Examen du 11/05/2021

Documents et calculatrices interdits – Durée: 2h. Merci d'encadrer vos résultats

On rappelle la définition de la convolution de deux fonctions (lorsqu'elle a un sens) :

$$u * v(x) = \int_{\mathbb{R}^d} u(x - y)v(y)dy.$$

Les exercices 1 et 2 ne sont pas indépendants.

Exercice 1. On considère dans cet exercice une fonction quelconque $\rho \in L^1(\mathbb{R}^d)$ telle que $\int_{\mathbb{R}^d} \rho(x) dx = 1$ et $\rho \geq 0$.

On rappelle que si on suppose de plus que ρ est à support compact dans \mathbb{R}^d , et si on pose $\rho_{\epsilon}(x) = \epsilon^{-d}\rho(x/\epsilon)$, on a

$$\lim_{\epsilon \to 0} \|\rho_{\epsilon} * f - f\|_{L^{\infty}(\mathbb{R}^d)} = 0, \quad \text{pour tout } f \in C_c^0(\mathbb{R}^d),$$
(1)

$$\lim_{\epsilon \to 0} \|\rho_{\epsilon} * f - f\|_{L^{1}(\mathbb{R}^{d})} = 0, \quad \text{pour tout } f \in L^{1}(\mathbb{R}^{d}).$$
 (2)

L'objectif de cet exercice est de montrer que (2) est vérifiée sans l'hypothèse de support compact. Pour A>0 suffisamment grand, on pose

$$\rho^A(x) = \mathbb{1}_{B(0,A)}(x)\rho(x) \left(\int_{B(0,A)} \rho \right)^{-1}, \quad \text{et} \quad \rho_{\epsilon}^A(x) = \epsilon^{-d} \rho^A(x/\epsilon).$$

- 1. Montrer que $\|\rho^A \rho\|_{L^1(\mathbb{R}^d)} \to 0$ lorsque $A \to +\infty$.
- 2. Montrer que si $\rho \in L^1(\mathbb{R}^d)$ est telle que $\int_{\mathbb{R}^d} \rho(x) dx = 1$ et $\rho \geq 0$, alors $\rho_{\epsilon}(x) = \epsilon^{-d} \rho(x/\epsilon)$, vérifie (2). (Autrement dit, montrer que l'hypothèse de support compact n'est pas nécessaire).

Exercice 2. Pour t > 0, $x \in \mathbb{R}$, on pose

$$G(t,x) = G_t(x) = \frac{1}{(4\pi t)^{\frac{1}{2}}} e^{-\frac{x^2}{4t}},$$

et on rappelle que $\int_{\mathbb{R}} e^{-x^2} dx = \sqrt{\pi}$.

- 1. Montrer que pour tout $f \in L^1(\mathbb{R})$, $||G_t * f f||_{L^1(\mathbb{R})} \to 0$ lorsque $t \to 0^+$ (ici, et dans tout l'exercice, * est la convolution dans la variable $x \in \mathbb{R}$ seulement).
- 2. Calculer $\partial_t G$, $\partial_x G$ et $\partial_x^2 G$ et donner une équation aux dérivées partielles satisfaite par G pour $t > 0, x \in \mathbb{R}$.
- 3. Soit $f \in L^1(\mathbb{R})$. On pose $u(t,x) = (G_t * f)(x)$ pour $(t,x) \in \mathbb{R}^+_* \times \mathbb{R}$.
 - (a) Montrer que la fonction u est bien définie et que pour tout t > 0, $u(t, \cdot) \in C^2(\mathbb{R}) \cap L^1(\mathbb{R})$.
 - (b) Montrer que $u \in C^2(\mathbb{R}^+_* \times \mathbb{R})$, et que ses dérivées partielles satisfont une équation à déterminer.
 - (c) Montrer que pour tout t>0, $||u(t,\cdot)||_{L^1(\mathbb{R})}\leq C||f||_{L^1(\mathbb{R})}$ où C>0 est à déterminer.

4. Montrer que pour tout $\varphi \in C_c^{\infty}(\mathbb{R}^2)$,

$$\int_{\epsilon}^{\infty} \int_{\mathbb{R}} G(t,x) \left(\partial_t \varphi(t,x) + \partial_x^2 \varphi(t,x) \right) dx dt \to -\varphi(0,0), \quad \text{lorsque } \epsilon \to 0^+.$$

Indication: on admettra que (1) est satisfaite pour tout $\rho \in L^1(\mathbb{R})$ tel que $\rho \geq 0, \int \rho = 1$.

5. Montrer que pour tout $u_0 \in L^1(\mathbb{R})$, la fonction $u(t,x) = (G_t * u_0)(x)$ vérifie

$$\int_{\mathbb{R}_{+}\times\mathbb{R}} u(t,x) \left(\partial_{t}\varphi(t,x) + \partial_{x}^{2}\varphi(t,x)\right) dxdt + \int_{\mathbb{R}} u_{0}(x)\varphi(0,x)dx = 0, \quad \text{pour tout } \varphi \in C_{c}^{2}(\mathbb{R}^{2}).$$
 (3)

6. Soit $u_0 \in C^0(\mathbb{R})$. Montrer que toute fonction $u \in C^2(\mathbb{R}_+^* \times \mathbb{R}) \cap C^0(\mathbb{R}_+ \times \mathbb{R})$ qui vérifie (3) est solution forte d'une EDP d'évolution à déterminer.

Exercice 3. On définit deux applications $b_{\pm}: \mathbb{R}^2 \to \mathbb{R}^2$ par $b_{+}(x,y) = (y,-x)$ et $b_{-}(x,y) = (x,-y)$.

- 1. Les résultats du cours concernant existence et unicité pour l'équation de transport par un champs de vecteurs b s'appliquent-ils directement à ces champs de vecteurs b_{\pm} ?
- 2. Montrer que pour tout $(x_0, y_0) \in \mathbb{R}^2$, les équation différentielles

$$\dot{X}(t) = b_{\pm}(X(t)), \quad X(0) = (x_0, y_0),$$

admettent une unique solution. Montrer que ces solutions sont définies globalement en temps.

- 3. Expliciter le flot $\Phi_t^{\pm}: \mathbb{R}^2 \to \mathbb{R}^2$ de ces équation différentielles et montrer que ce flot est une fonction C^{∞} de (t, x, y). Dessiner les courbes intégrales de b_{\pm} .
- 4. Montrer que pour tout $u_0 \in C^1(\mathbb{R}^2)$ l'EDP

$$\partial_t u + b_{\pm} \cdot \nabla u = 0$$
, pour $(t, x, y) \in \mathbb{R}^+ \times \mathbb{R}^2$, $u(0, x, y) = u_0(x, y)$, (4)

admet une unique solution, dont on donnera une expression explicite. NB : ∇ est le gradient dans les variables x, y.

Pour $u_0, v_0 \in C_c^{\infty}(\mathbb{R}^2)$, on appelle corrélation de u_0, v_0 les fonctions

$$C^{\pm}_{(u_0,v_0)}(t) := \int_{\mathbb{R}^2} u_{\pm}(t,x,y) v_0(x,y) dx dy$$

où u_{\pm} est la solution de (4), respectivement pour le champ de vecteur b_{\pm} .

- 5. Montrer que $C_{(u_0,v_0)}^+(t)$ est une fonction périodique dont on donnera la période.
- 6. Montrer que pour tous $u_0, v_0 \in C_c^{\infty}(\mathbb{R}^2), C_{(u_0,v_0)}^-(t) \to 0$ lorsque $t \to +\infty$ à une vitesse que l'on précisera.
- 7. Montrer que si $\partial_x^j u_0(0,y) = 0$ pour tout $j \leq k$ et tout $y \in \mathbb{R}$, alors il existe une constante K > 0 telle que $|C_{(u_0,v_0)}^-(t)| \leq Ke^{-(k+2)t}$ lorsque $t \to +\infty$.
- 8. Montrer que pour tous $u_0, v_0 \in C_c^{\infty}(\mathbb{R}^2)$,

$$C_{(u_0,v_0)}^-(t) = \sum_{k,n \in \mathbb{N}, k+n \le N} \alpha(n,k) e^{-(k+n+1)t} + O(e^{-(N+2)t}), \quad \text{lorsque } t \to +\infty$$

avec $\alpha(k, n)$ des coefficients à déterminer.