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Abstract: Many systems are required to perform a series of missions with finite breaks between
successive missions. For such systems, one of the most widely used maintenance strategies is
selective maintenance (SM). Under certain maintenance constraints, the SM problem (SMP)
consist in selecting an optimal subset of feasible maintenance actions to maximize the system
reliability for the upcoming mission. Almost all SMP models proposed in the literature are
focused on traditional physics-based reliability models, where component lifetimes can be
modeled using a stochastic process. With the application of new technologies such as wireless
sensors and Industrial Internet of Things (IIoT), and the recent advancements in Deep Learning
(DL) algorithms for prognostics, predictive maintenance based on data-driven methods has
become a very popular maintenance strategy. These data driven methods have shown extreme
accuracy in predicting remaining useful life (RUL) of components and systems. The goal of
this paper is to introduce a predictive selective maintenance strategy that can be used to
solve complex and relatively large multi-component systems. A DL algorithm will be used to
estimate the probability that each component will successfully complete the upcoming mission, a
selective maintenance optimization model will then be used to identify the maintenance actions
that will maximize the system reliability. An efficient solution method is devised to solve the
resulting complex optimization problem. The NASA C-MAPSS (Commercial Modular Aero-
Propulsion System Simulation) dataset is used to train and evaluate the DL algorithm. The
numerical experiments carried out show that the proposed novel predictive maintenance strategy
is accurate and yields valid decisions.
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1. INTRODUCTION

Modern life depends upon complex and highly intercon-
nected production and distribution networks for energy,
goods, and services. These networks are designed to oper-
ate with little interruption, extraordinarily high reliability,
and high readiness to better respond to disruptions caused
by unforeseen events such as weather disruptions, natu-
ral disasters, and pandemics. Monitoring the health and
degradation level of these systems and predicting when
failures are to occur and proactively maintaining them will
increase the performance of the whole integrated network.
Many of the production-distribution assets are required
to run consecutive missions interspersed with scheduled
breaks for maintenance. These are called mission-oriented
systems and include systems such as production lines,
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aircraft, and energy production and distribution assets.
Selective maintenance (SM) is an innovative maintenance
strategy applied to these mission-oriented systems aim-
ing to find an optimal list of maintenance actions to be
performed on a specific subset of components with the
objective of either maximizing the system reliability for
the upcoming mission or minimizing maintenance costs
(Diallo et al., 2018).

The original selective maintenance model introduced by
Rice et al. (1998) dealt with a series-parallel system with
constant failure rate components and perfect repair of
failed components. A full enumeration method was used
to find the optimal solution. In the intervening years
since Rice et al. (1998) proposed the first SMP model,
many researchers have expanded upon their work. These
studies have included complex system configurations (Cas-
sady et al., 2001; Diallo et al., 2018), multistate systems
(Liu and Huang, 2010; Pandey et al., 2013), component
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become a very popular maintenance strategy. These data driven methods have shown extreme
accuracy in predicting remaining useful life (RUL) of components and systems. The goal of
this paper is to introduce a predictive selective maintenance strategy that can be used to
solve complex and relatively large multi-component systems. A DL algorithm will be used to
estimate the probability that each component will successfully complete the upcoming mission, a
selective maintenance optimization model will then be used to identify the maintenance actions
that will maximize the system reliability. An efficient solution method is devised to solve the
resulting complex optimization problem. The NASA C-MAPSS (Commercial Modular Aero-
Propulsion System Simulation) dataset is used to train and evaluate the DL algorithm. The
numerical experiments carried out show that the proposed novel predictive maintenance strategy
is accurate and yields valid decisions.

Keywords: Artificial intelligence, Mission-oriented systems, Deep learning, Predictive
maintenance, Reliability optimization.

1. INTRODUCTION

Modern life depends upon complex and highly intercon-
nected production and distribution networks for energy,
goods, and services. These networks are designed to oper-
ate with little interruption, extraordinarily high reliability,
and high readiness to better respond to disruptions caused
by unforeseen events such as weather disruptions, natu-
ral disasters, and pandemics. Monitoring the health and
degradation level of these systems and predicting when
failures are to occur and proactively maintaining them will
increase the performance of the whole integrated network.
Many of the production-distribution assets are required
to run consecutive missions interspersed with scheduled
breaks for maintenance. These are called mission-oriented
systems and include systems such as production lines,
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aircraft, and energy production and distribution assets.
Selective maintenance (SM) is an innovative maintenance
strategy applied to these mission-oriented systems aim-
ing to find an optimal list of maintenance actions to be
performed on a specific subset of components with the
objective of either maximizing the system reliability for
the upcoming mission or minimizing maintenance costs
(Diallo et al., 2018).

The original selective maintenance model introduced by
Rice et al. (1998) dealt with a series-parallel system with
constant failure rate components and perfect repair of
failed components. A full enumeration method was used
to find the optimal solution. In the intervening years
since Rice et al. (1998) proposed the first SMP model,
many researchers have expanded upon their work. These
studies have included complex system configurations (Cas-
sady et al., 2001; Diallo et al., 2018), multistate systems
(Liu and Huang, 2010; Pandey et al., 2013), component
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dependence (Xu et al., 2016; Dao and Zuo, 2017), fleet
level selective maintenance (Khatab et al., 2020; Schneider
and Cassady, 2015), multimission (Chaabane et al., 2020),
stochastic break and/or mission duration (Liu et al., 2018;
Khatab et al., 2017), condition-based SMP (Khatab et al.,
2018a), and multiple repair channels (Diallo et al., 2019;
Khatab et al., 2018b). A literature review of the SMP is
provided in (Xu et al., 2015). A more recent SMP literature
review was conducted by Cao et al. (2018).

The current trend of automation, referred to as indus-
try 4.0, utilizes embedded systems and sensors, machine-
to-machine communication, Industrial Internet of Things
(IIoT) and Cyber-Physical Systems (CPS) technologies
to connect machines, operations, equipment, and people.
With the introduction of new technologies, such as IIoT,
predictive maintenance (PdM) is becoming a more attrac-
tive maintenance strategy in many industries. The idea of
PdM is to plan maintenance based on the current state
and predicted future state of a system. In recent times,
deep learning (DL) algorithms or neural networks have
made tremendous strides in remaining useful life (RUL)
prediction and have improved the state of the art in PdM
(Namuduri et al., 2020). Li et al. (2018) develop a deep
convolutional neural network for the problem of predicting
remaining useful life of an aircraft engine. Hsu and Jiang
(2018) use a long short-term memory (LSTM) network
to estimate the remaining useful life of aero-propulsion
engines. The accuracy of their proposed model is compared
to the multi-layer perceptron, support vector regression,
and convolutional neural network. They show that their
LSTM network performs better than the other methods
in terms of root mean squared error. Huang et al. (2007)
use a neural network for remaining useful life prediction
and they demonstrate that their data-driven approach
outperforms distribution-based reliability models.

To the best of our knowledge, the first and only predic-
tive selective maintenance framework was introduced by
Hesabi et al. (2021) where a SM optimization model inter-
acts with an LSTM network used for reliability estimation.
Only an elementary series system is considered and a full
enumeration approach is used to solve the complex opti-
mization problem. For systems of even moderate size the
full enumeration approach would fail to provide solutions
in a reasonable amount of time and thus more efficient
solution methods must be utilized. It is also common
to encounter complex structures such as k-out-of-n:G in
a wide range of industrial applications and thus these
structures must be explored. The objective of this paper is
two-fold: (i) to extend the work of Hesabi et al. (2021) to
include more complex system structures, and (ii) to solve
the developed predictive SM optimization problem using
a more efficient solution approach.

The remainder of this paper is structured around six addi-
tional sections. In Section 2 the notation and main working
assumptions are listed. In Section 3, the system under
consideration is described, as well as the computation of
its reliability during the next mission. The modeling of
the maintenance actions is also described in Section 3. In
Section 4, the LSTM network is described and evaluated

using the NASA C-MAPSS FD001 dataset. In Section
5, the mathematical formulation of the SMP as well as
the solution approach are presented. Multiple numerical
experiments are conducted in Section 6. Conclusions and
future extensions are drawn in section 7.

2. NOTATION AND MAIN WORKING
ASSUMPTIONS

2.1 Notation

I Set of subsystems, I = {1, 2, ..., N} with index i
Ji Set of components in subsystem i,

Ji = {1, 2, ..., Ni} with index j

Eij The jth component of subsystem i
Ki Minimum number of components that must be

functioning in subsystem i

Lij Set of preventive maintenance levels available for
component Eij , Lij = {0, 1, ..., Lij} with index l

Pi Set of maintenance patterns generated for
subsystem i, Pi = {1, 2, ..., Pi} with index p

tijl Duration of PM level l on component Eij

cijl Cost of PM level l on component Eij

U Mission duration
D Maintenance break duration
C Maintenance budget
Rij Probability of component Eij to operate the

next mission
Rs

i Reliability of subsystem i
R Overall system reliability

2.2 Main working assumptions

(1) The system is comprised of multiple k-out-of-n:G
subsystems. Each subsystem is made up of multiple
multi-state components.

(2) The system and components only degrade with usage.
During the maintenance break the system is assumed
to be switched off and therefore not experiencing any
degradation.

(3) Maintenance actions are allowed only during the
break duration.

(4) When a maintenance action is performed on a compo-
nent, the component is brought back to a state that
it was in previously, where the RUL is higher.

3. SYSTEM DESCRIPTION, RELIABILITY
COMPUTATION, AND MAINTENANCE MODELING

3.1 System Description

The SMP addressed in this paper considers a system com-
prised of N GA(Ki, Ni) subsystems arranged in a series
configuration, where the ith subsystem (i = 1, · · · , N) is
comprised of Ni components. In reliability theory, the k-
out-of-n:G configuration is usually denoted as GA(k, n)
and specifies that the system is functioning if at least k
among the n components are functioning; it is a general-
ization of both the series and parallel structures. Individ-
ual components in each subsystem are independent and
the state of each component degrades and deteriorates

with both operational time and usage. Each component
is modeled as multi-state as there are multiple stages in
the degradation process.

The system under consideration is required to perform
alternating series of missions and scheduled maintenance
breaks of finite length. It is assumed that the system has
just completed a mission and is entering the first break.
During the break the system is switched off for a duration
D during which maintenance actions can be performed.
The objective will be to identify the the optimal set of
maintenance actions to be carried out in order to max-
imize the system reliability under maintenance resource
constraints. There is a cost and time associated with every
maintenance action that can be selected for a given com-
ponent. The total cost and time to perform the selected
maintenance actions must not exceed the maintenance
budget and break duration respectively.

Each component Eij is continuously monitored by s sen-
sors. After each operating cycle, new sensor measurements
are recorded. The corresponding collected sensor data Xij

can be represented as a matrix:

Xij =




x1
1 x1

2 . . . x1
s

x2
1 x2

2 . . . x2
s

...
...

...

x
Tij

1 x
Tij

2 . . . xTij
s


 ,

where xt
v represents the value of sensor v (v = 1, . . . , s)

during cycle t (t = 1, . . . , Tij), and Tij refers to the
current age (number of cycles completed) of component
Eij . At the start of the maintenance break, the sensor
data and number of cycles completed for all components
will be available. By first training an LSTM network on
historic sensor data for the purpose of classifying whether
the remaining RUL is greater than the mission length,
the probability of a given component completing its next
mission can be approximated. Then, using the two phased
approach proposed by Diallo et al. (2018) the maintenance
actions that will result in maximizing the system reliability
for the upcoming mission can be identified and selected.

3.2 Reliability Computation

The probability that the system will successfully complete
its next mission is given by its reliabilityR. To computeR,
an LSTM classifier is first used to predict the probability
Rij of each component successfully completing the next
mission. The LSTM network will be trained on historical
sensor data to predict the class of a given component,
where a component will be of class 0 if its RUL is greater
than the specified mission length, and 1 otherwise. After
estimating the component reliabilities, the subsystem re-
liability for a k-out-of-n:G system can be computed using
the efficient algorithm by Kuo and Zuo (2003). Based
on the assumption that the subsystems are arranged in
a series configuration, the overall system reliability R is
computed as:

R =
∏
i∈I

Rs
i . (1)

3.3 Maintenance Modeling

For each component Eij , there is a list Lij = {0, · · · , Lij}
of Lij+1 maintenance actions l ∈ Lij that can be selected
during the break. These maintenance levels include do-
nothing, imperfect maintenance (IM), and replacement.
The do-nothing (l = 0) case refers to no maintenance
being performed on the component. The replacement level
(l = Lij) will return the component to an “as good as
new” state, while an IM level 0 < l < Lij if selected
will return the component to a previous state where the
RUL is higher. When carried out on a component Eij , a
maintenance action l requires tijl time units, and costs cijl
monetary units.

4. LSTM NETWORK

This section discusses the LSTM architecture used for
classifying components. The dataset used to train and test
the LSTM classifier is the NASA C-MAPSS (Commer-
cial Modular Aero-Propulsion System Simulation) dataset.
This dataset contains 4 different subsets each with run to
failure information under different operational conditions
and fault modes. The present work uses the first set (called
FD001) which considers one fault mode. Both a training
and test set are provided. The LSTM network is a specific
type of recurrent neural network (RNN) that is suitable for
making predictions from sequential or time series data. A
common issue that arises when using standard RNNs is the
tendency for the gradient to explode or vanish during back
propagation resulting in poor performance. LSTMs have
indeed been specifically designed to address the vanishing
and exploding gradient problem. The LSTM network is
a chain like structure comprised of multiple cells each
comprised of 4 neural networks. The inner workings of each
cell are shown in figure 1.

Fig. 1. The LSTM cell structure

Just like RNNs, LSTMs have a hidden state that carries
information from immediately previous events and is de-
noted as ht. What makes the LSTM network unique is
the addition of what is called the cell state denoted as ct.
The cell state is able to store information of events that
occurred many time steps in the past (long term memory).
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with both operational time and usage. Each component
is modeled as multi-state as there are multiple stages in
the degradation process.

The system under consideration is required to perform
alternating series of missions and scheduled maintenance
breaks of finite length. It is assumed that the system has
just completed a mission and is entering the first break.
During the break the system is switched off for a duration
D during which maintenance actions can be performed.
The objective will be to identify the the optimal set of
maintenance actions to be carried out in order to max-
imize the system reliability under maintenance resource
constraints. There is a cost and time associated with every
maintenance action that can be selected for a given com-
ponent. The total cost and time to perform the selected
maintenance actions must not exceed the maintenance
budget and break duration respectively.

Each component Eij is continuously monitored by s sen-
sors. After each operating cycle, new sensor measurements
are recorded. The corresponding collected sensor data Xij

can be represented as a matrix:
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where xt
v represents the value of sensor v (v = 1, . . . , s)

during cycle t (t = 1, . . . , Tij), and Tij refers to the
current age (number of cycles completed) of component
Eij . At the start of the maintenance break, the sensor
data and number of cycles completed for all components
will be available. By first training an LSTM network on
historic sensor data for the purpose of classifying whether
the remaining RUL is greater than the mission length,
the probability of a given component completing its next
mission can be approximated. Then, using the two phased
approach proposed by Diallo et al. (2018) the maintenance
actions that will result in maximizing the system reliability
for the upcoming mission can be identified and selected.

3.2 Reliability Computation

The probability that the system will successfully complete
its next mission is given by its reliabilityR. To computeR,
an LSTM classifier is first used to predict the probability
Rij of each component successfully completing the next
mission. The LSTM network will be trained on historical
sensor data to predict the class of a given component,
where a component will be of class 0 if its RUL is greater
than the specified mission length, and 1 otherwise. After
estimating the component reliabilities, the subsystem re-
liability for a k-out-of-n:G system can be computed using
the efficient algorithm by Kuo and Zuo (2003). Based
on the assumption that the subsystems are arranged in
a series configuration, the overall system reliability R is
computed as:

R =
∏
i∈I

Rs
i . (1)

3.3 Maintenance Modeling

For each component Eij , there is a list Lij = {0, · · · , Lij}
of Lij+1 maintenance actions l ∈ Lij that can be selected
during the break. These maintenance levels include do-
nothing, imperfect maintenance (IM), and replacement.
The do-nothing (l = 0) case refers to no maintenance
being performed on the component. The replacement level
(l = Lij) will return the component to an “as good as
new” state, while an IM level 0 < l < Lij if selected
will return the component to a previous state where the
RUL is higher. When carried out on a component Eij , a
maintenance action l requires tijl time units, and costs cijl
monetary units.

4. LSTM NETWORK

This section discusses the LSTM architecture used for
classifying components. The dataset used to train and test
the LSTM classifier is the NASA C-MAPSS (Commer-
cial Modular Aero-Propulsion System Simulation) dataset.
This dataset contains 4 different subsets each with run to
failure information under different operational conditions
and fault modes. The present work uses the first set (called
FD001) which considers one fault mode. Both a training
and test set are provided. The LSTM network is a specific
type of recurrent neural network (RNN) that is suitable for
making predictions from sequential or time series data. A
common issue that arises when using standard RNNs is the
tendency for the gradient to explode or vanish during back
propagation resulting in poor performance. LSTMs have
indeed been specifically designed to address the vanishing
and exploding gradient problem. The LSTM network is
a chain like structure comprised of multiple cells each
comprised of 4 neural networks. The inner workings of each
cell are shown in figure 1.

Fig. 1. The LSTM cell structure

Just like RNNs, LSTMs have a hidden state that carries
information from immediately previous events and is de-
noted as ht. What makes the LSTM network unique is
the addition of what is called the cell state denoted as ct.
The cell state is able to store information of events that
occurred many time steps in the past (long term memory).
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The first sigmoid layer in each unit, referred to as the
forget gate, is used to identify what information from the
previous cell state ct−1 should be removed. This is done
by first concatenating the previous hidden state ht−1 with
the new input xt and sending it though a sigmoid layer.
The output values ft of the sigmoid layer is a vector of the
same dimension as ct−1 with values ranging from 0 to 1.
The vector ft is given by:

ft = σ (Wf · [ht−1, xt] + bf ) . (2)

An element wise multiplication between ft and ct−1 is then
performed. This operation is what allows some information
to be “forgotten”. The next sigmoid and “tanh” layers
contribute together to determine the new information that
will be added to the cell state, these are often referred to
as the input gate and new candidate gate respectively. The
sigmoid layer produces a vector it that determines what
values in the cell state will be updated. The tanh layer
produces a vector st that will determine possible candidate
solutions. These two vectors can be expressed as:

it = σ (Wi · [ht−1, xt] + bi) (3)

st = tanh (Ws · [ht−1, xt] + bs) . (4)

An element wise multiplication is performed between vec-
tors it and st and the result is added to the previous cell
state to produce the new cell state ct. The final operation
is to decide what the value of the new hidden state ht will
be. The new hidden state is computed by first sending ht−1

and xt through a sigmoid layer and obtaining ot as shown
in Equation (5).

ot = σ (Wo · [ht−1, xt] + bo) . (5)

A hyperbolic tangent operation is then performed on
all elements of ct and the result is multiplied by ot to
obtain the new hidden state ht. The LSTM network
used in this paper was a stacked network comprised of
two layers. By stacking LSTM layers, additional model
complexity is achieved allowing for more complex feature
representations of the input to be learned. A random
search was applied to determine the best model hyper-
parameters. The optimal parameters found through the
random search are provided in Table 1.

Table 1. Optimal hyper-parameters for the
LSTM network

LSTM units
layer 1

LSTM units
layer 2

Dropout Epochs Batch
size

150 100 0.2 15 32

4.1 LSTM Evaluation

Using the best parameters found through the random
search, the LSTM network was trained using the training
set and evaluated using the testing set of the FD001
dataset. The classification report displaying the models
performance on the test set is shown in Table 2. The mis-
sion length was set to U = 40 cycles. The results in Table
2, show that the LSTM classifier is indeed able to achieve a

high f1-score for both classes with extremely high accuracy.
As we are dealing with an unbalanced dataset, the f1-score
is preferred over accuracy for evaluating the performance
of the model. Based on the models high performance on
the test set, we can conclude that it can provide accurate
estimates for the probability of a component to success-
fully complete the upcoming mission.

Table 2. Classification report for the LSTM
model

Precision Recall f1-score Support

Class 0 0.99 0.99 0.99 12143
Class 1 0.90 0.91 0.90 853

Accuracy 0.99 12996
Macro Avg. 0.95 0.95 0.95 12996

Weighted Avg. 0.99 0.99 0.99 12996

5. SM OPTIMIZATION MODEL AND SOLUTION
METHOD

In this section, a formulation for the selective mainte-
nance problem is presented. This formulation relies on a
full enumeration of all maintenance patterns Pi for each
subsystem i ∈ I and was first proposed by Diallo et al.
(2018). A maintenance pattern p ∈ Pi is defined as a com-
bination of components and related maintenance levels to
be performed during each break. A pattern p ∈ Pi is repre-
sented as a column-vector of Ni elements whose values are
the maintenance levels performed on the components. To
illustrate the generation of maintenance patterns, consider
a simple parallel subsystem comprised of two components
with two levels of maintenance: Do nothing (l = 0) and
replacement (l = 1). All 4 possible maintenance patterns
that would be generated are as follows:

[
0
0

] [
0
1

] [
1
1

] [
1
0

]

The first pattern (column-vector) means that no main-
tenance is performed on both components. The second
pattern means that only component E12 is replaced during
the break. According to the third pattern, components E11

and E12 are replaced during the break, and the fourth
pattern would mean that only component E11 is replaced.

For each pattern p ∈ Pi corresponds a total expected
cost Cip and time Tip to perform the selected maintenance
actions during the break, as well as a reliability Rs

ip of
subsystem i. This reliability is computed by first using
our LSTM network to predict the reliability of each com-
ponent, and then using the algorithm proposed by Kuo
and Zuo (2003) to compute the subsystem reliability. This
is repeated for every feasible pattern.

Now, assuming that for each subsystem i ∈ I complete
pattern information Pi is available, the BIP formulation
of the SMP as proposed by Diallo et al. (2018) with the
objective of maximizing system reliability is written as:

max
zip

∑
i∈I

∑
p∈Pi

ln(Rs
ip) · zip (6)

Subject to: ∑
p∈Pi

zip = 1, ∀i ∈ I (7)

∑
i∈I

∑
p∈Pi

Tip · zip ≤ D (8)

∑
i∈I

∑
p∈Pi

Cip · zip ≤ C (9)

zip ∈ {0, 1}, ∀i ∈ I, p ∈ Pi (10)

In the above optimization model, the objective function
is the linearization of the nonlinear system reliability
function in equation (1). Constraints (7) ensure that a
single maintenance pattern is selected for each subsystem
i. Constraints (8) ensure that the maintenance time does
not exceed the available working time. Constraints (9)
guarantee that the total maintenance cost does not exceed
the maintenance budget.

6. ILLUSTRATIVE EXAMPLE

In this section multiple numerical experiments are con-
ducted on a system comprised of three subsystems and
containing a total of 12 components (Figure 2). Each
component of the system is assigned the sensor values of
an engine from the test set of the NASA CMAPSS FD001
dataset. It is assumed that the previous mission has just
concluded and the state of each component is defined by
the current sensor values. The engine that each component
takes it’s sensor values from as well as the number of cycles
that the engine has completed and its predicted reliability
for the upcoming mission is reported in Table 3.

For all components a common list of L = 5 maintenance
options is available. For each maintenance level, Table 4
gives the corresponding RUL increasing amount, in addi-
tion to the cost and the required time to be performed.

All experiments are run on a IntelTM i5 2.9GHz desktop
computer with 12GB of RAM running Windows 10TM. All
algorithms were coded in Python 3.8. The optimization
runs were carried out by Gurobi 9.1 using gurobipy.

Table 5 shows the results when the maintenance break
duration is fixed at D = 16 hours while the maintenance
budget C varied from $400 to $700. As the maintenance
budget is increased, more expensive maintenance actions
can be selected leading then to a higher system reliability.
Table 6 shows the results for a varying maintenance break
duration and a fixed maintenance budget (C = $600). As
the break duration is increased more maintenance actions
can be performed and thus a higher system reliability is
achieved. The number of feasible maintenance patterns
increases as the break duration increases leading to a
higher computational time. A similar result is seen in
the first experiment when the maintenance budget is
increased.

Fig. 2. System structure used in all experiments

Table 3. Engine data used for the experiments

Components Engine Num. cycles completed Rij

E11 17 165 0.893
E12 18 133 0.003
E13 20 184 0.000
E14 18 133 0.003
E15 20 184 0.000

E21 84 172 0.860
E22 24 186 0.000
E23 31 196 0.000
E24 34 203 0.000

E31 32 145 0.770
E32 36 126 0.000
E33 37 121 0.000

Table 4. Maintenance data used for the exper-
iments

Maintenance level RUL Increase cijl tijl
l = 0 Do-nothing 0.0 0.0
l = 1 8 30.0 0.8
l = 2 16 75.0 2.0
l = 3 32 150.0 3.5
l = 4 Replacement 250.0 5.0

Table 5. System reliability for varying values
of C and D = 16 hours

C ($) R∗ D∗ (hours) C∗ ($) CPUt (s)

400 0.55 9.0 375 357.8
500 0.87 12.2 495 526.6
600 0.94 13.7 595 714.7
700 0.99 15.3 655 847.8

Table 6. System reliability for varying values
of D and C = $600

D (hours) R∗ D∗ (hours) C∗ ($) CPUt (s)

8 0.20 7.5 300 255.3
10 0.71 9.8 405 416.0
12 0.87 11.4 465 611.3
14 0.94 13.7 595 705.2
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max
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p∈Pi

ln(Rs
ip) · zip (6)

Subject to: ∑
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is the linearization of the nonlinear system reliability
function in equation (1). Constraints (7) ensure that a
single maintenance pattern is selected for each subsystem
i. Constraints (8) ensure that the maintenance time does
not exceed the available working time. Constraints (9)
guarantee that the total maintenance cost does not exceed
the maintenance budget.
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containing a total of 12 components (Figure 2). Each
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dataset. It is assumed that the previous mission has just
concluded and the state of each component is defined by
the current sensor values. The engine that each component
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for the upcoming mission is reported in Table 3.

For all components a common list of L = 5 maintenance
options is available. For each maintenance level, Table 4
gives the corresponding RUL increasing amount, in addi-
tion to the cost and the required time to be performed.

All experiments are run on a IntelTM i5 2.9GHz desktop
computer with 12GB of RAM running Windows 10TM. All
algorithms were coded in Python 3.8. The optimization
runs were carried out by Gurobi 9.1 using gurobipy.

Table 5 shows the results when the maintenance break
duration is fixed at D = 16 hours while the maintenance
budget C varied from $400 to $700. As the maintenance
budget is increased, more expensive maintenance actions
can be selected leading then to a higher system reliability.
Table 6 shows the results for a varying maintenance break
duration and a fixed maintenance budget (C = $600). As
the break duration is increased more maintenance actions
can be performed and thus a higher system reliability is
achieved. The number of feasible maintenance patterns
increases as the break duration increases leading to a
higher computational time. A similar result is seen in
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l = 0 Do-nothing 0.0 0.0
l = 1 8 30.0 0.8
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7. CONCLUSION

This paper improved upon the predictive selective mainte-
nance framework proposed in Hesabi et al. (2021) by con-
sidering more complex subsystem structures and by utiliz-
ing an improved solution method. The stacked LSTM net-
work used for reliability prediction was shown to achieve
high accuracy and f1-score on the testing set implying its
capability to accurately predict the components reliabil-
ity for the upcoming mission. The results obtained from
numerical experiments demonstrated that the proposed
framework can solve the selective maintenance problem
in a reasonable amount of time for complex systems.

Future extensions of the present work would be to ex-
plore different Deep Learning algorithms such as convo-
lutional neural networks for component classification and
reliability prediction. It would also be very interesting
to develop a deep multimodal learning model in which
different modalities or types of information are combined.
For example, combining both thermal imaging and time
series sensor data to make a prediction on RUL.
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