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• Experiment:

o Draw a black dot on a piece of

paper

o Place calcite crystal on top

o Rotate crystal

=> observations

o Look through polarizered

sunglasses at crystal

o Rotate crystal or sunglasses

=> observations

Calcite
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Experiments

• Experiments:

o Place Scotch tape between crossed

polarizers

o Rotate Scotch tape

 observations

o Place a clear plastic object (e.g.
protractor) between crossed

polarizers

=> observations



Recall lecture 6

3

0 r
D Eε= ε

��

Tensor!

• Wave vector k is (in general) NOT in the 
same direction as the propagation of 
energy

• Two waves! unless… 

In an anisotropic medium: 

• Graphical method for finding indices 
and polarizations 

n
e

u

1x

"d
n′′
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Propagation in a uniaxial crystal: arbitrary u

principal plane: formed
by u and the optic axis

• The index ellipsoid is symmetrical about 
the principal plane 

• Resulting elliptical cross-section Γ: 
symmetrical about

• Plane Π: normal to u

• Semi-axes of Γ:

• One perpendicular to       :     ,

• One parallel to         :       , 

2 3

1

  "ordinary" index

   "extraordinary" index

o

e

n n n

n n

= ≡
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Propagation in a uniaxial crystal
2 3

1

  "ordinary" index

   "extraordinary" index

o

e

n n n

n n

= ≡

≡

e
n

u

on n′′

1x

• Semi-axes of Γ:

• One perpendicular to       :     ,

• One parallel to         :       , 

on

n′′

'
d

"d

• No matter how u is tilted, perpendicular
semi-axis always has the same length 
and direction

Ordinary wave

• The length and direction of the parallel
semi-axis depends on u

Extraordinary wave

1: optic axisx

22 2

31 2

2 2 2
1

e o o

xx x

n n n
= + +
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Propagation in a uniaxial crystal

n
e

u

1x

'
d

Ordinary wave

• n’ = no no matter the orientation of u

• d’ is in the (x2, x3) plane, and εr2 = εr3 = no
2

2 2

2 0 2 3 0 3;   
o o

D n E D n Eε ε= =

• d’ is perpendicular to 

D and E are parallel!

Poynting vector S and the wave normal u are 
also parallel

Wave behaves as if it is in an isotropic 
medium! 

on

2 3

1

  "ordinary" index

   "extraordinary" index

o

e

n n n

n n

= ≡

≡
1: optic axisx
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Propagation in a uniaxial crystal

n
e

u

1x

"d

Extraordinary wave

• n’’ depends on the orientation of u

• d’’ is in the plane

• D and E are NOT parallel

• Poynting vector S and the wave normal u are 
NOT parallel

• Wave does NOT behave as if it is in an 
isotropic medium! 

n′′

1: optic axisx



8

θ

2x

u

θ
2

"
x

1

"
x

O

Propagation in a uniaxial crystal: determining n’’

1x
• C: cross-section of the index ellipsoid in 

the principal plane

• n’’: length of the semi-axis of the ellipse                

is in the plane perpendicular to u

length of the vector OM’’

2 1

" "cos  ; sinx xn nθ θ′=′′= ′coordinates of OM’’: (A)

2 2

1 2

2 2
1

e o

x x

n n
= +equation of ellipse C: (B)

Plug (A) into (B) and solve for n′′ 2 2

2 2

sin cos
1

e o
n

n
n

θ θ
′ = +′

1: optic axisx
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θ
2x

u

θ
2

"
x

1

"
x

O

S

θR

Propagation in a uniaxial crystal: determining the direction of 
S, the Poynting vector

1x

• Recall: S in the same plane as u, E, D, 
perpendicular to B

• Recall: S is tangential to ellipsoid at M’’

Want to find θR

α

α
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Propagation in a uniaxial crystal: determining the direction of 
S, the Poynting vector

θR

S

2x
θ

2

"
x

1

"
x

O

1x

• Recall: S in the same plane as u, E, D, 
perpendicular to B

• Recall: S is tangential to ellipsoid at M’’

Want to find

• Find first the normal to C at M’’

θR

θR
( )

2 2

1 2
1 2 2 2
, 1

e o

x x
g x x

n n
= + −

2
1 1

2
2 2

/ 2 /

/ 2 /

e

o

g x x n

g x x n

  ∂ ∂   = =    ∂ ∂   
N

θR1

2

N

N

  ≡   

1N
2N

tan Rθ = 1

2

N

N

2

1

2

2

/

/

e

o

x n

x n

′′
=

′′

2

2
tano

e

n

n
θ=

tangent to C

N
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Index ellipsoid and wave normal surfaces

2x

u

O

S

M ′′

1x

"P

Index 
ellipsoid

Wave normal 
surface

1x

• For each u, associate two vectors 

whose lengths are proportional to the 

two corresponding indices of refraction 

n’ and n’’

Recall: wave-normal surface:

"P is on the normal surface

wave-normal surface

S is perpendicular to wave normal surface

Wave normal surface: 
the set of all points N 
such that ON=nu

i

i

D
x n

D
≡

Index ellipsoid:

S : tangent to index ellipsoid
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Experiment!

• Experiment:

o Draw a black dot on a piece of

paper

o Place calcite crystal on top

o Rotate crystal

There are two dots!  One is stationary, 

the other rotates as the crystal rotates.

Stationary dot: ordinary wave

Rotating dot: extraordinary wave

Extraordinary wave Poynting vector changes 

direction as the optic axis direction is 

changed!
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Experiment

• Experiment:

o Look through a polarizer at

crystal

o Rotate polarizer

One or the other of the black dots is visible.

Polarization directions of the ordinary and 
extraordinary waves are perpendicular!!!
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According to Dijksterhuis,[12] "In De natura lucis et

proprietate (1662) Isaac Vossius said that Descartes had

seen Snell's paper and concocted his own proof. We

now know this charge to be undeserved but it has been

adopted many times since." Both Fermat and Huygens

repeated this accusation that Descartes had copied

Snell. In French, Snell's Law is called "la loi de

Descartes" or "loi de Snell-Descartes."

Wikipedia (italics and underlining mine)

Snell’s (Descartes’?) laws for 

anisotropic media



Snell’s laws
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• Basic premise: the tangential component of the wave vector k must be 

continuous across an interface

• The wave normals (u) of the incident, refracted waves and the normal to

the interface are all in the same plane (the plane of incidence)

 

1 1 2 2sin sinn nθ θ=

Recall Snell’s laws for isotropic media:

n1

n2 > n1

θ2

Optical axis
θ1

θ2οθ2e

n2o, n2e

isotropic

anisotropicisotropic

Second medium anisotropic (uniaxial):

 

1 1 2 2 2 2sin sin sin
o o e e

n n nθ θ θ= =

Note: 
• Snell’s laws apply to k and NOT to S, 

the Poynting vector

• n’’ changes with direction in the anisotropic 
medium!
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Graphical method for applying

Snell’s laws: two isotropic media

n1

n2 > n1

θ2

k1
k2

Optical axis

k2

k1

θ1
1 1 0 1k n k n

c

ω= =

2 2 0 2k n k n
c

ω= =

Method:

• Draw half circle with radius k1

• Draw half circle with radius k2

the tangential components are equal 

Rescale diagram

n1

n2Wave normal 
surfaces
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θ2ο

n1

no

2 0o o o
k n k n

c

ω= =

anisotropic

Optic axis

k2e

θ2e

Wave

normal 

surfaces

d”

2 0" "
e

k n k n
c

ω= =
Index 

ellipsoid "n

Ordinary wave: same result as for two isotropic media!

Optical axis
θ1

 

1 1 2 2 2 2sin sin sin
o o e e

n n nθ θ θ= =

isotropic

Graphical method for Snell’s laws: an 

isotropic and a uniaxial anisotropic media

1 1 0 1k n k n
c

ω= =

n1
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Controlling the polarization of light

Arbitrary 

polarization 

“in”

What you 

want “out”

Quarter-

wave plate

Half-wave 

plate

Quarter-

wave plate



Outline

– Polarization states of light—mathematical description

19

D

– Jones vectors 

– Manipulation and control of the polarization of light



Polarization
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https://www.edmundoptics.com/resources/application-notes/optics/introduction-to-

polarization/

Polarization: 
• direction and variation of the electric displacement vector D 

during propagation 
• Monochromatic plane wave in a 

transparent medium

D orthogonal to the propagation 

direction z. 



Polarization

( )

( )0

0

0

0 c

c s

os

o

x x x

y y y
D

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −
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• Monochromatic sinusoidal plane wave in a transparent medium

D orthogonal to propagation direction z. 

00 , 0x yDD ≥

D
z

y

x

Elliptical polarisation

xD

y
D

0 y
D

0x
D

Amplitudes

,
yx

ψ ψ Phases, constant

00

, 

y

xy

x

m

DD

mψψ π

≠

− ≠ ∈ℤ



State of polarization
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D
z

y

x
xD

y
D

0 yD

0x
D

( )

( )0

0

0

0 c

c s

os

o

x x x

y y y
D

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −

The state of polarization is determined by

0

0 y

x

D

D

• •
xy

ψ ψ−OR

0

0 y

x

D

D
•

• angle of ellipse axis 

• rotation direction



Determining the rotation direction of the polarization

ellipse
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A

0 2
x

t kz mω πψ =− −

( )0 0 0sin
y

y y

dD
D t kz

dt
ω ω ψ=− − −

n

0 left polarization

right polari0 atio

y x

y x

ψ

π

ψ

ψ ψ

π< < ⇔

− < − <

−

⇔

( )0 0 sin
y y x

Dω ψ ψ= −

D
z

y

x
xD

y
D

0 yD

0x
D

( )

( )0

0

0

0 c

c s

os

o

x x x

y y y
D

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −

• Consider when D points to A: 
0x x

D D=

• In order to know the rotation direction, we need to know the sign of   y
dD

dt

AS

T C

counter-clockwise

x

y

clockwise



Determining the rotation direction of the ellipse

24

A

( )0 0 0sin
y

y y

dD
D t kz

dt
ω ω ψ=− − −

d

0 left elliptically polarized

right elliptically polarize0

y x

y x

ψ

π

πψ

ψ ψ

< < ⇔

− < − <

−

⇔

( )0 0 siny y xDω ψ ψ= −

D
z

y

x
xD

y
D

0 yD

0x
D

( )

( )0

0

0

0 c

c s

os

o

x x x

y y y
D

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −

counter-clockwise rotation as a function of time when the wave is

travelling towards the observer



Polarization: special cases
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If

( )

( )0

0

0

0 c

c s

os

o

x x x

y y y
D

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −
00 , 0

x y
DD ≥

components are in phase or out of phase

D

xD

y
D

0 or 
y x

πψ ψ− =
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Linear polarization

http://cddemo.szialab.org/



Linear polarization

27

If ψy − ψx = 0 :

0

0

0

0

If 0 : tan .

If : tan .

x

x x

x

y y

y

y y

x x

y

D D

D D

D D

D D

θ

ψ π θ

ψ ψ

ψ

− = = =

− = = =−
x

y
D

xD

y
Dθ

If ψy − ψx = π :

x

y

D

xD

y
D
θ

( )

( )0

0

0

0 c

c s

os

o

x x x

y y y
D

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −

D makes an angle ±θ with the x axis. 



Circular polarization
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 If ψy − ψx = + π/2: left circular polarization

 If ψy − ψx = − π/2: right circular polarization

( )

( )
0 0

0 0

cos

sin

x x x

y x x

D D t kz

D D t kz

ω ψ

ω ψ

=+ − −

=± − −

What if ψy − ψx = � π/2 and D0x = D0y ?

The end of D draws a circle of radius D0x. 

( )

( )0

0

0

0 c

c s

os

o

x x x

y y y
D

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −
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Circular polarization
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Diverse polarization states

( )

( )0

0

0

0 c

c s

os

o

x x x

y y y
D

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −



Jones vectors

31

Handy mathematical formulism for describing and manipulating polarization states

Write
( )

( )0

0

0

0 c

c s

os

o

x x x

y y y
D

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −
in complex notation, i.e., 

[ ]0

0

exp ( )

exp ( )

x x x

y y y

D i kz t

D i kz t

ω ψ

ω ψ

= − +

 = − +  

D

D

[ ]0 0

0 0

exp

exp

x x x

y y y

D i

D i

ψ

ψ

≡

 ≡   

D

D

Define the Jones vector for the polarization state as: 

[ ]

0

00

0 exp

exp
x x

y y

x

y
D i

D iψ

ψ

    = =          
u

D

D
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Jones vectors

Jones vectors for linear polarization:

[ ]

0

00

0 exp

expx x

y y

x

y
D i

D iψ

ψ

    = =          
u

D

D

Linear polarization oriented along the Ox axis:
 1

0
x

 =    
u

Linear polarization oriented along the Oy axis:
 0

1
y

 =    
u

x

y D

xD

y
D

Orthonormal basis!

What is the Jones vector for linear polarization at an angle θ with 
respect to the Ox axis?

x

y
D

xD

y
Dθ

x

y

D
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Jones vectors [ ]

0

00

0 exp

expx x

y y

x

y
D i

D iψ

ψ

    = =          
u

D

D

Recall from math class:

x

y

θ
 

( )
cos sin

sin cos
R

θ θ
θ

θ θ

 − =    

Jones vector for linear polarization at 
an angle θ with respect to the Ox axis:

 
( )

1 cos sin 1 cos

0 sin cos 0 sin
Rθ

θ θ θ
θ

θ θ θ

      −      = =  =                      
u

(normalized) Jones vectors for circular polarization?

Recall:ψy − ψx = � π/2 and D0x = D0y

[ ]
[ ]

0
0

2
0

00

exp

exp

2
exp

1
x

i

x x

x x

x xy

D i

D i

e
D i

ππ

ψ

ψ
ψ

 ±   

           = = =       ±   


   


 
   

u
D

D

1

i

 ∝   ± 
circular polarization

( )
1 cos

0 sin
R

θ
θ

θ

     =         

( )
0 sin

1 cos
R

θ
θ

θ

   −  =         



Jones vectors for circularly polarized light
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Left circular polarization:
11

2
L

i

 =   + 
u

Right circular polarization:
11

2
R

i

 =   − 
u

Orthonormal basis!



Polarizers and the Jones formulism 
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Ideal polarizer whose transmission axis is aligned with Ox: 

 

0

1 0

0 0

 =    
P

What about the Jones matrix for an ideal polarizer whose transmission 
axis is at an angle θ to the Ox axis? 



Polarizers in the Jones formulism 
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What about the Jones matrix for an ideal polarizer whose transmission 
axis is at an angle θ to the Ox axis? 

x

y

θ

Recall: 

 

( )
cos sin

sin cos
R

θ θ
θ

θ θ

 − =    

gives the coordinates of the 
new axes Ox’y’ in terms of 
the old coordinates Oxy

1. Find old axes in terms of the new 
coordinate system

 

( )1
cos sin

sin cos
R

θ θ
θ

θ θ

−
 =   − 

Thus, the incoming polarization 
 

x

y

D

D

     

in terms of the coordinate system of the 
polarizer  is

 

( )1
cos sin

sin cos

x x

y y

D D
R

D D

θ θ
θ

θ θ

−
       =       −    

( )1
1 cos

0 sin
R

θ
θ

θ

−
     =      −   

( )1
0 sin

1 cos
R

θ
θ

θ

−
     =         



Polarizers in the Jones formulism 

37

2. Next, apply the effect of the polarizer: 

 

( )1

0

1 0 cos sin

0 0 sin cos

x x

y y

D D
R

D D

θ θ
θ

θ θ

−
          =            −     

P

3. Finally, express in terms of the original coordinate system

 ( ) ( )1

0

2

2

cos sin 1 0 cos sin

sin cos 0 0 sin cos

cos cos sin

cos sin sin

R Rθ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ

θ θ θ

−=

   −     =             −   

  =   

P P

Jones matrix for an ideal polarizer whose transmission 
axis is at an angle θ to the Ox axis
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Glan-Taylor prism polarizer

Controling the polarizaton
Goal: light with arbitrary polarization “in”, linearly polarized light “out”.

40°

Calcite

air gap

optic 

axis

Ordinary wave polarization: 

out of screen no = 1.658

Extraordinary wave polarization: 

ne = 1.486parallel to optic axis

Use total internal reflection to separate!!!

θcrit-o = arcsin(1/no) = 37°

θcrit-e = arcsin(1/ne) = 42°

Extraordinary wave continues!

Ordinary wave is reflected!



Controling the polarization of light
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• Use polarizers

• Use a birefringent optical flat “wave plates” or “retarders”

z

d’
d’’

• Normal incidence • Walk-off is negligible

Recall: • d’ and d”, special polarization directions for which the polarization 
is maintained as the light propagates

• associated indices n’ and n’’

For a uniaxial crystal, whose optic axis is 
parallel to the plane of the optical flat (i.e., 
u is perpendicular to the optic axis)

n’ = no and n’’ = ne



What happens to the polarization as the light 

propagates through a birefringent crystal?

40

d

Recall:
( )

( )0

0

0

0 c

c s

os

o

x x x

y y y
D

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −

[ ]

0

00

0 exp

exp
x x

y y

x

yD i

D iψ

ψ

    = =     
     

u
D

D

d’’

d’

x

y

Each component travels at a different speed!

0

0

2
exp

2
exp

x

y

n

n

i d

i d

π

λ

π

λ

 =   

 =  
′



′


′

D

D

( )

( )
0

0

exp

exp

x x

y y

ik d

ik d

′=

′′=

D D

D D

Note that if n’ < n’’, d’ and d” are called the

fast and slow axes respectively

Choose x and y to 

be along d’ and d” 
respectively



What happens to the polarization as the light 

propagates through a birefringent crystal?
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d

d’’

d’

x

y

Jones matrix for a wave plate:

Find Jones matrix corresponding to propagation through 
a birefringent crystal of thickness d

( )

0

0

2
exp 2

exp

x

y n
i d

i n d
n
π

π
λ

λ
′′



    =       −    
′



′

D

D

0 0

0 0

1 02 2
exp exp

0

x x x

i i
y y y

i dn ni d
e e
ϕ ϕ

π π

λ λ

                 = =                          
′ ′

D D D

D D D

0

0

2
exp

2
exp

x

x

y

y

ni d

i dn

π

λ

π

λ

          =                
′

   
′

′D
D

D
D

( )
2

dnn
π

ϕ
λ

′ − ′= ′Let Phase delay

1 0

0 i
e
ϕ

 ∝    
M

0

0

x

y

  =   
u

D

D



Quarter wave plate
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Phase delay:

Example: quartz at 560 nm:
( )

15.4 µm
4 e o

d
n n

λ
= =

−

( )

( )2

1 0 exp 4 01 0 1 0

0 exp 40 00
i i

i

ie ie

π
ϕ

π

π

       −     ∝ = = ∝                
M

A phase of 2π corresponds to one wavelength, so a 
quarter wave plate corresponds to a phase delay of π/2 !

Choose thickness d such that

2

π
ϕ=

d

d’’

d’

x

y1 0

0 i
e
ϕ

 ∝    
M



How does a quarter wave plate change the 

polarization of a linearly polarized wave?
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y

x
α

2

1 0

0
i

e

π

   =    
M

y

x
left elliptically polarized light!!!

0xD

0 y
D

0

0

;    tan
2

x

x

y

y

D

D
ψ

π
ψ α− = =

Before

After



How does a quarter wave plate change the 

polarization of a linearly polarized wave?
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y

x
α

2

1 0

0
i

e

π

   =    
M

y

x

elliptically polarized light

0xD

0 y
D

0

0

;    tan
2

x

x

y

y

D

D
ψ

π
ψ α− = =

What is the Jones vector for the initial state? 

( )
1 cos sin 1 cos

0 sin cos 0 sin

x

y

R
α α α

α
α α α

        −        = =  =                           

D

D

Apply the quarter wave plate: 

1 0 cos cos

0 sin sin

x

y i i

α α

α α

            =  =                    

D

D

Before After

( ) ( )

( )

0 0

0 0

cos cos 0 cos cos

sin cos sin sin
2

x

y

D t kz t kz

D t kz t kz

α ω α ω

π
α ω α ω

= − − = −

 = − − = −  

 0

2

x

y

ψ

ψ π

 =
 =

( )

( )0

0

0

0 c

c s

os

o

x x x

y y yD

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −

[ ]0 0

0 0

exp

exp

x x x

y y y
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Quarter wave plate: special case, α = π/4

45

y

x

1
cos sin

2
α α= =

amplitudes are equal!

Recall: quarter wave plate adds π/2 phase delay.

Equal amplitudes + π/2 phase delay gives Circular polarization! 

( ) ( )

( )

0 0

0 0

1
cos cos 0 cos

2

1
sin cos sin

2 2

x

y

D t kz t kz

D t kz t kz

α ω ω

π
α ω ω

= − − = −

 = − − = −  

y

x

α= 45°



Quarter wave plate
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y

x

y

x

Before After

α

Input wave linearly polarized:

Input wave linearly polarized, α=π/4:

y

x

y

x

Before
After

45°



Half wave plate
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Phase delay:

A phase of 2π corresponds to one wavelength, so a half wave plate 
corresponds to a phase delay of π !

1 0 1 0 1 0 0

0 0 0 1 0i i

i

e e i
ϕ π

       −      ∝ = = ∝                −       
M

ϕ π=

d

d’’

d’

x

y

Choose thickness d such that



How does a half wave plate change the 

polarization of a linearly polarized wave?
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y

x
α ( )

2
e o

n n dϕ π
π

λ
= − =

1 0

0 i
e
π

 =    
M

−α

Get linearly polarized light “rotated” by 2α

symmetrical with respect to

d

d’’

d’

x

y

,  ′ ′′d d



How does a half wave plate change the 

polarization of an elliptically polarized wave?
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y

x

Before

α

Y X

• Consider elliptical polarization as a sum of 
two linear polarizations

• Submit each y component of each linear 
polarization to a π delay

x

After
y

−α

Y’

X’

• Right polarization becomes left 
and vice versa!



Half wave plate
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y

x x

Before After
y

α
−α

Y X
Y’

X’

Before After

y

x x

y

α
−α

Wave plate axes

= x and y

=

Symmetry with respect to ,  ′ ′′d d

,  ′ ′′d d



Producing the desired state of polarization
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y

x

Goal:  elliptical polarization with a specific orientation and axis ratio 

Desired 

orientation of 

polarization 

ellipse

0 yD′

0xD′

0

0

y

x

r
D

D′
=

′



Producing the desired state of polarization
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y

x

y

x

1. Produce linearly

polarized light with a 

polarizer

Elliptical polarization 

with the right “shape” but 

wrong orientation

α
Orient quarter wave

plate axes to get

Desired 

orientation of 

polarization 

ellipse

2. Next step: use a 

quarter wave plate to 

change polarization to 

elliptical with the desired 

“aspect ratio”  r

tanr α=
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What should the 

half wave plate 

orientation be?

Producing the desired state of polarization

3. Next: use a half wave 

plate to change the 

polarization ellipse 

orientation

Action of half wave 

plate

Half wave plate axis 

should bisect the 

angle between the 

current and desired 

ellipse axes!
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Arbitrary 

polarization 

“in”

What you 

want “out”

Quarter-

wave plate

Half-wave 

plate

Quarter-

wave plate

Polarization control in optical fibres

https://youtu.be/5O7TL2SUAlo

Optical fibres are made of isotropic media (glass). However, optical fibres 
exhibit stress-induced birefringence

When they are coiled (looped), they become anisotropic!

Can easily make quarter and half wave plates by looping fibre!

Number of loops determines if it is a half or 
quarter wave plate!

“Fiber paddle polarization controller” or

“Mickey Mouse ears”


