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A collective TER proposal

• Number of students in this TER: 6 students

• Prerequisites: Basics in deep learning and Python. Basics in physical simulation can be an asset 
but are not necessary.

• Deliverables: Those required by the Msc program (short report and presentation). Students are 
strongly encouraged to open-source their solutions on platforms like GitHub.

• Team Structure: A group of 6 students, with typically 2 focused on the machine learning 
component, 2 on the simulation component, and 2 on the use case component.

• Meeting Schedule: Regular meetings of 30 minutes to 1 hour will be scheduled with the students. 
Meetings will take place either at Université Paris-Saclay or remotely on Teams/Zoom.

• Calendar: As defined by the TER schedule in the MSc program.

General information



Merino-Martínez et al. CEAS Aeronautical Journal (2019).

Electricity (power grids) pneumaticsAerodynamics

Related to the design and supervision of complex (physical) systems

• Covering various fields in physics (mechanics, fluid dynamics, aerodynamics, electromagnetism …)

• In a wide variety of Applications in industry, in particular in numerical simulation

Fluid Flows/DynamicsSolid Mechanics

E. Menier (PhD, LSIN/SystemX, 2024)

Domain Challenges : Physical systems that are

  - Complex to model/solve analytically

  - Compuationally expensive to solve numerically

(eg. , in Computational Fluid Dynamics – CFD, Turbulance, Flows)

Project  HSA – SystemX
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Picture from Marot, A., et al. (2018).

Motivation: Some physical problems in Industry



• Physics knowledge to guide learning

Integrating geometric priors in learned representations (Bronstein 2017)
Geometric deep learning, GNN and neural passing message (Arjona Martínez 2019)

• Differential equations to improve deep learning

Neural differential equations, diffusion models, ...

• Deep learning to solve differential equations 

Hypersolvers, hybrid solvers, neural operators, 
PINNs - Physics-Informed NNetworks, ... (Raissi 2019)
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Physics and Machine Learning

 Promising for engineering, it allows :
• the integration of analytic knowledge from physical laws governing 

the engineering systems, to augment statistical knowledge 
learned from data (eg. by deep learning)

• reducing the high cost of physical simulation in industry

Power Grid

Substations and lines

Scientific Challenges

• Problems highly-nonlinear, high-dimensional, 
with complex structures (eg. organized in graphs…)

• Need for adapted NN architectures: GNNs, Deep AEs ..



Cuomo, S., et al., (2022). Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific Computing, 92(3), 88. Read Online

• Solving Navier–Stokes equations coupled with the 
corresponding temperature equation for analyzing heat flow 
convection (NSE+HE). Cai et al, 2021

• Solving incompressible Navier–Stokes equations (NSE). Jin et 
al., 2020. 

• Solving Euler equations (EE) that model high-speed 
aerodynamic flows. Mao et al, 2019

• Solving the nonlinear Shrödinger Equation (SE). 

➔ Enables prior scientific knowledge based on physics to be taken into account in data-driven machine learning 
methods

      e.g including PINNs - Physics-Informed Neural Nets (Raissi’s paper in 2019)

➔ Has been successfully and increasingly applied to solve a wide variety of linear and nonlinear problems in 
physics, covering various fields like mechanics, fluid dynamics, thermodynamics, electromagnetism, including :

Raissi, M et al. (2019) Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial Differential Equations. Journal of Computational Physics. 
378. Online
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Physics-Informed Machine Learning: combining ML and Physics

https://link.springer.com/article/10.1007/s10915-022-01939-z
https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125


A neural framework for solving PDEs, where 

• the AI solver is a PINN trained to estimate target function f. 

• The derivative of x is calculated by automatically differentiating the NN’s outputs.

• When the differential equation parametrized by (η) is unknown, it can be estimated by 
solving a loss that optimizes both the functional form of the equation and its fit to observ y. 

Wang & al. (2023). Scientific discovery in the age of artificial intelligence. Nature, 620. Read Online

- Challenge: High-Dimensional 
non-linear Physical Equations

- Navier-Stokes Equations: 
fundamental partial differentials 
equations (PDE) that describe 
the flow of incompressible 
fluids. 
C.L. M. H. Navier, Memoire sur les Lois du Mouvements des Fluides, Mem. de 
l’Acad. d. Sci .,6, 398 (1822) 
C.G. Stokes, On the Theories of the Internal Fr iction of Fluids in Motion, Trans. 

Cambridge Phys. Soc., 8,  (1845)

- Eg. Learning Computational 
Fluid Dynamics

Eg. 1000 equations: Menier, PhD LISN/SystemX
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Hybrid ML modeling for solving Partial Differential Equations

https://www.cs.cornell.edu/gomes/pdf/2023_wang_nature_aisci.pdf
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Z: Latent variables 
of reduced dimension

X: Observations 
Of high-dimnsion

Latent Variable Models: A family of probabilistic models capable of inferring 

the intrinsic latent structure (of reduced dimension) of the data

• Variational Auto-encoders - VAE (Kingma & Welling 2014) improve the 

representational capabilities of AEs by regularizing the latent space with 

a Gaussian prior, coupled with a variational learning 

• => can learn complex distributions.

• Auto-Encoders - AE (LeCun 1987): The encoder projects the input X 

(of high-dimension dimension) in a compressed latent representation 

Z (the code) to reconstruct it using the decoder with outpu X̂

• ➔ Learning by minimizing the reconstruction error between X̂ and X. 

The smaller the error, the better the compressed representation Z. X                                       Z                                      X̂

➔ Deep NNets are excellent candidates

Deep NNets for unsupervised representation Learning



POD: proper orthogonal decomposition
PCA: principal component analysis

Shallow / Linear Deep / Non-Linear

Brunton, S. L., Noack, B. R., & Koumoutsakos, P. (2020). Machine learning for fluid mechanics. Annual review of fluid mechanics, 52, 477-508. Read Online

Auto-Encoding Deep Nets
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• Nnets are capable to recover highly non-linear relationships in the data

• Adapted architectures that work in a low-dimensional (latent) space

Deep NNets for unsupervised representation Learning

https://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-010719-060214


TER challenge: How to exploit knowledge of physical 
(scientific) nature in data-driven learning models.

• Numerical simulation for solving physical problems is at the core of many engineering systems in
industry, notably for the design of critical systems (e.g. airfoil design in aeronautics [1,5], tire design
in automotive [2], rail design in railways) as well as for the management and monitoring of such
systems (e.g. management of electricity or gas distribution networks [3,4], simulation of fluid flow in
a nuclear power plant...).

• Current physical solvers, however, have certain limitations, such as the highly expensive 
computations required to perform such physical simulations, especially in 3D

• The use of machine learning techniques to learn how to solve complex physical problems from their 
numerical simulations (surrogate [2] or hybrid techniques [6–11]) is increasingly recognized as a 
promising approach to accelerate simulations. For example, graph neural networks are used for 
mesh-based simulations [2], or more generally, physics-informed neural networks (PINNs) [6–11].

• However, this hybridization can come at the expense of the accuracy of the solutions obtained, and 
there is a need to evaluate these hybrid approaches prior to industrial use.



Airfoil design use case
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• Apply learning techniques to an industrial physics application using the AirFoil use case, based on AirfRANS data

• The AirfRANS dataset [1, 13] (AIRFRANS: High Fidelity Computational Fluid Dynamics Dataset for Approximating 
Reynolds-Averaged-Navier-Stokes Solutions; NeurIPS 2022) consists of 1000 computational fluid dynamics (CFD) 
simulations of steady-state aerodynamics over two dimensions (2D) airfoils in a subsonic flight regime, splitted in 
different tasks.

• It contains numerical resolutions of the incompressible Reynolds-Averaged Navier–Stokes (RANS) equations over 
the NACA 4 and 5 digits series of airfoils and in a subsonic flight regime setup [1, 13]..

• More details on the Airfoil design DataSet : AirfRANS paper

https://airfrans.readthedocs.io/en/latest/index.html
https://arxiv.org/abs/2212.07564
https://arxiv.org/abs/2212.07564
https://arxiv.org/abs/2212.07564


How you can evaluate your model ?

The LIPS platform [12, see figure] - “Learning industrial physical simulations” [12] offers an 
answer to this question by providing metrics for assessing the quality of the solutions 
obtained, based on several aspects, in particular

- Statistical accuracy of models (performance)

- Computing cost

- Level of respect for the physical laws underlying the physical system (physical compliance

- Generalizability (i.e. their ability to be generalized to different use cases)

- etc,

to ensure the industrialization potential of the models evaluated.
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Validation of hybrid physical-ML systems: LIPS Platform

▪ How you can validate your hybrid (with physics) ML approach ?

• Several evaluation criteria are required (statistical performance, physical compliance, generalization, etc)

• Comparison of # ML methods on several specific physical problems => need for a common evaluation framework

▪ LIPS “Learning Industrial Physical Simulation” benchmark suite https://github.com/IRT-SystemX/LIPS

• Open-source framework for the evaluation of physical simulators augmented by machine learning

• 7 use cases integrated

▪ More details on LIPS : LIPS paper

▪ LIPS : Github repository

https://github.com/IRT-SystemX/LIPS%20Published%20at%20NeurIPS2022
https://proceedings.neurips.cc/paper_files/paper/2022/hash/b3ac9866f6333beaa7d38926101b7e1c-Abstract-Datasets_and_Benchmarks.html
https://github.com/IRT-SystemX/LIPS
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TER objectives and calendar
Objectives

By the end of the project, the students should have acquired the following skills related to :

1. The study the state of the art of a family of machine learning techniques hybridized with physics,

2. The practice chosen learning techniques in the context of an industrial physiccal application 
through the AirFoil use case: simulation of airfoil design, using the AirfRANS dataset [1, 13]

3. The rvaluation of the solutions obtained by the models used (eg. via the LIPS platform) on the basis 
of different criteria to ensure a computationally efficient/accurate compromise: model accuracy, 
computation time, and respect for physical principles.

Calendar:

• Period 1: Familiarization with the subject of AI for physics

• Period 2: Familiarization with the AirFoil use case and the evaluation metrics (eg. LIPS platform)

• Period 3: Application and evaluation of selected state-of-the-art AI algorithms on the use

Notebooks to familiarize with the subject: https://github.com/IRT-SystemX/NeurIPS2024-ML4CFD-competition-Starting-Kit

https://github.com/IRT-SystemX/NeurIPS2024-ML4CFD-competition-Starting-Kit


1. Yagoubi et al. 2023 : Mouadh Yagoubi, Milad Leyli-Abadi, David Danan, Jean-Patrick Brunet, Jocelyn Ahmed Mazari, Florent Bonnet, Asma Farjallah, Marc
Schoenauer, Patrick Gallinari : ML4PhySim : Machine Learning for Physical Simulations Challenge (The airfoil design). Read online:
https://arxiv.org/pdf/2403.01623. Read online (website): https://www.codabench.org/competitions/1534/

2. Deep Graph Neural Networks for Numerical Simulation of PDEs. PhD of W. Liu. 2023 (LISN, Inria/SystemX). Read Online

3. Marot, A., et al. (2018). Guided machine learning for power grid segmentation. In 2018 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-
Europe) (pp. 1-6).

4. Mouadh Yagoubi, Milad Leyli-Abadi, Jean-Patrick Brunet, Maroua Gmati, Antoine Marot, Jérôme Picault, Asma Farjallah, Marc Schoenauer : 2024 Machine
Learning for Physical Simulations Challenge (The power grid): Read online: https://ml-for-physical-simulation-challenge.irt-systemx.fr/powergrid-challenge/

5. Yagoubi et al. 2024 : Mouadh Yagoubi, David Danan, Milad Leyli-abadi, Jean-Patrick Brunet, Jocelyn Ahmed Mazari, Florent Bonnet, maroua gmati, Asma
Farjallah, Paola Cinnella, Patrick Gallinari, Marc Schoenauer: NeurIPS 2024 ML4CFD Competition: Harnessing Machine Learning for Computational Fluid Dynamics
in Airfoil Design

6. Raissi, M et al. (2019) Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving Nonlinear Partial
Differential Equations. Journal of Computational Physics. 378. Online

7. Brunton, S. L., Noack, B. R., & Koumoutsakos, P. (2020). Machine learning for fluid mechanics. Annual review of fluid mechanics, 52, 477-508. Read Online

8. Cuomo, S., et al., (2022). Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of Scientific
Computing, 92(3), 88. Read Online

9. Hao Z. el al. (2022). Physics-informed machine learning: A survey on problems, methods and applications. Read Online

10. Wang & al. (2023). Scientific discovery in the age of artificial intelligence. Nature, 620. Read Online

11. E. Menier et al., 2023. CD-ROM: Complementary Deep-Reduced Order Model. Computer Methods in Applied Mechanics and Engineering 410. Read Online. Thèse
Emmanuel Menier : https://theses.hal.science/tel-04616516v1/document

12. Milad Leyli-Abadi, David Danan, Mouadh Yagoubi, Seif-Eddine Attoui, Antoine Marot, et al. LIPS - Learning Industrial Physical Simulation benchmark suite.

NeurIPS - Data & Benchmark Track, Nov 2022, New Orleans, United States. <hal-03780816>. Read online

13. Florent Bonnet, Jocelyn Ahmed Mazari, Paola Cinnella, and patrick gallinari. AirfRANS: High fidelity com- putational fluid dynamics dataset for approximating

reynolds-averaged navier–stokes solutions. In Thirty-sixth Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2022. Read

online
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https://arxiv.org/pdf/2403.01623
https://www.codabench.org/competitions/1534/
https://theses.hal.science/tel-04156859/
https://ml-for-physical-simulation-challenge.irt-systemx.fr/powergrid-challenge/
https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125
https://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-010719-060214
https://link.springer.com/article/10.1007/s10915-022-01939-z
arxiv:2211.08064
https://www.cs.cornell.edu/gomes/pdf/2023_wang_nature_aisci.pdf
https://arxiv.org/pdf/2202.10746.pdf
https://theses.hal.science/tel-04616516v1/document
applewebdata://BBB83FF7-CB32-48D7-90CE-EDDA64B7C8B7/hal-03780816
https://arxiv.org/pdf/2212.07564
https://arxiv.org/pdf/2212.07564
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- Merino-Martínez et al. CEAS Aeronautical Journal (2019).
- Raissi, M et al. (2019) Physics-Informed Neural Networks: A Deep Learning Framework for Solving Forward and Inverse Problems Involving

Nonlinear Partial Differential Equations. Journal of Computational Physics. 378. Online
- Cuomo, S., et al., (2022). Scientific machine learning through physics–informed neural networks: Where we are and what’s next. Journal of 

Scientific Computing, 92(3), 88. Read Online
- C.L. M. H. Navier, Memoire sur les Lois du Mouvements des Fluides, Mem. de l’Acad. d. Sci.,6, 398 (1822) 
- C.G. Stokes, On the Theories of the Internal Friction of Fluids in Motion, Trans. Cambridge Phys. Soc., 8, (1845)
- Wang & al. (2023). Scientific discovery in the age of artificial intelligence. Nature, 620. Read Online
- Brunton, S. L., Noack, B. R., & Koumoutsakos, P. (2020). Machine learning for fluid mechanics. Annual review of fluid mechanics, 52, 477-508. 

Read Online
- Donon, B., et al. (2020). Deep statistical solvers. Advances in Neural Information Processing Systems, 33, 7910-7921. Read Online
- Donon, B. (2022). Deep statistical solvers & power systems applications (Doctoral dissertation, Université Paris-Saclay). Read Online
- E. Menier et al., 2023. CD-ROM: Complementary Deep-Reduced Order Model. Computer Methods in Applied Mechanics and Engineering 410. 

Read Online
- Deep Graph Neural Networks for Numerical Simulation of PDEs. PhD of W. Liu. 2023 (LISN, Inria/SystemX). Read Online
- D. Shu et al., 2023. A physics-informed diffusion model for high-fidelity flow field reconstruction, Journal of Computational Physics, 
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- D. Shu et al., 2023. A physics-informed diffusion model for high-fidelity flow field reconstruction, Journal of Computational Physics, 

478, 2023. Read Online

https://www.sciencedirect.com/science/article/abs/pii/S0021999118307125
https://link.springer.com/article/10.1007/s10915-022-01939-z
https://www.cs.cornell.edu/gomes/pdf/2023_wang_nature_aisci.pdf
https://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-010719-060214
https://proceedings.neurips.cc/paper/2020/hash/5a16bce575f3ddce9c819de125ba0029-Abstract.html
https://theses.hal.science/tel-03624628v1/document
https://arxiv.org/pdf/2202.10746.pdf
https://theses.hal.science/tel-04156859/
https://www.sciencedirect.com/science/article/pii/S0021999123000670
https://www.sciencedirect.com/science/article/pii/S0021999123000670


THANK YOU FOR YOUR ATTENTION !
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