Calcite

« Experiment:
o Draw a black dot on a piece of
paper
o Place calcite crystal on top
o Rotate crystal
=> observations

o Look  through polarizered
sunglasses at crystal

o Rotate crystal or sunglasses
=> observations
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Experiments

Experiments:
o Place Scotch tape between crossed

polarizers
o Rotate Scotch tape

— observations

o Place a clear plastic object (e.g.

protractor) between crossed

polarizers
=> observations




/ Recall lecture 6

In an anisotropic medium:

« Wave vector kis (in generin the
same direction as the propagation of
TOPagation

energy IE;: E < &

« Two waves! unless...

« Graphical method for finding indices
and polarizations
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n a uniaxial crystal: arbitrary u i3l

——

(5’) principal plane: formed
by u and the optic axis

The index ellipsoid is symmetrical about

the principal plane

Plane I'l: normal to u

Resulting elliptical cross-section I':

symmetrical about ( 5)

Semi-axes of I':

« One perpendicular to (5 ) :
* One parallel to (5) 'n

n, =n, =n, "ordinary" index : .
. _ X,. optic axi Nivsasd
n, =n, "extraordinary" index ellrf¢s0: ¢
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Propagation 1n a uniaxial crystal

Semi-axes of I':

- One perpendicularto (S): 7, d

+ One parallelto (s): n", d"

 No matter how u is tilted, perpendicular
semi-axis always has the same length

and direction

E—)

» The length and direction of the parallel

n, =n, =n, "ordinary" index

n, =n, "extraordinary" index

Ordinary wave

semi-axis depends on u

)

Extraordinary wave

X optic axis




. Ve
4&4‘/ wh -~ S

X optic axis

'3 . . . . _

» +% +x -4 Propagation in a uniaxial crystal™ .- <-4l
nt ; nz n, = n, =/, )*ordinary" index
z‘ -~ Ordinary wave n, =h ) "eXtraordinary" index

« d is perpendicular to (S)
* n =n,no matter the orientation of u

- d'isin the (x,, x;) plane, and &, = &5 =N/

—€n2E D, —é‘n

@E—ge parall@

Axl

.l

Poynting vector S and the wave normal u are

also parallel

Wave behaves as if it is in an isotropic
medium!

>




Propagation 1n a uniaxial crystal

Extraordinary wave

d”is in the plane (S’)
n’ depends on the orientation of u

D and E are NOT parallel

Poynting vector S and the wave normal u
NOT parallel

Wave does NOT behave as if it is in an
isotropic medium!

X,: optic axis

Axl

>




Propagation in a uniaxial crystal: determining 7

» (C:cross-section of the index ellipsoid in

the principal plane

* 1’ length of the semi-axis of the ellipse (I')

(F)is in the plane perpendicular to u

!

length of the vector OM’

n

"

coordinates of OM": |x, = n" cos® ; x, =n"sin0

equation of ellipse C:

Plug (A) into (B) and solve for

n

i

(B)

(A)

i

X,: oplic axis
—————

i

sin® 0

cos’ 0

2
ne

-



Propagation in a uniaxial crystal: determining the direction of
S, the Poynting vector

* Recall: S in the same plane as u, E, D,
perpendicular to B

« Recall: S is tangential to ellipsoid at M

4

Want to find @, C




Propagation in a uniaxial crystal: determining the direction of
S, the Poynting vector

Recall: S in the same plane as u, E, D,
perpendicular to B HR

Recall: S is tangential to ellipsoid at M” X4

‘ tange/nt toC

Want to find HR

Find first the normalto C at M’
2 2

X X
g<x1’x2):n_lz+n_22_1

N— 0g/0x| (2x/n}| (N,
0g/0x,) |2x,/n2] TN,

1 2 2
N, x/In, n
= ~ =—%tan0

o e

tand, = —
YN, Xn




Index ellipsoid and wave normal surfaces

-s_\’/ r‘g<s

\.’_
Recall: wave-normal surface:

* For each u, associate two vectors

whose lengths are proportional to the

two corresponding indices of refraction

A
X

c/

S
u

des 17 C/<¢-f
S : tangent to index ellipsoid

Wave normal
surface

’ 7 "
n’and n p /
P" is on the normal surface ’ Xy
>
n' /"
‘ S is perpendicular to wave normal surface
Wave normal surface: Index
the set of all points N ellipsoi
such that ON=nu
X | wave-normal surface
. . _T\\ 4
Index eII|p30|d: /// Ny
~J ’/ \
, oL - [—n, OL n, —-j )
X, = n— | /] - o
~ \\ / / s 4
|| || ~ | p —— ;




Experiment!

Experiment:

o Draw a black dot on a piece of
paper

o Place calcite crystal on top

o Rotate crystal

\ 4

There are two dots! One is stationary,
the other rotates as the crystal rotates.

Stationary dot: ordinary wave
Rotating dot: extraordinary wave

\ 4

Extraordinary wave Poynting vector changes
direction as the optic axis direction is
changed!

12



Experiment

« Experiment:

o Look through a polarizer at
crystal

o Rotate polarizer

\ 4

One or the other of the black dots is visible.

\ 4

Polarization directions of the ordinary and
extraordinary waves are perpendicular!!!

13



Snell’s (Descartes’?) laws for
anisotropic media

According to Dijksterhuis,[22l "In De natura lucis et

proprietate (1662) Isaac Vossius said that Descartes had

seen Snell's paper and concocted his own proof. We

now know this charge to be undeserved but it has been

adopted many times since." Both Fermat and Huygens
repeated this accusation that Descartes had copied
Snell. In French, Snell's Law is called "la loi de

Descartes" or "loi de Snell-Descartes."

Wikipedia (italics and underlining mine)

14



Snell’s laws

» Basic premise: the tangential component of the wave vector k must be

I'4
continuous across an interface => Coadeveation de Zuw\'(. /e
e dequ-gu'L

;7 conn J'.-'.'-()ﬂs aJx I'.’\-c ) MQ&WQI/

Recall Snell’s laws for isotropic media:
« The wave normals (u) of the incident, refracted waves and the normal to

the interface are all in the same plane (the plane of incidence)

n,sinf =n,sino,

9 Optical axis
Second medium anisotropic (uniaxial): 1
' . :
isotropic
n,sinf, =n, sinf, =n,, sind,, n,
Note:
M, « Snell’s laws apply @and NOTto S, S—
the Poynting vecto - &SpEpIC
» . . . . . . g ‘920

* n changes with direction in the anisotropic |V

medium! 15




Graphical method for applying

Snell’s laws: two isotropic media

Method:

« Draw half circle with radius k,

« Draw half circle with radius k,

Rescale diagram

ﬂ the tangential components are equal

Optical axis

»

o

.
. o *
o *
* ¢
.
.
.

¢
v
* e

Wave normal
surfaces

.
.
.*

.

o
.
.
.
.
.
*
.
.*
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Graphical method for Snell’s laws: an
1sotropic and a uniaxial anisotropic media

Ordinary wave: same result as for two isotropic media!

n,sinf, =n, sin, =n,, sinf,,
91 Optical axis P )
=S 1~ Ky =1 —
C
isotropic nl
anisotropic
, : \Wave
d normal
surfaces
w
k, =nk,=n —
ic axi 2 0
Optic axis Index - g 0 0 c
ellipsoid n _ oy oW
17



Controlling the polarization of light

Slow Axis :
¥ Fj\st Axis

What you
want “out”

Arbitrary Rotation

polarization ~ AXis.
llinll . Fiber Twist 3

Twist 2

Twist 1 Half-wave
Quarter- plate
wave plate

18



Outline

— Polarization states of light—mathematical description
— Jones vectors

— Manipulation and control of the polarization of light

Q)

Moy

19



Polarization

Polarization:
« direction and variation of the electric displacement vector D

during propagation ] .
* Monochromatic plane wave in a

transparent medium

Y, M :
‘ D orthogonal to the propagation A P )
direction z. k w ==

- 1€/

https://www.edmundoptics.com/resources/application-notes/optics/introduction-to-
polarization/

20



Polarization

« Monochromatic sinusoidal plane wave in a transparent medium

4
D orthogonal to propagation direction z.
D, =D, cos (wot —kz — wx) Dy, Dy, >0 Amplitudes
D =D, cos|wit—kz—1
y 0y ( 0 y> pr , ¢y Phases, constant

D,, = D,
Y, =, =mr, meL

—




D_= D, cos (wot —kz — wx)
D, =D,, cos(wot —kz —wy)

State of polarization

The state of polarization is determined by

S

<

D, OR .
DOx
« angle of ellipse axis

O

=

» rotation direction

P, =,

)

22



Determining the rotation direction of the polarization

D, =D, cos(w,t —kz—1),)
D, =D,, cos(wot —kz —wy)

ellipse

Do

* Consider when D points to A: D =D,

L// “

<Y

wol —kz =1 =2mm

In order to know the rotation direction, we need to know the sign of

- =2 -
‘(,06 kz "M”’K

7

dt

Se prerqgep © Vers

counter-clockwise hovs

2w D 7,{
dD, . N :
= —wD, sin(wyt —kz =1, = wyD,, sin <¢y — wx) Lo fomido e
Y4
S A 0 <), —1, < < left polarization
T c —7 <, — 1, <0< right polariation

clockwise

23



Determining the rotation direction of the ellipse

4
D

0y

D, =D, cos(w,t —kz—1),)
D, =D,, cos(wot —kz —wy)

.

A
D

y

y
/ -
D
/ \/ "
\¥ /

><V

dD
dt

> = —w,D,, sin (wot —kz — wy) = WoDOy sin (wy o ¢x>

0 <1, —1, <z left elliptically polarized

—7 <, —1, <0< right ellipti&ially polarized

O

\

counter-clockwise rotation as a function of time when the wave is

travelling towards the observer

24



Polarization: special cases

D =D, cos(wyt —kz—1),) 5

Ox?

D, >0

y_

D,=D,, Cos(wot—kz—zpy)

If ¢, —¢, =0orm

‘ components are in phase or out of phase




Linear polarization

http://cddemo.szialab.org/

26



Linear polarization

D_ =D, cos(wit—kz—1,
o8 (wf —ke—1,) bop
Dy:Doycos(th—kz—wy)
If ¢, - ¢ =0:
+ D D, D,
y Ifvy —1 =0:tanf =—L=—2=.
wy wx Dx DOx
| b
— If o, — ) :W'taHHZ&:CB—DOy
Dx X y X ° Dx DOX'
It §,- ¢ =m:
y | D makes an angle £8with the x axis.
D)C
P >
|«
D
D y

27



Circular polarization

What if ¢, — ¢, =+ 772 and D, = D, ?

D =D, cos(wyt—kz—1,)
D, = D, cos (wot —kz — wy)

-

D_=+D, cos (wot —kz — wx)
D, ==+D,,sin (wot —kz—1,)

The end of D draws a circle of radius D,,,.

» If ¢, — g, = + 712: left circular polarization

» If ¢, — ¢, = — 72: right circular polarization

28



Circular polarization

29



Diverse polarization states

2!

9

|
v, =1, =0 O<1-by—¢x<7r/2 Wér‘w/2<¢y¢x<w

e
)

.l

-, =1 w<y - <3n/2 @) —th =37/2 3w/2<y) —1h <2m

Y

D =D, cos(wyt—kz—1,)
D, =D,, cos(wot—kz—wy)




Jones vectors

Handy mathematical formulism for describing and manipulating polarization states

D_= D, cos (wot —kz — @bx)

Write in complex notation, i.e.,
D, =D, cos(wot —kz — wy)
D, = D,, exp|i(kz —wt +_qu)} D,, =D, exp|iy,
D, = 130y exp[i(kz —wt + 1&)] D,, =D,, exp[iwy]

Define the Jones vector for the polarization state as:

@Ox DOx eXp [mpx]

Dy, D,, exp[izﬁy]

31



Jones vectors

Jones vectors for linear polarization:
Linear polarization oriented along the Ox axis: u, =

Linear polarization oriented along the Oy axis: y =

y

—_— 0 O

<

Sl
=

Orthonormal basis!

What is the Jones vector for linear polarization at an angle 8with
respect to the Ox axis? + D

y ’ 'COSQ
\u =
9 Dy e g'.oy
.,




Jones vectors o [P
V4 u= Dy, N D,, exp[iwy]
N | Recall from math class:
X 1 cosf
Hx R(0) 0 _[siné] - R(@)—[COS@ —sin(‘)]
0] (—sind ~|sinf  cosh
R(9) :[ ]
1 cos

[cos 0

Jones vector for linear polarization at | " _R<9) 1) (cos® —sinf)(1
a 0] |sin@ cosf |0 sin @

an angle @with respect to the Ox axis:

(normalized) Jones vectors for circular polarization?

Recall: ¢, = . =+ 712 and D, = D,,,

1

0

@()x D()x eXp [lwx]

Dy,

a D()x eXp

1
u= oc[ | circular polarization

= D,, exp[i%][

e

™
i, £
Yot



Jones vectors for circularly polarized light

1 (1
Left circular polarization: u =—
P il
. . L 1 (1
Right circular polarization: u, :_2 .
—1

N

Orthonormal basis!

34



Polarizers and the Jones formulism

' R

Polarizing filter

Polarization

,é\_xis ’_J'“ direction
N j!é Direction
/ , | '5 of ray 4 ona]_
el oo b °

Ideal polarizer whose transmission axis is aligned with Ox:

I O

P, =
0 O

What about the Jones matrix for an ideal polarizer whose transmission
axis is at an angle @to the Ox axis?

35



Polarizers 1n the Jones formulism

What about the Jones matrix for an ideal polarizer whose transmission
axis is at an angle @to the Ox axis?

V4 cos —sinf)| gives the coordinates of the
y’ Recall: R(H) = [sine cos 0 ] new axes Ox’y’ in terms of
2 < the old coordinates Oxy
X
1. Find old axes in terms of the new
1 cos 6 coordinate system
R7'(0) —[ , ]
0 —sin 6 .
| 0 <in 0 Rl (0) _ cosf sinf
R (9> 1 :[cose] —sinf cos6

X

Dy

in terms of the coordinate system of the

Thus, the incoming polarization
polarizer is

D

y

R_I(Q) D.| {cosf sinf|D,
~ |—sinf cosf D,

36



Polarizers 1n the Jones formulism

2. Next, apply the effect of the polarizer:

PR*I(H) D | (1 0}f cosf sin6|(D,
0 D.| |0 0]|—sin® cosd D,

y
3. Finally, express in terms of the original coordinate system

P,=R(0)P,R"'(0)
cosf —sinf|(1 O
0 0

cosf  sin 0]

sinf  cosé —sinf cosf

cos’f  cosfsinb

cosfsin b sin’ 6

Jones matrix for an ideal polarizer whose transmission
axis is at an angle @to the Ox axis

37



Controling the polarizaton

Goal: light with arbitrary polarization “in”, linearly polarized light “out”.

Glan-Taylor prism polarizer

Ordinary wave polarization:

_— ‘ out of screen n,=1.658
A : o
w Extraordinary wave polarization:
—>
‘ parallel to optic axis n,=1.486
optic Use total internal reflection to separate!!!
axis .
8., =arcsin(1/n,) = 37°
: 8., ,=arcsin(1/n,) = 42°
air gap

Extraordinary wave continues!
Ordinary wave is reflected!

38



Controling the polarization of light

l
« Use polarizers leme dlondes

» Use a birefringent optical flat » “wave plates’ or “retarders”

£
 Normal incidence «  Walk-off is negligible o
Recall: . d’and d”, special polarization directions for which the polarization - e
is maintained as the light propagates
» associated indices n ;Iand n”
B For a uniaxial crystal, whose optic axis is

parallel to the plane of the optical flat (i.e.,
u is perpendicular to the optic axis)

n =n,and n” = n,
L UL U
PERER

<

AKX
PRI

" “/AI" -

of¢ ¢

39



What happens to the polarization as the light
propagates through a birefringent crfystal?

"' ko ke, = W/ = v
Y D, = D,, cos(wyt —kz— b ]
x — Hox wot kz lbx) DOx ox CXP |1V,
Recall: - u= = ,
D, =D, cos(wot —lcz—wy) Dy, D,, exp[l¢y]
“u &,

Each component travels at a different speed!

2T/,

D, =Dy exp(ik'd) ~2wew|iF)]

D, =D, exp(ik”d) —D,, exp ,277\7@;]

> Note thatif n’<n”, d’ and d” are called the
d fast and slow axes respectively
Choose x and y to
be along d’ and d”
respectively

\Y l
It9o~ es we J*’f.f(

40



What happens to the polarization as the light
propagates through a birefringent crystal?

y Find Jones matrix corresponding to propagation through _ Dox
a birefringent crystal of thickness d Dy
Qe )
: L2m
optge - D,, €Xp [l Tn’ d ] D,.

2w,
= —expli—n'd
p[ ) ]

Do, exp[z%(n —n )d]

—n' ) » Phase delay n" “e
= w,

Vl =

Jones maitrix for a wave platé:

1 O
M .

41



M oc[l (.’] Quarter wave plate

0 ¥

A phase of 2mtcorresponds to so a
quarter wave plate corresponds to a phase delay of

Choose thickness d such that

27 T
Phase delay: —"(n —nld=—
g 7 A(e 0) 2

Example: quartz at 560 nm: (ne — no) =0.0091 d=

! 9]_[1 0]_[1 ufooli

0 elg 0 i 0 exp(im/4)




How does a quarter wave plate change the
polarization of a linearly polarized wave?

1 O
Before M =

Oyy

7

After

43



How does a quarter wave plate change the |Po=5.exp

polarization of a linearly polarized wave?

D, = D,, cos(wy —kz—1,) y

1 0
D, = D, cos(wyt —kz—1), 27 ™
( ) > R w:_(ne—no)d:_ M: ,-E
g A 2 0 e?2
What is the Jones vector for the initial state? Apply the quarter wave plate:
Before After
D, 1 cosa —sinalfl cos D, 1 O)fcosa) (cosa
egalf!)-[° ok {0 o)
D, [0} [sma cosa }[0} [sma] D) 0 i){sina) [isinc

By 3 i

D, = cos acos(wyt —kz —0) = cos acos (wyt — kz)

D >
/ 0x X Dy:sinacos[wot—kz—g]:sinasin(wot—kz)

T D()y
Y, =, =—; tana=
elliptically polarized light 2 D,

44



Quarter wave plate: special case, 0 = 174

: 1
COSxy =SIN(x = —=

J2

amplitudes are equal

Recall: quarter wave plate adds 172 phase delay.

Equal amplitudes + 172 phase delay gives ‘ Circular polarization!

1
D, = cosacos(w,f —kz—0)=—=cos

J2

D = sinozcos(wot—k ——] :Lsin
g 2

J2

(wot —kz)

(wot — kz)

AY

*

C’c)l‘
(o ar An g

Cec’ u'a..\

Vewlise Ao
X

fa sccavi L

e N
ldn"’c

Pdle.’~‘3'¢.c c{r(ulq,l—‘ W.—\“

45



Quarter wave plate

Input wave linearly polarized:

AY Y
a R S
X X
——
Before After
Input wave linearly polarized, a=1v4:
AY
> @ >
X X

Before After

46



Half wave plate

A phase of 2mtcorresponds to so a half wave plate
corresponds to a phase delay of

Choose thickness d such that

2
Phase delay: =—(n —nld=m
i =5 (n,—n,)

47



How does a half wave plate change the
polarization of a linearly polarized wave?

‘ Get linearly polarized light “rotated” by 2a

o Y
symmetrical with respectto d’, d

48



How does a halt wave plate change the
polarization of an elliptically polarized wave?

Before
Y AY

» Consider elliptical polarization as a sum of
two linear polarizations

» Submit each y component of each linear
polarization to a tdelay

» Right polarization becomes left
and vice versa!

49



Wave plate axes

xandy

d/, d//

Half wave plate

Before After
AY
a N
'
Before After

Y )\y

Symmetry with respectto d’, d”

50



Producing the desired state of polarization

Goal: elliptical polarization with a specific orientation and axis ratio

Desired
orientation of
polarization
. D/
ellipse 0y
T r
DOx

51



Producing the desired state of polarization

1. Produce linearly 2. Next step: use a
polarized light with a . quarter wave plate to
polarizer Desired change polarization to
orientation of elliptical with the desired
polarization . -
. aspectratio” r
ellipse
Orient quarter wave
plate axes to get
g r = tan «

X

| ’ >
7

Elliptical polarization
with the right “shape” but

wrong orientation o



Producing the desired state of polarization

3. Next: use a half wave What should the

plate to change the half wave plate
polarization ellipse orientation be?
orientation

Half wave plate axis
should bisect the
angle between the
current and desired
ellipse axes!

Action of half wave
plate

53



Polarization control in optical fibres

Optical fibres are made of isotropic media (glass). However, optical fibres
exhibit stress-induced birefringence

When they are coiled (looped), they become anisotropic!
Can easily make quarter and half wave plates by looping fibre!

Number of loops determines if it is a half or

Slow Axis :
quarter wave plate! «  FastAxis

.

What you
want “out”

“Fiber paddle polarization controller” or

“Mickey Mouse ears” af

Arbitrary  Rotation
polarization S

—

“in” g  Fiber

Twist 3

Twist 2
Twist 1 Half-wave
Quarter- plate
wave plate

https://youtu.be/SO7TL2SUAlo
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