape (2) d'hérédité n'est pas présentée comme la démonstration d'une propriété universelle

« pour tout $n \ge n_0$, $P(n) \Rightarrow P(n+1)$ est vraie »

Certaines rédactions dans les manuels peuvent induire des confusions pour les élèves :

« Supposons P(n) vraie, montrons alors que P(n+1) est vraie ».

(le fait que l'entier n est un entier quelconque supérieur ou égal à n₀ reste totalement implicite)

- Dans un grand nombre de cas la troisième étape de conclusion est oubliée.

- 1) Raisonnement dans les programmes, cycle 4 et lycée
- 2) Rappels logique et raisonnement
- 3) L'initiation à la démonstration
- 4) Le cas de la démonstration par récurrence
- 5) Quelques difficultés des élèves

Difficultés avec l'implication

Des difficultés en lien avec le langage

L'emploi du « si ... alors » en mathématiques, différent du langage courant

« Si vous réussissez cet exercice, demain j'apporterai un gâteau ».

Les élèves échouent, l'enseignante apporte un gâteau le lendemain. « Madame, vous ne deviez pas apporter de gâteau !!! »

Difficulté pour les élèves à interpréter « A ⇒ B » lorsque A est fausse.

Difficultés avec l'implication

La tâche de Wason (1968)

On dispose des quatre cartes ci-dessous, portant sur un côté une lettre et sur l'autre un chiffre.

On veut savoir si ces cartes respectent la règle suivante : « Toute carte portant un D d'un côté porte un 3 de l'autre côté », en retournant le moins possible de cartes. Quelles cartes faut-il retourner ?

Difficultés avec l'implication

Résultats d'un test tâche de Wason (Inglis & Simpson, 2004)

	Maths		Maths		History	
	Students		Staff		Students	
D	92	35%	5	24%	27	22%
DK	1	0%	0	0%	0	0%
D3	15	6%	1	5%	41	33%
D7	76	29%	9	43%	10	8%
DK3	0	0%	1	5%	2	2%
DK7	34	13%	3	14%	1	1%
D37	8	3%	2	10%	8	7%
DK37	21	8%	0	0%	23	19%
non-D	13	5%	0	0%	11	9%
n	260		21		123	

Difficultés avec la récurrence

On veut démontrer que pour tout réel strictement positif a et tout entier naturel t on a $(1+a)^t \ge 1+ta$.

La propriété est vaie au nongimitial en a rouse a = 1 et
$$t=0$$
 $(1+4)^6 = 1$ et $1+0 = 1$

danc $1 = 1$ danc $1 = 1$