
1

Wave Optics

Elizabeth.Boer-Duchemin@universite-paris-saclay.fr

Tel: 01 69 15 73 52

ISMO (Institut des Sciences Moléculaires d’Orsay)

Nanophysics@Surfaces Group (Nano-optics)

Office: 1.16 (1st floor), Building 520

https://youtu.be/bZAs1W25_dQ

https://www.youtube.com/watch?v=nqqpkWicR2k
1

Course structure

• Final examination

2

• 8 x 2h lectures

• Lecture notes and recommended reading
(eCampus)

• Ask questions!
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• 8 x 2h tutorial sessions
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Goals of this course

• Matrix optics and optical cavities

3

• Plane waves: the Fresnel equations 

for reflection and refraction

• Propagation in dispersive media and causality

• Diffraction (plane and spherical waves)

• Wave guides

• Propagation in anisotropic media

• Polarization and wave plates

• Circular anisotropy
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Wave Optics
What is optics?

The study of…

…light, its propagation, its production, the changes 

that it undergoes and produces, and other 

phenomena closely associated with it* 

http://hdwpro.com/sunlight.html*Merriam Webster
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Why study optics?

5

Why study optics?

6

Alain Aspect, 

Nobel Prize in 

Physics 2022
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Goals for today:

• Maxwell’s equations and Poynting’s theorem: energy

conservation of EM fields in matter

• Plane waves

• Fresnel equations for reflection and refraction

If you wake up a physicist in the middle of the night and say 

“Maxwell” they are sure to say “electromagnetic field”.

Rudolf Peierls (1962)  

https://en.wikipedia.org/wiki/Rudolf_Peierls

Maxwell’s equations in vacuum

8

ρ = charge per unit volume

j = current per unit area perpendicular to flow

ε0 = vacuum permittivity

µ0= vacuum permeability
0 0

1
c

µ ε
=

In the presence of charges and currents

(1)

(2)

(3)

(4)
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Maxwell’s equations in matter

9

• isotropic

• non-magnetic

• non-dispersive

“Simple” matter:

• homogeneous

• linear dielectric

Dielectrics

10

jpolarization = polarization current density
= jp

Polarization P:  dipole moment 
per unit volume 

polarization
t

∂=
∂
P

j

bound b
ρ ρ= = − ⋅P∇

“Nucleus”
“electron”

ρbound = bound charge per unit volume
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Linear dielectrics
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In matter we define:
D: Electric displacement

or auxiliary field.

For a linear material: 
0 e

ε χ=P E χε : Electric susceptibility

( )0 01
e r

ε χ ε ε ε= + = =D E E E

ε
0ε

r
ε

0( )ε= +E PD

2
r nε =

Permittivity as a function of frequency

Wikipedia

12

Dielectrics
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Maxwell’s equations in  matter:

13

For “simple” media        (2.1)
t

∂× = −
∂
B

E∇

    (2.2)free
t

∂× = +
∂
D

H j∇

0    (2.3)⋅ =B∇

    (2.4)
free

ρ⋅ =D∇

ε
µ

=
=

D E

B H

Poynting’s theorem: conservation of energy 
for electromagnetic fields in matter

14

Goal: Find energy stored in EM fields and an expression for the energy flow 

What is work done by EM forces on free charges in interval dt?

Recall: 

( , ) ( , ) ( , )r t r t r tj vρ=� � � �
Recall: 

( )
Lorentz

qF E v B= + ×�

( ),
f

tρ r( ),
f

tj r

V( )
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Poynting’s theorem: conservation of energy 
for electromagnetic fields in matter

15

mech
f

vol

dW
E j dV

dt
= ⋅
�� ���

( ) ( ) ( )⋅ × = ⋅ × − ⋅ ×E H H E E H∇ ∇ ∇

    (2.2)
free

t

∂× = +
∂
D

H j∇     (2.1)
t

∂× = −
∂
B

E∇

( )f

vol vol

dV dV
t t

 ∂ ∂  = − − ∇ × −  ∂ ∂  
 

B D
E j H Ε H Εi i i i

Poynting’s theorem: conservation of energy 
for electromagnetic fields in matter

16

( )f

vol vol vol

dV dV dV
t t

∂ ∂ + = − − ∇ × ∂ ∂ 
  

D B
Ε H E j Ε Hi i i i

 ;    ε µ= =D E B HFor linear media: Note also: 
21

2 t t
ε ε∂ ∂=

∂ ∂
E

E Ei
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Poynting’s theorem: conservation of energy 
for electromagnetic fields in matter

17

( )
l

f

v ol vovol

dV d
t

Vd
t

V
∂ ∂  = ∇+
∂

−∂ 
× − 

D B
Ε E Ε HjH ii i i

Poynting’s theorem: conservation of energy 
for electromagnetic fields in matter

18

( )
l

f

v ol vovol

dV d
t

Vd
t

V
∂ ∂  = ∇+
∂

−∂ 
× − 

D B
Ε E Ε HjH ii i i

EM
f

u

t

∂ = − ⋅ − ⋅
∂

j E S∇

mechEM

S

dWdU
d

dt dt
= − − ⋅ S a

�
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Plane waves

19

Plane waves: relations between E,H,k

20

Goal: find relations between E, H and k

“Simple” medium: 

• homogeneous 

• Isotropic

• non-dispersive

• (keep the possibility of magnetism)

• No free charges nor currents
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For “simple” 

media

0    (2.3)⋅ =B∇ε
µ

=
=

D E

B H

    (2.19)
t

∂× =
∂
D

H∇

         (2.1)
t

∂× = −
∂
B

E∇

0    (2.21)⋅ =D∇

Maxwell’s equations in simple media 
with no free charges nor currents…

…or more explicitly for linear media… spatially
homogeneous

22

       (2.26)
t

µ ∂× = −
∂
H

E∇

    (2.27)
t

ε ∂× =
∂
E

H∇

0    (2.28)⋅ =H∇

0    (2.29)⋅ =E∇
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Intrinsic impedance of the medium, index of 
refraction

23

 

0
0

0

377Z
µ
ε

= ≈ Ω

Recall: 

0 0

1
c

µ ε
=

Expression for a plane wave

24

 ( ) ( )
( ) ( )

, exp c.c.

, exp c.c.

t i t

t i t

ω

ω

 = − − ⋅ +   


= − − ⋅ +   

E r k r

H r k r

E

H

Monochromatique plane 

wave:

• Fields are real quantities

• We use complex notation for convenience

(2.31)

(2.32)

( ) ( ) ( )*, exp expt i t i tω ω= − − ⋅ + + − ⋅      E r k r k rE E
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Relations between E, H and k

25

       (2.26)
t

µ ∂× = −
∂
H

E∇
 ( ) ( )

( ) ( )
, exp c.c.

, exp c.c.

t i t

t i t

ω

ω

 = − − ⋅ +   


= − − ⋅ +   

E r k r

H r k r

E

H

Substitute

in

( )f f f× × + ×A A A∇ = ∇ ∇Recall:

ωµ× =k E H (2.34a)

Relations between E, H and k

26

 ( ) ( )
( ) ( )

, exp c.c.

, exp c.c.

t i t

t i t

ω

ω

 = − − ⋅ +   


= − − ⋅ +   

E r k r

H r k r

E

H

Substitute

in

( )f f f× × + ×A A A∇ = ∇ ∇Recall:

    (2.27)
t

ε ∂× =
∂
E

H∇

ωε× = −k H E (2.34b)
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Relations between E, H and k

27

( ) ( )
( ) ( )

, exp c.c.

, exp c.c.

t i t

t i t

ω

ω

 = − − ⋅ +   


= − − ⋅ +   

E r k r

H r k r

E

H

Substitute

in

Recall:

0    (2.28)⋅ =H∇
0    (2.29)⋅ =E∇

( )f f f⋅ ⋅ + ⋅A A A∇ = ∇ ∇

0⋅ =k E0⋅ =k H (2.33a) (2.33b)

Relations between E, H and k

28

ωµ× =k E H

ωε× = −k H E

0⋅ =k E

0⋅ =k H

(2.34a)

(2.33a)

(2.34b)

(2.33b)

E

H

k
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Ratio between E and H

29

ωµ× =k E H

ωε× = −k H E

(2.34a)

(2.34b)

Dispersion relation 

30

ωµ× =k E H (2.34a)
From

1
v

µε
=Recall:
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Phase velocity

31

( ) ( ) ( )*, exp expt i t i tω ω= − − ⋅ + + − ⋅      E r k r k rE E

ck

n
ω =

Phase velocity

32
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At what speed does electromagnetic energy
propagate?

33

Consider: S time-averaged energy per unit surface per unit time

EMu

S

EMu time-averaged energy per unit volume

Unit analysis:

Speed of energy propagation

34

Find S

ωµ× =k E H (2.34a)Recall:

( ) ( ) ( )× × = ⋅ − ⋅A B C B A C C A BRecall:

* *e e e ei i i iφ φ φ φ− −   = + × +   E E H H k r tφ ω= −
� �
i

2 0ie φ =

Recall:

Eliminate *×E H
*

H from 

( ) ( )2* *× × = −k k kiE E  E E E
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Speed of energy propagation

35

Recall:
2 21

2
EMu ε µ = +

 
E H

1c

k n

ω
µε

= = (2.37)Recall:
2* 1

ωµ
× = kE H E

EMu

SWhat are we 

trying to do?  Find

2 2
2=H HSimilarly

* *e e e ei i i iφ φ φ φ− −   = + +   iE E E E

Speed of energy propagation

36

Thus:
22

k̂
Z

=S E
2 ˆ2

EM
u kε= E

Recall:

2
2

2
Z

=
E

H

2 21

2
EM

u ε µ = +
 

E H
2 2

2=H H
2 2

2=E E
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Energy balance in simple matter but including
absorption (no free charges nor currents => no 

mechanical work)
Let the electrical permittivity be complex!

37

ˆ iε ε ε′ ′′= +

Change in stored
energy per unit time

-Energy dissipated
or absorbed in the 

medium

Energy leaving
volume per unit 

time

( ) ( )Amplitudes et  are now decreasing functions of time!t tE H

Reflection and refraction of plane waves at an 
interface

38

ε1,µ1

ε2 ,µ2

x

z

12n̂

k i

kt

kr

θ i

θr

θt

Goals: find Snell’s equations

find Fresnel’s equations

2 1sin sint i

r i

n nθ θ
θ θ

=
=

Incident, transmitted and reflected waves are all plane waves

Incident, transmitted and reflected waves have the same frequency
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Reflection and refraction of plane waves at an 
interface

39

ε1,µ1

ε2 ,µ2

x

z

12n̂

k i

kt

kr

θ i

θr

θt

( ) ( )( )2 , exp c.c.
t t

t i tω= − − ⋅ +  E r k rE

(2.46)

(2.47)

( ) ( )( )1 , exp                                            i it i tω= − − ⋅ +  E r k rE ( )exp c.c.r ri tω− − ⋅ +  k rE

Boundary conditions

40

 ( )12 1 2
ˆ 0⋅ − =n D D (2.48)

( )12 1 2
ˆ 0⋅ − =n B B (2.49)

 The perpendicular components of D and B are continuous across the interface

 ( )12 1 2
ˆ 0× − =n E E (2.50)

 ( )12 1 2
ˆ 0× − =n H H

 The tangential components of E and H are continuous across the interface

(2.51)
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Snell’s laws from boundary conditions

41

Use
( ) ( ) ( )( )
( ) ( )( )

1

2

, exp exp c.c.

, exp c.c.

i i r r

t t

t i t i t

t i t

ω ω

ω

 = − − ⋅ + − − ⋅ +      


= − − ⋅ +   

E r k r k r

E r k r

E E

E

and boundary conditions to find Snell’s laws

The boundary conditions (2.48)-(2.51) must be satisfied 
for all instants in time, for all (x,y) on interface (i.e., z=0) 

ε1,µ1

ε2 ,µ2

x

z

12n̂

k i

k t

k r

θ i

θ r

θt

Fresnel equations

42

1

2

z

k i k r

k t

x

θ t

θr

θi

H t
Et

H r

Er

H i

Ei

Find the reflection and transmission 

coefficients.

How much of the wave

is transmitted?

How much of the wave

is reflected?
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Fresnel equations

43

1

2

z

ki kr

kt

x

θt

θr

θ i

Et
H t

Er

H r

Ei

H i

1

2

z

k i k r

k t

x

θ t

θr

θi

H t
Et

H r

Er

H i

Ei

Fresnel equations: reflection and 
transmission coefficients

44

2 1

2 1

2

2 1

cos cos

cos cos

2 cos

cos cos

i tr
s

i i ts

t i
s

i i ts

Z Z
r

Z Z

Z
t

Z Z

θ θ
θ θ

θ
θ θ

  −= =  + 

 
= =  + 

E
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2.66

2.67

“s” polarization

“p” polarization

1 2

1 2

2

1 2

cos cos

cos cos

2 cos

cos cos
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p

i i tp

t i
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i i tp

Z Z
r

Z Z

Z
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Z Z
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θ θ

θ
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  −= =  + 
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2.61

2.62

“s” polarization

“p” polarization
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Fresnel equations: reflection and 
transmission coefficients

45

2.66

2.67

“s” polarization

“p” polarization

2.61

2.62

In terms of the indices of refraction for 

an interface between two dielectrics: 1 2 0µ µ µ= =

0 0
1

1 0 1

1
Z

n

µ µ
ε ε

= =

1 2

2 1

1

2 1

2

r
s

i s

t
s

i s

n n
r

n n

n
t

n n

  −= =  + 
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E

E

2 1

1 2

1

1 2

2

r
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Normal incidence
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Fresnel equations: air / perfect conductor interface

46
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“Impedance matching”

47

Normal incidence
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Energy transport

48

How much energy (intensity) is reflected?

n̂ˆ

ˆ
rr

i i

I
R

I

S n

S n

⋅
= =

⋅

Recall: Z = −
H

E

 2

2ˆ

ˆ
r r

i i

R r
⋅

= = =
⋅

S n

S n

E

E
(2.74)
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z
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H i
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Energy transport

49

How much energy (intensity) is transmitted?

ˆ

ˆ
tt

i i

I
T

I

S n

S n

⋅
= =

⋅

Recall: Z = −
H

E

(2.77)
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21 1

2 2
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t t t t
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Energy conservation

50
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Reflection coefficient: amplitude and phase for an 
air/glass interface

51

0 20 40 60 80
0.0

0.2

0.4
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1.0

θi (°)
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p
θB

0 20 40 60 80

0

50

100

150

θi (°)

s

p

θB

n1 = 1

n2 = 1.5

n1 < n2

θB = arctan
n2

n1

, Rs pr r ∈

µ1 = µ2 = µ0

Reflection coefficient: amplitude and phase for a 
glass/air interface

52

0 20 40 60 80
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0.4

0.6

0.8

1.0

θ i (°)

s

p

θB
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θi (°)

s

p

θB

θcs

p

n1 = 1.5

n2 = 1

180

n1 > n2

θB = arctan
n2

n1

, Cs pr r ∈

θc = arcsin
n2

n1

µ1 = µ2 = µ0

-180

0
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Total internal reflection: evanescent waves

53

µ1 = µ2 = µ0

i cθ θ>

n1 > n2

n1,µ0

n2 ,µ0

x

z

n̂

k i kr

θ i

θr
ktz = iκ

Evanescent wave: propagates in the x-direction, decays 
exponentially in the z-direction

Frustrated total internal
refraction

54

n1

n1<n2

< λ

Ι

z

z

n2
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Scanning Near-Field Optical Microscope 
(SNOM): Effet tunnel optique

55

http://iramis.cea.fr

This is a topographic picture showing a Scanning Near-Field
Optical Microscopy (SNOM) image of a sub-micrometric
triangular pattern of holes drilled on polymethyl methacrylate
(PMMA) by electron beam lithography and wet etching,
performed in the Materials and Microsystems Laboratory.

http://www.azonano.com

6 µm

Lecture 2: Fresnel’s equations and 
applications, geometrical optics

Goals today

• Applications of Fresnel’s equations: Fabry-

Perot etalon, Bragg mirror

• Relation between geometrical and wave

optics: the eikonal equation

• Matrix Optics (geometrical optics)
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Fabry-Perot interferometer

57

1

n
θt

θ iθ i

1

r
t

r '

r 'r '

r 'r '
t ' t '

t ' t '

d

t '

r ' : transmission and reflection coefficients,   n1>n2

n1<n2r

t '

: transmission and reflection coefficients,   t

,

,

Fabry-Perot: phase difference?

58

1

n
θt

θ iθ i

1

r
t

r '

r 'r '

r 'r '
t ' t '

t ' t '

d l

a

s
t '

θ i

sin sini tnθ θ=Recall:
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Fabry-Perot interferometer

59

1

n
θt

θiθ i

1

r
t

r '

r 'r '

r 'r '
t ' t '

t ' t '

d l

a

s
t '

θi

Stokes relations

60

Time reversal
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Stokes relations

61

r

t

tt'
1

= t
'tr

Lecture notes p.26

r

rt

rr

+

Fabry Perot interferometer

62

21
t i i

tt

r e
φ∆

′
=

′−
E E (2.92)

 2

2

1

0

1 1

r tt

tr rt

r r

tt r R

′+ =
′ + =

′= −
′ = − = −

(2.93)-(2.96)

 ( )
( )

2 2

2 2

1

1 4 sin
2

t t

i i

RI

I
R R

E

E φ
−

= = ∆− +

Resonance?
 

2 cos
t

n d
c

ωφ θ∆ =

1

nd

1
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Fabry-Perot interferometer

63

Finesse:

2(m−1)π 2mπ 2(m+1)π

R= 0.1

R= 0.5

R= 0.9

2
1

1

0.25 for 3

n
R

n

n

− =  + 

= =

Highly reflective mirror
Metallic mirror: R ~ 99 %. Can we do better? 

Try a dielectric thin film stack!

n2

n1

r02 = 1− n2

1+ n2

r21 = n2 − n1

n2 + n1 r12 = n1 − n2

n1 + n21

n2

n1

n2

n1

n2

n1

r21 = −r12

1 2 21

22
22 nn e e

π
λλ

ππ = =

Need another π phase change 

for each round trip in a layer

Layer thickness = 
e2

e1
64

4n

λ
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Geometrical vs wave optics

65

66

z
•••( )1 2 3 n

Matrix optics

1 2 1n n

A B

C D
−

  = 
 

M M M M…
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67

r(z)

z

dr/dz

z optical axis

n z( )

Matrix optics (for paraxial rays)

′r z( ) ≡ n z( ) dr

dz

Reduced slope

θ ~ θ

n z( ) : local index of refraction

R z( ) ≡
r z( )
′r z( )















Ray vector:

68

zz1 z2

r1, ′r1

r2 , ′r2

L

Matrix optics: free space propagation

( ) 0n z n=

dr1/dz

dr2/dz

′r z( ) ≡ n z( ) dr

dz

Reduced slope
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Matrix optics: free space propagation

zz1 z2

r1, ′r1

r2 , ′r2

L

( ) 0n z n=

dr1/dz

dr2/dz
1

2 1

0

r
r r L

n

′
= +

1 2r r′ ′=

70

z

Matrix optics: thin lens of focal length f in air

f

dJust before the lens:

Just after the lens:
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Matrix optics: thin lens of focal length f in air

z

f

d

f > 0 for a convergent lens

A = 1 ; C = - 1/f

Just before the lens:

Just after the lens:

72

z

R/2

Matrix optics: sphercial mirror of focal length f

R > 0 for a concave mirror
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z•••( )1 2 3 n

Matrix optics and an optical system

74

z

STABLE CAVITY!

Matrix optics and cavity stabiliy

z

UNSTABLE CAVITY!
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z

=

Mprop

Mmirror_R Mmirror_L
Mmirror_RMprop

Mmirror_L Mmirror_R

MpropMprop etc…

1 period = 1 round trip

Cavity as a series of periodic elements

RTM

Plan of attack for investigating cavity stability

76

1. Find eigenvalues of (general) round-trip matrix 
 

RTM  λ±

2. Find corresponding eigenvectors
 

+r
 

−r,

3. Express initial ray in terms of these eigenvectors
 

0r

4. Find an expression for  
nr in terms of these eigenvectors and

eigenvalues and examine it.

z
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Find eigenvalues

77

1. Find eigenvalues of (general) round-trip matrix 
 

RT
M  λ±

2 1 with
2

m
A D

m mλ±
+= ± − =

Cavity stability: steps 2 to 4

78

2. Eigenvectors:
 

RT

RT

λ
λ

+ + +

− − −

=
=

M r r

M r r
3. Let

 
0 a b+ −= +r r r

4.
 

nr = ?

Condition for stability?

Recall: 
 2 1 with

2
m

A D
m mλ±

+= ± − = 1 1m− ≤ ≤
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Cavity stability

79

 2 1 with
2

m
A D

m mλ±
+= ± − = 1 1m− ≤ ≤

Let 
 

cos
2

A D θ+ =

 2cos cos 1 cos sin i
i e

θλ θ θ θ θ ±
± = ± − = ± =

 ( )0
n n n n

n RT RT a b a bλ λ+ − + + − −= = + = +r M r M r r r rRecall:

0 0cos sinin in

n e e n na b
θ θ θ θ+

−
−= + = +r r r sr

80

z

r, r’

A B

C D











Stable cavity

n n+1 n+2 n+3

0 0cos sinin in

n
e e n na b

θ θ θ θ+
−

−= + = +r r r sr
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Unstable cavity

81

1or1λ λ+ −> >  ( )0
n n n n

n RT RT a b a bλ λ+ − + + − −= = + = +r M r M r r r r

z

Let 

2 1 with
2

m
A D

m mλ±
+= ± − =

cosh
2

A D
m θ+= = ±

 2cosh cosh 1 cosh sinh e θλ θ θ θ θ ±
± = ± − = ± =

1m >

( ) ( )n n
n n

n a b a e b eθ θλ λ −
+ + − − + −= + = ± + ±r r r r r

0 0cosh sinhn n nθ θ= +r sr

82

z

r, r’

A B

C D











zr, r’

1λ± >

Unstable cavity

n n+1 n+2 n+3

1λ± < −
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Example: Cavity with two spherical mirrors

z

R1 R2

L

M = A B

C D









= 1 L

0 1











1 0

−2 / R
2

1















1 L

0 1











1 0

−2 / R
1

1















1

0 1
prop

L
M

 
=  
 

_

1 0

2
1mirror i

i
R

M

 
 =  − 
 

RT

2
m

A D+=

2 1 1 2

2 1 2 2

2 2 2 2
1 1 1

2 2 2 2
1 1

RT

L L L L
L L

R R R R

L L

R R R R

     
− − − − +     

     =    − − − − +  
  

M

1 1m− ≤ ≤

1 22 1g g≡ −
1 2

2 1 1 1
L L

R R

   
= − − −   

   

84

Example: Cavity with two spherical mirrors

z

R1 R2

L

0 ≤ g
1
g

2
≤1Stable cavity
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Fabry-Perot interferometer

85

Finesse:

2(m−1)π 2mπ 2(m+1)π

R= 0.1

R= 0.5

R= 0.9

2
1

1

0.25 for 3

n
R

n

n

− =  + 

= =

inside i
I I

π
≃
F

At resonance:

Photon lifetime in a high finesse cavity

86

Intra-cavity light

Propagating plane wave

Perfect mirror Mirror with

transmission T

Loss

Miroir

parfait

- Cavity is filled with light (resonance)
- Turn off incident beam
- At t = 0, intensity I(0) in the cavity

Time for 1 round trip in the cavity: Lcav/c
Intensity lost per round trip: T I

( ) ( )1cavI t I t
L

T
c

 + = − 
 

If the losses are low (T << 1):

1

cav cav

d
I

cT

L

I
I

dt τ
= − = − τcav: photon cavity lifetime.

It is as if the photons complete 1/T roundtrips in 
the cavity
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Cavity ring down spectroscopy

( )
cav cav

cav

1 2 3 cavlosses 1 1 1

L L

c c R R R L
τ

α
=

× − + − + − +
≃

www.picarro.com

Eikonal equation: link between Maxwell’s equation
and ray optics

88

Optical path length:

Consider the general form of a propagating wave (harmonic time 
dependence) 

[ ]exp . .Y tA i i c cωψ= − +
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Shortest time to person drowning: optical

path length

90

Maxwell’s equations

(1.5)

(1.6)

(1.7)

(1.8)

2
r

nε =
n: index of refraction

No free charges nor 

currents, simple 

media that may be 

inhomogeneous

( )r r
ε ε= r

�
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In search of the eikonal equation

91

Define:
 

0

( )
k

ψ=rS

 ( ) ( ) [ ]
( ) ( ) [ ]

0

0

, exp ( )
   (1.1, 1.2)   

, exp ( )

t ik i t

t ik i t

ω
ω

 = −


= −

E r r r

B r r r

S

S

E

B

[ ]exp . .Y tA i i c cωψ= − +Recall:

What is the eikonal?

92

• The eikonal links geometrical and wave optics

0

( )
k

r
ψ=S

[ ]exp . .Y tA i i c cωψ= − +

• Eikonal :  : spatial phase normalized by the wavevector in vacuum

( ) ( ) [ ]
( ) ( ) [ ]

0

0

, exp
   (1.

)
1, 1.2)   

, exp

( )

(

t ik i t

t ik i t

E r

r

r r

B r r

ω
ω

 = −


= −

S

S

E

B

( )  constant; r =S• surfaces of constant spatial phase, perpendicular to 
rays

 ( )ˆ ˆn= =t trS S∇ ∇• in the direction of ray trajectories and energy flow

( , , ) ( ) ( )opt
M M M M

L
d

n x y z
d

ds ds M M
s

r

′ ′→ →
′= = = −  S S Si

�

∇• Optical 

path length

• Approximation of geometrical optics:  
0 00, . .,  i e kλ → → ∞

Amplitudes vary slowly as 

compared to the phase
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In search of the eikonal equation

93

 ( ) ( ) [ ]
( ) ( ) [ ]

0

0

, exp ( )
   (1.1, 1.2)   

, exp ( )

t ik i t

t ik i t

ω
ω

 = −


= −

E r r r

B r r r

S

S

E

B

Plan of attack: substitute (1.1), (1.2) into Maxwell’s equations in order to find and expression for  ( )rS

in (1.5)

( )f f f× × + ×A A A∇ = ∇ ∇Recall:
0

c
k

ω =

 
0

0 0

ik i

i
i ic

k k

ω
ω

× + × =
× + × = =

S

S

E E B

E B
E B

∇ ∇
∇ ∇

In search of the eikonal equation

94

0

i ic
k

× + × =S
E

E B
∇ ∇

0ik iω× + × =SE E B∇ ∇

Use the approximation of geometrical optics!

Method 1:   consider λ ≪ all other dimensions, i.e.,
0 00,  kλ → → ∞

0                        (1.11)ik iω× =S E B∇

Method 2:   consider only situations where the 

amplitudes and εr vary slowly with distance as 

compared to the phase

0                        (1.11)ik iω× =S E B∇
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In search of the eikonal equation
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 ( ) ( ) [ ]
( ) ( ) [ ]

0

0

, exp ( )
   (1.1, 1.2)   

, exp ( )

t ik i t

t ik i t

ω
ω

 = −


= −

E r r r

B r r r

S

S

E

B

Similary, substitute 

into

(1.5)

(1.6)

(1.7)

(1.8)

And using the same approximation (geometrical optics) get:

0

0 0 0

                  (1.11)

(1.12)
r

ik i

ik i

ω
ωε ε µ

× =
× = −
S

S

E B

B E    

∇
∇

0                       (1.13)

0                       (1.14)

⋅ =
⋅ =
S

S

B

E

∇
∇

In search of the eikonal equation
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0

0 0 0

                  (1.11)

(1.12)
r

ik i

ik i

ω
ωε ε µ

× =
× = −
S

S

E B

B E    

∇
∇

0                       (1.13)

0                       (1.14)

⋅ =
⋅ =
S

S

B

E

∇
∇

Next, eliminate  B from 1.12

( ) ( ) ( )× × = ⋅ − ⋅A B C B A C C A BRecall:
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Eikonal equation

97

( )2 2
r

nε= = rS∇

( )ˆ ˆn= =t trS S∇ ∇

t̂ S∇

(1.15)

: unit vector in the direction of

(1.16)

t̂
wave fronts=> planes of constant phase

tangent unit vectort̂

The concept of a light ray

98

Recall: *

0

2
eS

µ
 = × E Bℝ 0                   (1.11)ik iω× =S E B∇

( ) ( ) ( )× × = ⋅ − ⋅A B C B A C C A BRecall:

0

c
k

ω =

( ) 2*0

0 0

2 2k

c
S

µ ω µ
 = × × =  

S SE E E∇ ∇ (1.19)
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dispersive media

99

Lecture 3: Pulse propagation in

Goals for lecture 3

• Dispersion

100

– Where does it come from?

– What are its consequences?

• Propagation of pulses or wave packets in dispersive 
media

If we accept the electromagnetic theory of light, there is 

nothing left but to look for the cause of dispersion in the 

molecules of the medium itself.

Hendrik Lorentz (1878)

Nobel prize (1902)
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Introduction

101

• Dispersion occurs since

a medium cannot respond instantaneously

to an electromagnetic wave.

• The response of a material to an EM field must be 

causal

frequency dispersion and energy dissipation

i.e., it can depend on values of the field 

that existed in the  past

but not on those that will exist in the future!

• Consequence: 

are intimately related.

Convolution: 

102

f t( )∗g t( )  t( ) = dτ f t −τ( )g τ( )
−∞

∞



g(t): excitation

t

g(t)

t

f (t)

f(t): (non-instantaneous) impulse response function of the system
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Convolution: excitation + 
system response (linear

system)

103

f t( )∗g t( )  t( ) = dτ f t −τ( )g τ( )
−∞

∞



τ

g(τ )

t

f ∗ g[ ] t( )

τ

f (t − τ )

t

What is the origin of dispersion?

104

Let t tτ ′≡ −

 

( ) ( ) ( )' ' ', ,t dt t t t

t
σ

−∞

= −j r E r (4.1)

 ( ) 0 for σ τ τ→ → −∞ Distant past has no influence.

Build causality into the conductivity; define

 ( ) 0 for 0σ τ τ= <

 

( ) ( ) ( )' ' ', ,t dt t t tσ
−∞

= −
∞
j r E r

Causality: can only depend on 

values of the field that existed 

in the  past

Example: Conductivity  σ=j E
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Fourier analysis

105

https://commons.wikimedia.org/wiki/File:Fourier_transform_time_and_frequency_domains.gif

Fourier analysis for non-periodic functions

106

1
( ) ( )  

2

( ) ( )  

ikx

ikx

f x f k e dk

f k f x e dx

π

∞

−∞
∞

−

−∞

=

=



 Fourier 
transformations

Note: signs and position of 1/(2π) is a matter of convention.

( ) ( ) i t
f dt f t e

ωω
∞

−∞

= 

( ) ( )1

2
i t

f t d f e
ωω ω

π

∞
−

−∞

= 
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Fourier transforms

107

A physical interpretation

|F(ω)|2 is the power spectral density of the function F(t), i.e., it
tells us how much power is present at each frequency

Some properties of Fourier transforms

108

Derivatives and the Fourier transform

Fourier transform of a real function:

( ) ( ) ( ) *
F t F Fω ω∈ − =   ℝ
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Some properties of Fourier transforms

109

F t( ) = exp − t 2

2σ 2









 F ω( ) = 2πσ exp −ω 2σ 2

2











d

dt











n

F t( ) −iω( )n
F ω( )

t nF t( ) −i
d

dω










n

F ω( )

F at( ) 1

a
F ω / a( )

F t + t0( ) e−iωt0 F ω( )

eiω0tF t( ) F ω +ω0( )

Some properties of Fourier transforms

110

Widths

Suppose that for F(t) and F(ω) : ( ) ( )0 0F t dt and F dω ω
∞ ∞

−∞ −∞

= = 

Suppose that F(t) is normalized: F t( ) 2

−∞

∞

 dt =1

Then: ∆t∆ω ≥ π

t ω

The larger F(t) the 
thinner F(ω) and vice 
versa

PARSEVAL-PLANCHEREL theorem:

F1 t( )
−∞

∞

 F2 t( ) 
*
dt = 1

2π( )2
F1 ω( )

−∞

∞

 F2 ω( ) 
*
dω
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Reciprocal spaces

111

Miguel Covarrubias,
http://www.loc.gov/pictures/item
/acd1996002431/PP/ 

Time

Position

(temporal) frequency

spatial frequency
I think you are my

reciprocal space

Dirac delta function

112

( )
1

( )  
2

i tt e dωδ ω
π

∞
−

−∞

= 

δ t( ) = lim
ε→0

t2ε

1/ε
Area = 1

0   t 0
( )

  t 0
tδ

≠
= ∞ =

( ) 1t dtδ
∞

−∞

=

( ) ( )t tδ δ= −

0 0

( ) ( ) (0)

( ) ( ) ( )

t f t dt f

t t f t dt f t

δ

δ

∞

−∞
∞

−∞

=

− =




Fourier transform:

1 ( )  i t
t e dt

ωδ
∞

−∞

= 
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Recall: Fourier transforms and the convolution 
integral

113

f ω( ) = dt f t( )eiωt

−∞

∞

f t( ) = 1

2π
dt f ω( )e− iωt

−∞

∞



f t( )∗g t( )  t( ) = dτ f t −τ( )g τ( )
−∞

∞

 ( ) ( )f gω ω⋅

In general:

“The Fourier transform of a convolution integral is equal to the product of 

the Fourier transforms of the individual functions”.

f ω( )∗ g ω( )  ω( ) = d ′ω f ω − ′ω( )g ′ω( )
−∞

∞

( ) ( )2 f t g tπ ⋅

Fourier transform pairs

114

( )ˆ ( ) i t
t e dt

ωσ ω σ
∞

−∞

=  ( ) 1
ˆ ( )

2
i t

t e d
ωσ σ ω ω

π

∞
−

−∞

= 

( ) ( )1 ˆ, ,
2

i tt e dωω ω
π

∞
−

−∞

= j r j r

( ) ( )1 ˆ, ,
2

i tt e dωω ω
π

∞
−

−∞

= E r E r
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Non-instantaneous response of a dispersive medium

115

( ) ( ) ( )' ' ', ,t dt t t tσ
−∞

= −
∞
j r E r

( ) ( ) ( )ˆ, ,ω σ ω ω=j r E r

Fourier transform

( )ˆ ( ) ( )iσ ω σ ω σ ω′ ′′= +

What can you say about the symmetry of the 
real and imaginary parts of  σ?

Properties of the real and imaginary
contributions

116

Recall: is real ( )tσ ( ) ( )*t tσ σ=

From the definition of the Fourier transform:

( ) [ ] ( )*1
( ) ( )  

2
i t

t i e d t
ωσ σ ω σ ω ω σ

π

∞
−

−∞

′ ′′= + =

Change ω  to − ω in the second integral and conclude! 

[ ]1
( ) ( )  

2
i t

i e d
ωσ ω σ ω ω

π

∞
+

−∞

′ ′′= −
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Non-instantaneous response of a dispersive medium

117

( ) ( ) ( ) ( )
( )

*
 even

ˆ ˆ
 odd

σ ω
σ τ σ ω σ ω

σ ω

′∈  − =   ′′
ℝ

Same conclusions for                                         : 
All are complex and depend on the frequency.

σ̂ ω( ), µ̂ ω( ), χ̂ ω( ), ε̂ ω( )

And what if dispersion didn’t exist???

118

σ̂ ω( ) ≡ σ̂
What happens if the response is the same for all frequences?

σ t( ) = 1

2π
σ̂

−∞

∞

 e− iωtdω

(inverse) Fourier transform

i.e.,

δ t( ) = 1

2π
dω e− iω t

−∞

∞

Recall:

INSTANTANEOUS RESPONSE OF THE SYSTEM

Instantaneous

response--

impossible!  

Frequency

dispersion 

MUST exist
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Next: Classical models for frequency dispersion: the 
Lorentz model

119

“Nucleus”

“electron”

Basic idea: the movement of the (bound) electrons in a material

0 , ω Γ
is that of a damped, driven, simple harmonic oscillator

0ω resonance frequency

Γ damping constant

0

2

2

2

d

d
m mm e

d

dt t
ω+ + = −Γ rr

r E

And for “free” electrons? No spring! Drude model for metals!!!

r: displacement from equilibrium

m: electron mass

Lorentz Model

0

2

2

2

d

d
m mm e

d

dt t
ω+ + = −Γ rr

r E

120

Monochromatic field

Expression for displacement:

Dipole moment:

Consider a steady state regime:

(4.45)

(4.46)

(4.47)

Plug (4.46) and (4.47) in (4.45) and solve for !R
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Lorentz Model

121

Dipole moment:

Polarization (electric dipole moment per unit volume):

( )
2

2 2
0

/
( ) exp c.c.

ne m
n t i t

i
ω

ω ω ω
= = − +

− − Γ
P p E n: number of electrons per 

unit volume

Recall:
0ε ε= + =D E P E Use (4.49) in this expression

(4.49)

Let 
2

2

0

p

ne

m
ω

ε
=

Solve for ( ) ( )2

0

ˆ
n̂

ε ω
ω

ε
=

This n is the 

index of 

refraction!

n̂2 ω( ) =
ε̂ ω( )

ε0

= 1+
ω p

2

ω 0
2 − ω 2 − iωΓ

Lorentz model

122

Complex index of 
refraction

n̂2 ω( ) =
ε̂ ω( )

ε0

= 1+
ω p

2

ω 0
2 −ω 2 − iωΓ

′ε
ε0

−1

′′ε
ε0

′ε ω( )
ε0

= 1+
ω p

2 ω 0
2 −ω 2( )

ω 0
2 −ω 2( )2

+ω 2Γ2

′′ε ω( )
ε0

=
ω p

2ωΓ

ω 0
2 −ω 2( )2

+ω 2Γ2

Almost Lorentzian if Γ<< ω0

ω p

2 = ne2

ε0m

Real and imaginary parts
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Frequency dependence of the permittivity

Wikipedia

123

Dielectrics

Comparison of the Lorentz model with data

Silicon

Vibrational
excitations (IR)

Electronic
excitations (UV)

Visible

124
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Frequency dispersion and energy dissipation

125

Poynting
theorem

D r,ω( ) = ε̂ ω( )E r,ω( )
B r,ω( ) = µ̂ ω( )H r,ω( )

+

( ) ( )3 3 3
EM

V V V

d r d r u t d r Q t
t t t

∂ ∂ ∂ ⋅ + ⋅ = + ∂ ∂ ∂ 
  

D B
E H

Lecture notes pp. 76-78 
or Zangwill p. 627-629

with

uEM t( ) = 1

2

∂
∂ω

ω ′ε ω( )  E t( ) 2
+ ∂

∂ω
ω ′µ ω( )  H t( ) 2




ü
ý
þ

Q t( ) = ω ′′ε ω( ) E t( ) 2
+ ′′µ ω( ) H t( ) 2













Frequency dispersion and energy dissipation

126

with

uEM t( ) = 1

2

∂
∂ω

ω ′ε ω( )  E t( ) 2
+ ∂

∂ω
ω ′µ ω( )  H t( ) 2




ü
ý
þ

Q t( ) = ω ′′ε ω( ) E t( ) 2
+ ′′µ ω( ) H t( ) 2













( ) ( )3 3 3
EM

V V V

d r d r u t d r Q t
t t t

∂ ∂ ∂ ⋅ + ⋅ = + ∂ ∂ ∂ 
  

D B
E H

( )EMu t

( )Q t

For quasi-monochromatic fields (i.e., strongly peaked around a single 
frequency—wave packet).

is the total energy per unit volume (transiently) stored in the medium

is the rate of energy absorption (per unit volume)
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The consequences of causality: 
Kramers-Kronig relations

127

In order for causality to hold:

χ(t) = Θ(t)χ(t)

0

1

t

Θ(t)

Heaviside function

χ̂(ω ) = 1

2π
Θ̂(ω )∗ χ̂(ω )

ˆ ( ) ( ) p.v.
iω πδ ω
ω

Θ = +

Recall: ( )0 0;    1ε χ ε ε χ= = +P E

( ) ( ) ( )0
' ' ', ,t dt t t tε χ

∞

−∞

= −P r E r

 ( ) 0  for 0χ τ τ= <with

We can write

Link between real and 
imaginary parts

Kramers-Kronig relations

128

Cauchy principal value

x

f (x)
lim
ε→0+

f x( )dx
a

c−ε

 = −∞

c b

a

lim
ε→0+

f x( )dx
c+ε

b

 = +∞

Cauchy principal value integral (if finite)

( ) ( )1 1
p.v. : p.v.

b b

a a

g x
g x dx dx

x x x
= P



65

Interpretation of the Kramers-Kronig relations

129

If           is not constant anywhere,            is non-zero everywhere'( )ε ω ''( )ε ω
i.e., frequency dispersion in any interval of frequency implies that 

non-zero absorption occurs in every interval of frequency

Conversely, frequency dispersion occurs everywhere in frequency 

if absorption occurs anywhere in frequency.

Why is there this intimate relation between 
dispersion and energy dissipation?

( )0 1ε ε χ= +

130Zangwill, p.651

t

Frequency dispersion, absorption and causality

Wave packet

in causal 

medium

Assume 

material

absorbs only for 

0ω ω=

0ω ω=

Absorbed

Result: signal 

before t=0 !!!
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131

t

Short light pulses and consequences of dispersion

I think you are my

reciprocal space

ω

Pulse as a function of time

Frequency space

Pulse propagation

132

n(ω ) ???
z= 0 z

envelope

ω

I

ωp

Pulse as a function of time

( )( 0, ) (c.c. c.c.,( 0, 0) )pi t
E z tz t te E z

ω− +== = + = = +E
�	
	�

Frequency space

Central 

frequency

Analytic signal
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Pulse propagation

133

Example: Gaussian envelope
2

0 2
0

exp
2

( 0, )
t

E
t

z t
 

= − ∆
=


E

2

0 2
0

( ) ( 0, p) ex
2

pi tt
eE Ez

t
t

ω+ − 
= − 

 
=  ∆

( )c ( .( 0,0 ) )( , ) .c. 0, c.cpi t
tE z t Ez e zt

ω +− == + +== =E

Fourier transform

n(ω ) ???
z= 0 z

Pulse propagation
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Example: Gaussian envelope
2

0 2
0

exp
2

( 0, )
t

E
t

z t
 

= − ∆
=


E

2

0 2
0

( ) ( 0, p) ex
2

pi tt
eE Ez

t
t

ω+ − 
= − 

 
=  ∆

( )
0

(

2

)

2

( 0
2

, e) ˆ xp
p

E Ez
ω ω

ω
ω+

 −
 = −
 ∆
 

=


FT

∆ω = 1 ∆t0

Ê0 = 2π ∆t0E0

( )( 0, ) (c.c. c.c.,( 0, 0) )pi t
E z tz t te E z

ω− +== = + = = +
�	
	�
E
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Pulse propagation

135

( ) ( )1
( 0, ) ( 0, )

2
i t

E z t d e E z
ωω ω

π

∞
+ − +

−∞

= = =

Each component propagates with its own wave number

( )( ) ( )1
( , ) ( 0, )

2
i t ik z

E Ez e et d z
ω ωω ω

π

∞
+ − +

−∞

= =

As we will see when we study diffraction, we can write an expression for the pulse at 
the entrance to the dispersive medium as a sum of monochromatic plane waves

( ) ( )k n
c

ωω ω=

Assume wave packet is sharply peaked at  p
ω

Taylor’s expansion of ( )k ω around  
p

ω

Dispersion:

(to second order)

(4.73) 

Pulse propagation

136

Dispersion:

1/ vg
β2

Group velocity
dispersion

g

c c
v

dn dn
n n

d d
ω λ

ω λ

= =
+ −

Group velocity

( ) ( )k n
c

ωω ω=

2

2 2

p

d k

d ω

β
ω

=

( )( ) ( )1
( , ) ( 0, )

2
i t ik z

E Ez e et d z
ω ωω ω

π

∞
+ − +

−∞

= = (4.73) 

(4.76) 
(4.77) 

(4.75) 

Substitute (4.75-4.77) in (4.73), evaluate integral!!! 
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Propagation of a Gaussian pulse

137

( ) ( )
( )

( )
( )

2 2

g g( ) 2
0 22 2

( , ) exp exp
2 2

p pi t k z t z v t z v
E z t E e i z

t z t z

ω β ω− −+
   − −
   ∝ × − − ∆
   ∆ ∆
   

( )2 2 2 2 2
0 2t z t zω β∆ = ∆ + ∆

vϕ =
ω p

kp

β2 ≠ 0: pulse spreading

Envelope propagates at 
the group velocity vg

β2 ≠ 0: chirp

2

0 2
0

( ) ( 0, p) ex
2

pi tt
eE Ez

t
t

ω+ − 
= − 

 
=  ∆

Propagation in a dispersive medium                     Phase velocity
( )p p

k k ω≡

( )( ) ( )1
( , ) ( 0, )

2
i t ik z

E Ez e et d z
ω ωω ω

π

∞
+ − +

−∞

= =

2

2 2

p

d k

d ω

β
ω

=( )
0

(

2

)

2

( 0
2

, e) ˆ xp
p

E Ez
ω ω

ω
ω+

 −
 = −
 ∆
 

=
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Phase and group velocities

( )
p

p p

c
v

k n
ϕ

ω
ω

= =

vg = c

n+ ω dn

dω

✔ Phase velocity:

✔ Group velocity:
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Normal dispersion

139

′ε
ε0

−1

′′ε
ε0 0

dn

dω
>

g

c
v c

dn
n

d
ω

ω

= <
+

140

Normal dispersion and slow light

Kramers-Kronig relations: link between dispersion and absorption

Peak in transmission: 

g

c
v c

dn
n

d
ω

ω

=
+

≪

∆n
’ 

=
 n

’ 
-

1



Normal dispersion--
positive slope



Slow light
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Normal dispersion and slow light

141

Anomolous dispersion and fast light

142

g or even 0
c

v c
dn

n
d

ω
ω

= > <
+

∆n
’ 

=
 n

’ 
-

1

Kramers-Kronig relations: link between dispersion and absorption

Peak in absorption: 



Anomolous dispersion--
negative slope



Fast light
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Anomolous dispersion and fast light (vg > c)

143

 What about causality?
 Can you transmit 

information faster
than c? 

Anomolous dispersion and fast light (vg > c)

144

What about causality?

At what moment can you
distinguish a 1 from a 0?

A step edge contains
a multitude of 
frequencies!

∆n
’ 

=
 n

’ 
-

1
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Propagation of a Gaussian pulse

145

E(+ )(z,t) ∝ E0e
− i ω pt−kpz( ) × exp −

t − z vg( )2

2∆t z( )2














exp −i

t − z vg( )2

2∆t z( )2 β2∆ω 2z














∆t z( )2 = ∆t0
2 + ∆ω 2β2

2z2

vϕ =
ω p

kp

β2 ≠ 0: pulse spreading

Envelop propagates at 
the group velocity vg

β2 ≠ 0: chirp

Phase velocity

Consequences of β2 ≠ 0:

• Pulse spreads out in time

• Pulse becomes “chirped”: instantaneous frequency 

varies linearly with time

Chirp: instantaneous frequency varies linearly with time

146

β2 > 0: high frequencies propagate more slowly than the low frequencies

Time

Front 

Back

Time
n(ω )

Front 

Back

E(+ )(z,t) ∝ E0e
− i ω pt−kpz( ) × exp −

t − z vg( )2

2∆t z( )2














exp −i

t − z vg( )2

2∆t z( )2 β2∆ω 2z














( )22( ) ( ) pi t btat
E t e e

ω− ++ −∝
2

tot pt btφ ω= +

Instantaneous frequency: 2tot

i p

d
bt

dt

φω ω≡ = +

Recall:

β2
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Pulse spreading as a function of the initial pulse 
width

147

Δt0 = 10 fs

Δt0 = 100 fs

β2 = 100 fs2/mm

Δ
t

(f
s)

z (mm)

Time

Front 

Back

Time
n(ω )

The shorter the pulse, the larger the spectrum, the more it will spread!!!

Front 

Back

2
( )

0 2
0

( 0, ) exp pi tt
E z t E e

t

ω−+  
= = − ∆ 

∆t z( )2 = ∆t0
2 + ∆ω 2β2

2z2

( ) ( )
( )

( )
( )

2 2

g g( ) 2
0 22 2

( , ) exp exp
2 2

p pi t k z t z v t z v
E z t E e i z

t z t z

ω β ω− −+
   − −
   ∝ × − − ∆
   ∆ ∆
   

Δt0 = 50 fs

β2 = 100 fs2/mm

Δ
t

(f
s)

z (mm)

C = 3

β2 = -100 fs2/mm

Pulse spreading, pulse compression…

148

Time

Front 

Back

Time
n(ω )

More in tutorial!

Front 

Back

E(+ )(z= 0,t) = E0 exp −1+ iC

2

t 2

∆t0
2









e

− iω pt

Initial chirp

Pulse 

width 

decrease!
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149

Chirped pulse amplification: 
2018 Nobel Prize in Physics

Why do you need Chirped Pulse 

Amplification?

Too high power in gain medium! Plasma filamentation!

150

Chirped pulse amplification: 
2018 Nobel Prize in Physics
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151

The information highway = optical fibres

= dispersive medium!

Summary

152

 Dispersion: optical response depends on frequency of light

 Speed(s) of light in matter: can have 0 < vg < c, vg > c, vg < 0.

Speed of signal is always in agreement with special relativity.

 Origin of dispersion: the material cannot respond

instantaneously!
 Consequences of dispersion:

 light pulse « shaping » (most often spreading…)
 Energy dissipation in medium
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153https://en.wikipedia.org/wiki/Diffraction

https://en.wikipedia.org/wiki/Huygens%E2%

80%93Fresnel_principle

Knowing the distribution of the electric field on a plane 

at z=0 (e.g. on an aperture), can we find an expression 

for the field at a distance z>0?

Lecture 4: Diffraction

Why study diffraction?

154

Knowing the distribution of the electric field on a 
plane at z=0 can we find an expression for the field 

at a distance z>0?

?
z

z=0

In principle, quite complicated: partial differential equation, boundary 
conditions, vector fields…
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155

Solution!

Joseph Fourier (1768-1830)

Goals for the rest of today’s class:

• Express an arbitrary wave as a sum of plane waves

• Spatial frequencies

• Fraunhofer (far-field) diffraction

156

The electric field is a function of

 

( ) ( ), , i t
tE dt E e

ωω
∞

−∞

= r r (3.2)

 

( ) ( )1
, ,

2
i t

E d E et
ωω ω

π

∞
−

−∞

= r r (3.3)

 ( ) ( ) ( )
, , , , , , x yk x k y

y

i

x
k yE z t dxdyE z t ek x

− += 

 

( )
( )

( ) ( )

2

1
, , , , , ,

2

x y

x

i k x k y

x y y
E z t dk dk E z ty ex k k

π
+= 

( ),E tr

The electric field and its
Fourier transform

Fourier transform with

respect to time / angular

frequency

Fourier transform with

respect to position / spatial 

frequency
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157

Diffraction and propagation of a light beam: 
How will we get to our goal?

Easy!!

Difficult!!

FT FT-1

Wave propagation equation

158

• Consider one component of the electric field, i.e., a scalar 
function (good approx. when not near aperture).

Recall:

Maxwell’s equations in vacuum (no free 

charges, no free currents)

                (1)
t

∂× = −
∂
B

E∇

0 0     (2)
t

µ ε ∂× =
∂
E

B∇

0    (3)⋅ =B∇
0    (4)⋅ =E∇

 

( ) ( )2
2

2 2

,1
, 0

E t
E t

c t

∂
− =

∂
r

r∇ (3.1)

( ) ( ) 2× × = ⋅ −E E E∇ ∇ ∇ ∇ ∇
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Helmholtz equation

159

 

( ) ( )2
2

2 2

,1
, 0

E t
E t

c t

∂
− =

∂
r

r∇ (3.1)

Express  as a Fourier series or transform with

respect to time / angular frequency

 ( ),E tr

 

( ) ( )1
, ,

2
i tE d E et ωω ω

π

∞
−

−∞

= r r (3.3)

Plug (3.3) into (3.1)

 

( ) ( )
2

2

2
, , 0E E

c
ωωω∇ + =r r (3.4)

Towards a propagating wave as a sum of plane waves

160

( )
( )

( ) ( )

2

1
, , , , , ,

2

x y

x

i k x k y

x yyE dy kx z k dk E z ekω ω
π

+=  (3.5)

 

( ) ( )
2

2

2
, , 0E E

c
ωωω∇ + =r r (3.4)

Plug (3.5) into (3.4)! Recall: 

2 2 2
2

2 2 2
x y z

∂ ∂ ∂
∇ = + +

∂ ∂ ∂
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Towards a propagating wave as a sum of 
plane waves

161

(3.6)
2

2

2
2 2

2
( , , , ) ( , , , ) 0x y x y x yz

E k k z k k E k k z
c

ωω ω∂
∂

  
+ − − =  
  

2 2
2 2 2 2

2 2

2
2 2

2

if

otherwise

x y x y

z

x y

k k k k
c c

k

i k k
c

ω ω

ω


− − > +

= 
 + −


(3.8)

Towards a propagating wave as a sum of plane waves

162

( ) ( ), , 0, , ,
x y x y

E k k A k kω ω=

 

( )
2

( )1
, , , ( , , , )

2
x yi k x k y

x y x y
E x y z dk dk E k k z eω ω

π
+ =  

 
Recall: (3.5)

 

( )
( )

( ) ( )
2

1
, , , , , 0,

2

x y zi k x k y k z

x y x yE x y z dk dk E k k z eω ω
π

+ += = (3.11)

 2
2 2 2

2x y zk k k
c

ω+ + = (dispersion relation)  (3.12)

0z =(3.7b) for 

Recall: ( ) ( ), , , , , zik z

x y x y
E k k z A k k eω ω= (3.7b) 



82

Propagation and spatial frequencies

163

 ( ) ( ) ( )
, , 0, , , 0, x yi k x k y

x yE k k z dxdyE x y z eω ω − += = = (3.13)

 

( )
( )

( ) ( )
2

1
, , , , , 0,

2

x y zi k x k y k z

x y x yE x y z dk dk E k k z eω ω
π

+ += = (3.11)

?
zz=0

 2
2 2 2

2x y zk k k
c

ω+ + =

164

Concept of spatial frequencies

Which grating has the higher spatial frequency components?

y

x
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Concept of spatial frequencies

165

E kx( ) 2

fx

xx

E kx( ) 2

fx

Which image has the most spatial frequency components?

Spatial frequencies and propagation direction

166

k

k=ω/c

kz

θ
k||

 

( )
( )

( ) ( )
2

1
, , , , , 0,

2

x y zi k x k y k z

x y x yE x y z dk dk E k k z eω ω
π

+ += =

 2
2 2 2

2x y zk k k
c

ω+ + =

• After propagation, the resulting field may be expressed as a 
sum (integral) of plane waves with wavevectors

• Each plane wave in the sum corresponds to a specific spatial frequency

• Each plane wave in the sum corresponds to a specific propagation direction!
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Spatial frequencies and propagation direction

167

z

z=0

( ) ( ) ( )
, , 0, , , 0, x yi k x k y

x y
E k k z dxdyE x y z eω ω − += = =

( )
( )

( ) ( )
2

1
, , , , , 0,

2

x y zi k x k y k z

x y x y
E x y z dk dk E k k z eω ω

π
+ += =

Divergence

168

From the properties of Fourier transform pairs: 1xx k∆ ∆ >

kkx

kz

θ

x

λθ∆ ≈
∆
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Propagation as a low-pass filter

169

k

k=ω/c

kz

θ
k||

2 2
2 2 2 2

2 2

2
2 2

2

if

otherwise

x y x y

z

x y

k k k k
c c

k

i k k
c

ω ω

ω


− − > +

= 
 + −


 

( )
( )

( ) ( )
2

1
, , , , , 0,

2

x y zi k x k y k z

x y x yE x y z dk dk E k k z eω ω
π

+ += =

x

 2
2 2 2

2x y zk k k
c

ω+ + =

170

Propagation and spatial frequencies
z= 0
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z λ≫

171

Propagation and spatial frequencies

Scanning Near-Field Optical Microscope 
(SNOM):

172

https://www.photonics.com/Articles/NSOM_D

iscovering_New_Worlds/a25127

Change in resolution as a 

function of tip-sample

distance
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Propagation as a low-pass filter

173

k

k=ω/c

kz

θ
k||

2 2
2 2 2 2

2 2

2
2 2

2

if

otherwise

x y x y

z

x y

k k k k
c c

k

i k k
c

ω ω

ω


− − > +

= 
 + −


 

( )
( )

( ) ( )
2

1
, , , , , 0,

2

x y zi k x k y k z

x y x yE x y z dk dk E k k z eω ω
π

+ += =

x

 2
2 2 2

2x y zk k k
c

ω+ + =

Summary: resolution and spatial frequencies

174
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Exact solution to our problem:

175

 

( )
( )

( ) ( )
2

1
, , , , , 0,

2

x y zi k x k y k z

x y x y
E x y z dk dk E k k z eω ω

π
+ += =

 ( ) ( ) ( )
, , 0, , , 0, x yi k x k y

x yE k k z dxdyE x y z eω ω − += = =

Knowing the distribution of the electric 

field on a plane at z=0, can we find an 

expression for the field at a distance z>0?

…but still a bit complicated to calculate!

Fraunhofer or far-field diffraction

176

• starting with the Huygens-Fresnel principle of secondary wavelets

• using the stationary phase approximation

Two methods:
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Huygens-Fresnel principle

177

http://www.fisica.uniud.it/irdis/Ottica/Diffrazi

one_guida/DiffrazioneGuida.htm

Every point on a primary wavefront serves as the source of spherical secondary 

wavelets such that the primary wavefront at some later time is the envelope of 

these wavelets.  The wavelets advance with a speed and frequency equal to those 
of the primary wave. 

Fraunhofer approximation

178

(x,y,z)

z

y′

x′

r ′
r

P

• Area dS assumed covered with coherent point sources; dS << λ ;

• Source is located at z=0

• dS assumed to emit a spherical wave

• EA is the source strength per unit area

ikr

A

i e
dE dS

rλ

′

≈ −
′

E

Fraunhofer condition:

Point of observation at a distance >> size of source

( ), , 0,E x y ω′ ′=
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Fraunhofer approximation

179

(x,y,z)

z

y′

x′

r ′
r

P

ikr

A

i e
dE dS

rλ

′

≈ −
′

E

( ) ( )
1/22 2 2r x x y y z ′ ′ ′= − + − +

 

Fraunhofer approximation
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(x,y,z)

z

y′

x′

r ′
r

P

ikr

A

i e
dE dS

rλ

′

≈ −
′

E

2
1

xx yy
r z

z

′ ′+ ′ ≈ − 
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Hecht Optics

(x,y,z)

r

z
x

Geometry
y′

x′

r′

Fraunhofer approximation

182

(x,y,z)

z

y′

x′

r ′
r

P

The field distribution in the Fraunhofer diffraction 

pattern is proportional to the Fourier transform of the 

field distribution across the aperture!!!

( ) ( ), , , , , 0, x y

ikz
ik x ik y

aperture

i e
E x y z dx dy E x y e

z
ω ω

λ
′ ′− −−  ′ ′ ′ ′≈  
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Far field pattern:  1-D periodic grating

183

https://www.researchgate.net/figure/1D-diffraction-pattern-of-

CLC-grating-probed-by-He-Ne-laser_fig3_254248651

 ( ) 2

, , 0,
x y

E k k z ω=

184

Method 2: Stationary phase approximation

( )
( )

( ) ( )
2

1
, , , , , 0,

2

x y zi k x k y k z

x y x y
E x y z dk dk E k k z eω ω

π
+ += =

22
2 2 2

2 2
1

yx
z x y

kk
k k k k k

k k
= − − = − −

22
2 2 2

2 2

22

2 2
i

1

1
2 2

f  ,

yx
z x y

yx
x y

kk

k

k k k k k
k k

kk
k k k

k k

= − − = − −

 
− −  

 
≃ ≪

z large

( )
2

, ,0, e ?xp
2

??x

x yx x

k
dk k k i k

z
E x

k
ω

  
− 

 
=
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Stationary phase approximation

185

( ) ( ) ( )x
b

i

a

g
I dx f x e

λλ =  λ large

Re e
iλg x( )





f x( )
x

ba
x0

If g’(x) has only one zero x0 in the interval [a,b]:

( )
2

, ,0, exp
2

y
x

x x x

k
d

z
E k ik xk

k
kω

  
−  

  


( )f x : slowly varying amplitude

g(x): rapidly varying phase

…only significant contribution to integral 

occurs at a stationary point, i.e. where

( ) 0g x′ =

If

Stationary phase approximation
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( ) ( ) ( )x
b

i

a

g
I dx f x e

λλ =  λ large

Re e
iλg x( )





f x( )
x

ba
x0

If g’(x) has only one zero x0 in the interval [a,b]:

( )
2

, ,0, exp
2

y
x

x x x

k
d

z
E k ik xk

k
kω

  
−  

  


( )f x : slowly varying amplitude

g(x): rapidly varying phase

( )
2

2
xx

x

k
g x

k
kk

z= −

( ) 0x
x

z

k
k x

k
g −= =′

0
xk

kx

z
= ( )0

x

z

k
g k = −′′
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E x,y,z,ω( ) =
1

2π( )2 dkx dkyE kx,ky,z= 0,ω( )e
i kxx+kyy+kzz( )



22
2 2 2

2 2

22

2 2
i

1

1
2 2

f  ,

yx

z x y

yx

x y

kk

k

k k k k k
k k

kk
k k k

k k

= − − = − −

 
− −  

 
≃ ≪

z large

Stationary phase approximation

Method 2: Stationary phase approximation

• Do same thing with respect to ky

• Put everything together

( ), , , , , 0,
ikz

x y

i kx ky e
E x y z E k k z

z z z
ω ω

λ
 = − = = = 
 

Method 2: Stationary phase approximation

188

If  , :x yk k k≫

( ), , , , , 0,
ikz

x y

i kx ky e
E x y z E k k z

z z z
ω ω

λ
 = − = = = 
 

Far field diffraction = 2D spatial Fourier 
transform of incident field!!!

( )
( )

( ) ( )
2

1
, , , , , 0,

2

x y zi k x k y k z

x y x y
E x y z dk dk E k k z eω ω

π
+ += = z large

Fourier transform as a function
of t of the electric field

Fourier transform as a function

of t, x and y of the electric field
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Fraunhofer diffraction: an example

189

( ), , , , , 0,
ikz

x y

i kx ky e
E x y z E k k z

z z z
ω ω

λ
 = − = = = 
 

′x

′y

2wx

2wy

0 0

sin
2

x

x

x

w

ik x x x

xw

k w
dx E e E

k

−

−

=

Fraunhofer diffraction: QUIZ

190

E x, y,z,ω( ) = − i

λ
E kx = kx

z
,ky = ky

z
,z= 0,ω





eikz

z
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191

Summary

192

• Using Fourier analysis we can express a wave as a sum of plane waves

• Each wave in the sum corresponds to a specific spatial frequency and

propagates in a specific direction with respect to the optical axis

• Spatial frequencies |kz| > ω/c give rise to evanescent waves which do

not propagate

• Diffraction and propagation is thus a type of spatial filtering

• In the far-field, the resulting diffraction pattern is the spatial 2D Fourier

transform of the intensity at z=0



97

Lecture 5: (More) diffraction and waveguides

193

Goals today:

https://qualitysurgicalrepairs.com/video

_cameras__consoles___fiberoptic_cable

https://en.wikipedia.org/wiki/Huygens%E2%80

%93Fresnel_principle

• Express an arbitrary wave as a sum of spherical waves

• Huygens-Fresnel principle

• Fresnel approximation—diffraction before the far-field

• Waveguides

194

Summary: express an arbitrary wave as a sum of plane waves 
(same    , different                        )    

E x, y,z= 0,t( )

E x, y,z= 0,ω( ) E k
x
,k

y
,z= 0,ω( )

  
E k

x
,k

y
,z,ω( ) = E k

x
,k

y
,z= 0,ω( ) ×e

ik
z
z

E x, y,z,ω( )

E x, y,z,t( )

FT t –> ω
FT x,y –> kx,ky

FT-1 kx,ky –> x,y

FT-1 ω –> t

×e
ik

z
z

function of , ,z x yk k k ω

Decompose in 
terms of plane 

wave components

Decompose in terms of spectral components

Plane wave
Too

hard!

k ( ), , ,x y z x yk k k k k
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Spatial frequences

195

fobj f ’
obj

θ

Fourier plane

Spatial frequencies

196
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Fraunhofer approximation

197

Fraunhofer condition:

Point of observation at a distance >> size of source

(x,y,z)

z

y′

x′

r′
r

P

( ), , , , , 0,
ikz

x y

i kx ky e
E x y z E k k z

z z z
ω ω

λ
 = − = = = 
 

Far field diffraction = 2D spatial Fourier 
transform of incident field!!!

Fourier transform as a function

of t, x and y of the electric field

Now: express field as a sum of spherical waves

198

z

x' x

z= 0
• Huygens-Fresnel principle

• Fresnel approximation—diffraction 

before the far-field
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Arbitrary field as a sum of spherical 

waves: Rayleigh-Sommerfeld expression

199

Recall:  Field as a sum of plane waves:

( )
( )

( ) ( )
2

1
, , , , 0,

2
, x yz

i xik z k k y

x y x y
E kx y z dk edk z eE kω

π
ω +== 

“The Fourier transform of a product is equal to the convolution of the separate Fourier transforms”. 

200

( ) ( )expexp

2

x y z

x y

z

i k x k y k zikr i
dk dk

r kπ

 + + = 
2

2 2 2

2x y zk k k
c

ω+ + =

(3.18)

( )exp ikr

z r

∂
∂

In the search to find , calculate{ }1 zik z
FT e−

Weyl plane wave decomposition
of a spherical wave

( ) ( ) { }1, , 0,, , , zik z
E x y zz FTy eE x ωω −= ∗=
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Geometry

201

z

y

x

′= −r rρ

′r

O

z= 0

θ

z

 

( ) ( ) ( )2 2 2, x x y y zρ ′ ′ ′ ′= − = − + − +r r r r

Towards the Rayleigh-Sommerfield relation

202

( ) ( ) ( ) ( )h x g x dx h x g x x

∞

−∞

′ ′ ′∗ = −
� � � � � �

 

( ) ( ) ( )2 2 2, x x y y zρ ′ ′ ′ ′= − = − + − +r r r r

( ) ( ) ( )
,

ex
, 0,, ,

p1
,

2

ikr
EE

r
xx y z y z

z
ω

π
ω

 
= ∗ − ∂

∂


= 
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Towards the Huygens-Fresnel principle

203

 

( ) ( ) ( )
( )

1
, , ,

2
, ,

ex

,
0

p
,

,
E x y z dx dy

k
x y

z
E z

i
ω

π
ω

ρ
ρ

′ ′ =
′ ∂  ′ ′= −

′∂
r r

r r
(3.20)

Rayleigh-Sommerfeld relation

Find:

ik
e

z

ρ

ρ
∂
∂

( ) ( ) ( )2 2 2, x x y y zr r r rρ ′ ′ ′ ′= − = − + − +

( ) ( ) ( )
( ) ( )2

1ex
,

1
, ,

2

p
, ,

,

,
0,

,
E x y z dx dy z iE x y z

k
k

i r r

r rr r

ρ
ω

ρ
ω

π ρ
 

′ ′= − − +  




′

′ ′ 
′′

=





Huygens-Fresnel Principle

204

( ) ( ) ( )
( ) ( )2

1ex
,

1
, ,

2

p
, ,

,

,
0,

,
E x y z dx dy z iE x y z

k
k

i r r

r rr r

ρ
ω

ρ
ω

π ρ
 

′ ′= − − +  



′

′ ′ 
′′

=





 

( ) ( ) ( )
( )

, , 0, , , c
exp ,

,
os,

ik
E x y z

i
E x y z dx dy ω

ρ
ω θ

λ ρ
′  

′
′ ′− =′ ′= 

r r

r r
(3.24)

Huygens-Fresnel principle

( ) ( ) ( )2 2 2, x x y y zρ ′ ′ ′ ′= − = − + − +r r r r

z

y

x

′= −r rρ

′r

O

z= 0

θ

z
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Fresnel approximation

205

z

y

x

′= −r rρ

′r

O

z= 0

θ

z

• Valid “before the far 

field” (to be defined 
more precisely).

 

( ) ( ) ( )
( )

, , 0, , , c
exp ,

,
os,

ik
E x y z

i
E x y z dx dy ω

ρ
ω θ

λ ρ
′  

′
′ ′− =′ ′= 

r r

r r
(3.24)

( ) ( ) ( )2 2 2, x x y y zr r r rρ ′ ′ ′ ′= − = − + − +

Fresnel approximation

206

z

y

x

′= −r rρ

′r

O

z= 0

θ

z

 

( ) ( ) ( )
( )

, , 0, , , c
exp ,

,
os,

ik
E x y z

i
E x y z dx dy ω

ρ
ω θ

λ ρ
′  

′
′ ′− =′ ′= 

r r

r r
(3.24)

( ) ( ) ( )2 2 2, x x y y zr r r rρ ′ ′ ′ ′= − = − + − +

 

( )
2 2

1 1
, 1

2 2

x x y y
z

z z
ρ

 ′ ′− −   ′ + +    
     

r r ≃
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Fresnel approximation: summary

207

( ) ( ) ( ) ( )2 2
, e0, , xp, ,

2
,

ikz
ie

E xx y z dx xE xy
k

i yyd
z

yz
z

ω ω
λ

′ ′  ü ′ ′− + − ý
= ′ =−


′

þ


Connection to Fraunhofer approximation

208

 

( ) ( ) ( ) ( )2 2
, , 0 e p,,

2
, x,

ikz
ie

E x y z E x y zdx
k

i x x y yy
z

d
z

ωω
λ

 ü ′ ′− + − ý 
′ ′′− =′=

þ


Starting with

(3.48)

 

( ), , , , , 0,
ikz

x y

i kx ky e
E x y z E k k z

z z z
ω ω

λ
 = − = = = 
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209

Link between Fresnel diffraction and the plane 
wave expansion

( ) ( ) ( ) ( )2 2
, e0, , xp, ,

2
,

ikz
ie

E xx y z dx xE xy
k

i yyd
z

yz
z

ω ω
λ

′ ′  ü ′ ′− + − ý
= ′ =−


′

þ


Fresnel Difraction:

Fresnel Diffraction = convolution of the field at z = 0 with the transfer 
function

( ) ( )2
Fresnel

2, e,
2

, xp
ikz

ie
h

k
i x yx y z

z z
ω

λ
 + = −
 

The FT of this transfer function is:

( ) ( )2
Fresnel

2exp
2

, , , ikz

x yx y
h

z
i k k

k
k k z eω  − +

= 

F t( ) = exp − t 2

2σ 2









 F ω( ) = 2πσ exp −ω 2σ 2

2











( ) ( ), , 0, ( , , , ), , ,
x y x y Fr el xe n ys

E k k E z hz k k k k zω ωω == i

210

Link between Fresnel diffraction and the plane wave expansion

Plane wave expansion:

Plane wave expansion = product of field at z = 0 and transfer function

( ) ( ), , ,, , 0, zik z

yx xy
E E kk kz zk eω ω= =

( ) 2

2

22

2
pl s

2 2

ane_wave

0 otherwise for     (evanescent w

exp 1
, , ,

aves)

x

yx

x

x

y

kk
ikz if

h k k z
k

k k
k k

z λ

ω


 +



 
 − −
 

<=   

 ≫

( ) ( )plane_waves Fresne

22

l, , , ,
2

,exp ,ikz

x y x y

yxh
k

k k z e h k
k

k z
kz

i
k

ω ω
  
− + =      

≃

Thus the Fresnel approximation is valid for kx, ky << k, i.e., for 
small diffraction angles => PARAXIAL APPROXIMATION

( ) ( ), , 0, ( , , , ), , ,
x y x y Fr el xe n ys

E k k E z hz k k k k zω ωω == iFresnel: ( ) ( )2
Fresnel

2exp
2

, , , ikz

x yx yh
z

i k k
k

k k z eω  − +
= 
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211

z= 0

z

Plane wave expansion

Rayleigh - Sommerfeld

Fresnel

Fraunhofer

Conclusion: validity of the different
formulations for diffraction

212

Example: Fresnel diffraction for a slit of 
width w =1 mm; λ = 0.5 µm

z = 10 µm z = 100 µm z = 1 mm 

z = 1 cm z = 10 cm z = 50 cm 

z = 10 m 

z = 1 mm 



107

Waveguides

213

(a) (b) (c) 

Slab Slit Cylindrical

n1  (core)

n2

n2< n1

Total internal reflection

cladding

Why study waveguides?

214

Avoid diffraction
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Why study waveguides?

215

Small
= 

Fast

Electrical

response time

RCτ =

A
C

d

ε=

Towards integrated optoelectronics…

Metallic planar waveguide

216

z

y

d

E field polarized in x direction
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Optical modes

217

https://www.photonics.com/Articles/Large-

Mode-Area_Optical_Fibers_Maintain/a62269

Metallic planar waveguide

218

Mode: Twice-reflected wave must be identical to the incident wave

z

y

d

Twice-reflected wave

θ

θ

A

B

C

θ
E field polarized in x direction
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Fundamental mode, single mode waveguides

219

 
sin

2
m m

d

λθ = m =1, 2, 3….

Single mode if 2d > λ > d Micron-sized waveguides

z

y

d

Propagation constants, group and phase velocities

220

z

y

d
θ

θ

 
sin

2
m m

d

λθ = m =1, 2, 3….

vg depends on m:
intermodal
dispersion

 ( )
g cosm

m

m

d
v c c

d

ω θ
β

= = <

 
( )

cos
m

m m

c
v cϕ

ω
β θ

= = >

 
( ) sinm

y m
k k m

d

πθ= =
 2

( ) 2 2

2
cosm

m z m
k k k m

d

πβ θ= = = −
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Field distributions

221

y

d θ
θ

Mode of order m

ky

(m) = ksinθm = m
π
d

βm = kz

(m) = kcosθm = k2 − m2 π 2

d2










Mode of order m: interference between plane wave with wave vectors
and                       , in such a way that the fields cancel at the 

mirrors.

( )
2

cos for  1,3,5

2
sin for  2,4,6

m
u y

m y
m

d d

m y
m

d d

π

π

= 
 =



=


…

…

( )( )0, , m

m

yk β ( )( )0, ,y m

m
k β−

Field distributions

222

z

y

d / 2

−d / 2

m = 1 m = 2 m = 3 m = 4
m = 5

Electric field distributions
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Metallic planar waveguide

223

Multimode fields

Saleh and Teich, Fundamentals of Photonics, p. 247

Mode 1

Mode 2

Mode 1+2

Planar dielectric waveguide

224

θ

z

y

d θ

A

B

C Twice
reflected
wave

n1

n2

n2

 Medium with index n1

between two media with
lower indices

 2D problem: invariant 
along the x direction

 Propagation in the yz

plane
 Electric field in the x

direction
Total internal
reflection:

θ < θc = arccos
n2

n1

“Self-consistency condition”

2πn1

λ
2dsinθ + 2ϕ r = 2mπtan

ϕr

TE

2
= − sin2 θc

sin2 θ
−1with

tan πn1

d

λ
sinθ − m

π
2







= sin2 θc

sin2 θ
−1
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Planar dielectric waveguide

225

θ

z

y

d θ

A

B

C Twice-reflected wave

n1

n2

n2
tan πn1

d

λ
sinθ − m

π
2







= sin2 θc

sin2 θ
−1

Right-hand side

m= 0 1 2 3 4 5 6 7
10

0
0 sinθcsinθ

Left-hand side

λ
2n1d

βm = kz

(m) = 2πn1

λ
cosθm

2 12 2
m

n nπ πβ
λ λ

≤ ≤

There is always at least 
one mode.

Monomode if: 
λ

2n1d
> sinθc

2d

λ
n1

2 − n2
2 < 1

Planar dielectric waveguide

226

z

y

d n1

n2

n2

( ) ( ) ( )ˆ, exp c.c.
m m m m

t A u y i t zω β = − − +   E r xE

( ) ( ) ( )
2 2

2

2 2
, , 0

m m

n
t t

c t

∂∇ − =
∂

r
E r E r

Propagation equation

with

d2um y( )
dy2

+ n2 y( )ω 2

c2
− βm

2







um y( ) = 0

z

y

d / 2

−d / 2

m= 0 m= 1 m= 2 m= 3 m= 4

Exponential

decay!

Even or 

odd!
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Nobel in Physics 2009 : Charles K. Kao

227

"for groundbreaking achievements 
concerning the transmission of light 
in fibers for optical communication"

http://nobelprize.org/nobel_prizes/physics/laureates/2009/index.html

Conclusion

228

 Huygens-Fresnel = diffraction in terms of spherical waves

 Rayleigh-Sommerfeld, de Fresnel (= paraxial), and Fraunhofer

approximations

 Metallic waveguides: based on reflection at metal surfaces. Problem
of losses for non-ideal metals.

 Dielectric waveguides: 
 very low losses in the IR;
 may be used to miniaturize opto-electronic components, thus 

increasing their bandwidth and decreasing their consumption;
 along with the laser, are at the origin of the internet.
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229

Lecture 6: Light propagation in 
anisotropic dielectric matter

• Where does it come from?

Anisotropy of materials

Why care about it?

Polarizers: control 

orientation of electric field 

of electromagnetic wave

• What are its consequences?

230

• Experiment:

o Draw a black dot on a piece of

paper

o Place calcite crystal on top

o Rotate crystal

=> observations

o Look through polarizered

sunglasses at crystal

o Rotate crystal or sunglasses

=> observations

Calcite
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Applications

231

232

Anisotropy in daily life
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233

“Nucleus”

“electron”

Recall: Light propagation in isotropic dielectric matter

234

“Nucleus”

“electron”

Light propagation in anisotropic dielectric matter
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235

Isotropic (cubic) Anisotropic

Anisotropic properties arise from an asymmetry in the 
atomic structure

Consequences of anisotropy

236

• The index of refraction is now a tensor

D and E are not in the same direction

The speed of light will be different depending

on the propagation direction in the material.

• Wave vector k is (in general) NOT in the same direction 
as the propagation of energy

k: perpendicular to planes of a plane wave
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Consequences of anisotropy

237

• A plane wave incident on an anisotropic crystal results (in 
general) in two waves: 

 one which acts in an “ordinary” (i.e. usual) fashion

 one which acts in an “extraordinary” fashion *
*Not the

general case

• The initial polarization state is (in general) altered for 
propagation in an anisotropic medium

 There exists, however, certain initial polarization 
directions for which a linearly polarized light wave may 
travel “unperturbed”

Medium characteristics
• homogeneous

238

--same everywhere

• no losses
--permittivity does NOT 

depend on frequency and 

is real

• non-magnetic --µ=µ0

• No free charges or 

currents…

???=D E• Linear and anisotropic
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Dielectric permittivity tensor

239

11 12 13

21 22 23

3

1

0

33 3

2

1 2 3

E

E

E

D

ε ε ε

ε ε ε

ε ε

ε

ε

        =           

Anisotropic matter: 
0 rD Eε= ε

��

Tensor!

or 0 ;   , 1, 2,3
k l

l

kl
D E k lεε= =

11 12 13

21 22 2

1 2 3

0 1 2 3

1 2 33

3

31 32 3

E E E

E E E

E E E

ε ε ε

ε ε ε

ε ε ε

ε

 + +
 
 = + + 
 + + 

D and E are not in the same direction

The speed of light will depend on the

propagation direction in the material

since is a tensor
rε

��

2
r nε =

n: index of refraction

in medium

c
v

n
=

Dielectric permittivity tensor

240

“It may be shown” that in order to be consistent with the principle of 

conservation of energy the permittivity tensor must be symmetric, i.e., 

kl lk
ε ε=

Recall from math classes:  a real symmetric matrix is diagonalizable.

Can find eigenvalues and eigenvectors of this matrix!

The eigenvalues are the principal dielectric constants

The eigenvectors are the principal dielectric axes

Defined by the crystal structure of the material.

1

02
1

2 2
2

02
3

3

0

0 0

0 0

0 0 0 0

0 0

0 0

n

n

n

r

ε

ε

ε

ε

ε

ε

             = =                  

ε

Dielectric permittivity tensor in 

the principal axis coordinates

11 12 13

12 22

3

23

13 23 33

1

0 2

E

E

E

ε ε ε

ε ε ε

ε

ε

ε ε

        =           

D
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Eigen phase velocities

241

Eigen phase, wave normal, or principal propagation velocities:

 
1 1/v c n=  

2 2/v c n=  
3 3/v c n=

Resulting phase velocities if the wave vector is perpendicular to one of the 

principal dielectric axes e.g., if u=(1,0,0), vφ = v2, v3

2
1

2
2

2
3

1

0 2

3

0 0

0 0

0 0

E

n

n

E

E

n

D ε

         =           
0 0

1
c

ε µ
=

D and E will not be parallel unless E is parallel to a principle axis,

e.g.,
1
ˆE=E i

242

1 2 3

1 2 3

1 2 3

isotropic

uniaxial (calcite, quartz, ice)

biaxial (mica, topaz, borax)

:  matter is 

: crystal is 

: crystal is 

n n n

n n n

n n n

= =

≠ =

≠ ≠

Some definitions

2
1

2
2

2
3

1

0 2

3

0 0

0 0

0 0

E

n

n

E

E

n

D ε

         =           
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Plane wave propagation in an anisotropic medium

243

    

   (a)            0         (b)

      (c)              0         (d)

t

t

∂
∇× =− ∇⋅ =

∂
∂

∇× = ∇⋅ =
∂

B
E D

D
H B

0       (f)µ=B H

0    (e)ε= rD E
�
ε

 

0

        (1)             0    (2)

  (3) 0   (4)

i i

i i

k E B k D k E

k B D k B

ω

ωµ

× = ⋅ = ≠ ⋅

× =− ⋅ =

From (a): From (b):

From (c), (f): From (d):

( )0 exp      (A)i tω = ⋅ − E E k r + similar expressions for D, B and H.

( )f f f× × + ×A A A∇ = ∇ ∇ (g) ( )f f f⋅ ⋅ + ⋅A A A∇ = ∇ ∇ (h)

244

Plane wave in an anisotropic medium

D E

S
B

θ

θ(D, B)

(E, B)

S is NOT in the same direction as k  !!

0

B
S E H E

µ
= × = ×

 

0

        (1)             0    (2)

  (3) 0   (4)

i i

i i

k E B k D k E

k B D k B

ω

ωµ

× = ⋅ = ≠ ⋅
× =− ⋅ =

(1.4)

S: Poynting vector, direction of 
energy flow or rays

k: wave normal, direction 
perpendicular to wave fronts

E, k (or u), D, S are coplanar
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For a given wave normal of direction u, 
what is the resulting phase velocity?

245

Let

In other words, what is the index of refraction for this direction?

k

k
u = i.e., a unit vector in the direction of the wavevector

n
c

k u
ω= where n is the index of refraction for the direction u

( ) c
v

k n
ϕ

ω
= =uDesired phase velocity:

First: find an expression for D in terms of u, E and

246

vφ

(1.4)

 

0

        (1)             0    (2)

  (3) 0   (4)

i i

i i

k E B k D k E

k B D k B

ω

ωµ

× = ⋅ = ≠ ⋅

× =− ⋅ =

• From (3)

0

k B
D

ωµ

×
=−

0

k u B

ω µ

×
=−

0

1
  (5)

v

u B

ϕ µ

×
=−

( ) c
v

k n
ϕ

ω
= =u

• From (1)

0

1
  (6)

v

u E
B

ϕ µ

×
=

• Plug (6) in (5)

( )2
0

1
  

v
D u u E

ϕµ
=− × ×

( ) ( ) ( )× × = ⋅ − ⋅A B C B A C C A B• Use vector identity

( )
2

0

1
  

vϕµ
 = − D E u u Ei
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(1.3)

(1.5)

• (1.3) = (1.5) ; solve for Ei

(1.6)

Plane wave in an anisotropic medium: find indices of refraction for a given
propagation direction u

( )1 2 3, ,u u u
k

= = k
u

2
1

2
2

2
3

1

0 2

3

0 0

0 0

0 0

E

n

n

E

E

n

D ε

         =           

/
i i

v c n=

( )2
0

1
  

vϕµ
 = − D E u u Ei

Plane wave in an anisotropic medium: find indices of refraction for a given
propagation direction u

248

•Add the resulting three equations (i=1,2,3)

(1.6)

•Multiply both sides by ui

( )
2

2

2 2

1/

1/ 1/
i i i

i

v
E u u

v v
u E

ϕ

ϕ

= ⋅
−

( )
2

2

2 2
1,2,3 1,2,3

1/

1/ 1/
i i i

i i i

v
E u u

v v
u E

ϕ

ϕ= =

= ⋅
−∑ ∑

⋅u E•Divide by

2

2

2 2
1,2,3

1/
1

1/ 1/
i

i i

v
u

v v

ϕ

ϕ=

=
−∑
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Plane wave in an anisotropic medium: find indices of refraction for a given
propagation direction u

249

2

2

2 2
1,2,3

1/
1

1/ 1/
i

i i

v
u

v v

ϕ

ϕ=

=
−∑

•Subtract

2

2

2 2
1,2,3

1/
0 1

1/ 1/
i

i i

v
u

v v

ϕ

ϕ=

  = −   − 
∑

•Simplify

FRESNEL EQUATION

(1.7)

2

1,2,3

1 i

i

u
=

= ∑

Fresnel equation

250

(1.7)u

1u

2u
( ) c

v
k n

uϕ

ω
= =

( )( ) ( )( ) ( )( )2 2 2 2 2 2
2 3

22 22
2

2
1 2 3

2 2 2
3 1

2
1 0v v v v v vv v v v v vu u uϕ ϕ ϕ ϕ ϕ ϕ− − + − − + − − =

• Equation is of order 4 in vϕ and of order 2 in 
2vϕ

Get TWO solutions for          !!!! vϕ

(Negative roots: waves propagating in the opposite direction!)
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Fresnel equation: interpretation

251

• A plane wave in direction u will (in general) split into two waves, 

each with its own phase velocity!!!

• What determines how the plane wave splits?  The initial polarization!

• These two waves propagate independently => will become more and more 

out of phase with each other as propagation continues

• Their wave vectors are in the same direction (u)…but not their Poynting

vectors!!! 

The light associated with these waves will 

become separated with propagation!

*

*If no refraction

What are the associated displacement vectors and       for      and      ? 

252

vϕ′ vϕ′′d′ d′′

Method 1:  Algebraic method

• Use Fresnel equation to solve for v’
ϕ and v’’

ϕ

(1.6)

• Use equation (1.6) to solve for electric field 

components:

 
1 2 3: :E E E  

1 2 3: :D D D• Find ratios for and thus

• Note:  since everything is real in above equations, above ratios will be 

real, thus the E and D fields will be linearly polarized

The structure of an anisotropic medium permits 
two monochromatic plane waves with two different 

linear polarizations                   and two different 
velocities to propagate in a given direction

 and d d′ ′′
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What if the initial wave polarization is along ?  

253

r  od d′ ′′

• The wave will NOT split into two

• The wave will travel at        orvϕ′ vϕ′′

• The will be NO change in polarization 

• Only one beam exists!

Finding ,    ,    , and     graphically

254

vϕ′ vϕ′′ d′ d′′

( ) c
v

k n
kϕ

ω
= =Recall:

k
= k

u

For a given propagation direction u, what are the associated 

indices of refraction n’ and n’’, and displacement vectors       andd′ d′′

index ellipsoid

Recall: (1.5)

• Take dot product of each side with D; Recall: D.u = 0
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Index ellipsoid

255

0   rD Eε= ε

�
Recall:

Choose the coordinate system such

that is diagonal  rε

�
principal axes

2
0   

i i i
D n Eε=

( ) c
v

k n
ϕ

ω
= =u(A) (B)

(C) Plug (C) and (B) into (A)

22 2
2 31 2

2 2 2
1 2 3

DD D
n

n n n
D D

  ⋅ = + +   

Define the following coordinate system: 

1 2 3( , , )x x x n n
D

d
D

≡ ≡ i
i

D
x n

D
≡or

Index ellipsoid

256

22 2
2 31 2

2 2 2
1 2 3

DD D
n

n n n
D D

  ⋅ = + +   
i

i

D
x n

D
≡ Solve for Di, plug result into

Index ellipsoid

• Set of all possible indices (for a crystal with n1 n2 n3) 

consistent with conservation of energy

• If n1= n2= n3 Sphere! Isotropic!

• Semi-axes of this ellipsoid are equal to n1, n2, n3, 
the principal indices of refraction
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u

O

Finding the indices and displacement vectors
(   , and     ) for a given incident wave

with wave normal u

• Propagation direction u, normal to wave 

fronts, through origin

• The intersection of a plane perpendicular 
to u, passing through the ellipsoid origin

(in general) ellipse, Γ

Recall: D u⊥

d′d′′

n’d’, n’’d’’, must be on 

this ellipse since d’, d’’

are perpendicular to u

Index ellipsoid

1 2 3( , , )x x x n n
D

d
D

≡ ≡

258

u

M
N

O

Finding the indices and displacement vectors

(   , and     ) for a given incident wave

with wave normal u

• Let OM be in the direction        or 

d′ d′′

d′ d′′

• What is the normal to the ellipsoid at 
point M?

• From math, if 
 
( )

22 2
31 2

1 2 3 2 2 2
1 2 3

, , 1 0
xx x

g x x x
n n n

= + + − =

2
1 1 1

2
2 2 2

2
3 3 3

/ 2 /

/ 2 /

/ 2 /

g x x n

g x x n

g x x n

N

  ∂ ∂      = ∂ ∂ =          ∂ ∂    

is the normal

i
i

D
x n

D
≡

1
2
1

2
2
2

3
2
3

2

D

n

Dn

n

D

n

N
D

         =           

Thus

2
0   

i i i
D n Eε=

1

0
2

3

2
E

n
E

E
D

ε
 
 
 =  
 
 

N E�
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Finding the indices and displacement vectors for 

a given incident wave with wave normal u

u

t

M

O

• t: tangent to Γ at Μ; in the plane of the ellipse Γ

• By definition   t t EN⊥ ⊥and thus

Recall:

o E and u are in the same plane

 t u⊥Thus

 t B�Thus  t D⊥  OMt⊥

Where on an ellipse 

is this true???

When OM is one of 

the semi-axes!!!

Graphical method for determining the directions of the two displacement
vectors (   , and      ) for a given incident wave with wave normal u

260

d′ d′′

u

1x

'
d

"d

• d’, d’’ are in the directions of the two semi-

axes of the ellipse Γ

• the associated indices n’, n’’ are the 

lengths of the semi-axes

n′

• d’, d’’ are perpendicular to each other

• incoming light splits into two orthogonal linear 

polarizations, each with its own phase velocity

• initial polarization along d’ or d’’ 

• one index, one velocity
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Graphical method for determining the direction of 
the Poynting vector for a given incident wave with

wave normal u

u

B

M
E

O

S

• S is perpendicular to B and E

Recall:

• B is tangential to the ellipsoid and E is normal 

S must be tangential to the ellipsoid in order 
to form the necessary orthogonal triad

More handy geometrical tools: normal surfaces and 
optic axes

262

What is a normal surface?

• Place an origin inside the crystal.

• Consider a wave vector direction u

• For each direction u, associate two vectors whose lengths are 

proportional to the two corresponding indices of refraction n’ and n’’

• Repeat for all values of u. The endpoints of the index vectors give 

rise to a surface consisting of two “shells” and known as the 

wave-normal or normal surface

• i.e., the set of all points N such that ON=nu
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Normal surfaces

• Start with Fresnel’s Equation

Wave-normal or normal surface: the set of all points N such that ON=nu

• Let ON = (x,y,z)
 2 2 2 2
n x y z= + +

 

22 2 2
1 2

22 2
3

3
2

2
2

1 0
uu

v v vv

u

v vϕ ϕ ϕ

+ + =
− − −

 

1 2 3,    ,   
x y z

u u u
n n n

= = =

• Recall:
c

v
n

ϕ
=

i

i

c
v

n
=

• Plug the above expressions into the Fresnel equation to obtain:

Equation for 

normal 

surfaces

264

Wave normal surfaces and optic axes

Result for x = 0 Result for y = 0Result for z = 0

( )

1

2 3

2 2 2
1

2 2
2 2 2 2
2 3 2 2

3 2

circle of radius 

ellipse with semi-axes  

 : 

1 0  and :  

y z n

y z
n

n

n nn y z
n n

 + =    + + − =    
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Optic axis

265

Result for y = 0

optic axis optic axis

The two curves cross!!!

• Two particular directions 

where there is only one value 

of the phase velocity

• Optic axis

Note: optical axis is not the same as the optic axis!!!

optical axis 

266Champeau et al.,  p. 729

x1

x2

x3

optic axis optic axis

Circular
cross-section

Circular
cross-section

Index ellipsoid and optic axes

ANY polarization d will maintain its 
polarization going through the crystal

Wave propagation 

in the direction of 
an optic axis: index ellipsoid
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Normal surfaces and optic axes

Result for x = 0 Result for y = 0Result for z = 0

General case: 3 2 1n n n≠ ≠

What if                            ?3 2 1n n n= ≠

optic axis optic axis

268

Result for z = 0

3 2 1n n n≠ ≠

Uniaxial vs biaxial crystals

a.o.

x

y

ne

no

2 3

1

  "ordinary" index

   "extraordinary" index

o

e

n n n

n n

= ≡

≡

Touches!

o e
n n>

optic axis

Recall:
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Result for x = 0

3 2 1n n n≠ ≠

Uniaxial vs biaxial crystals

2 3

1

  "ordinary" index

   "extraordinary" index

o

e

n n n

n n

= ≡

≡

o e
n n>

z

y

n

e
no

Recall:

270

Uniaxial vs biaxial crystals

2 3

1

  "ordinary" index

   "extraordinary" index

o

e

n n n

n n

= ≡

≡

o e
n n>

z

x

n

e

no

Result for y = 0

optic axis optic axis

3 2 1n n n≠ ≠

Touches!

optic axis

1 optic axis

2 optic axes no < n(k) < ne

biaxial crystal uniaxial crystalRecall:
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Hecht, Optics

• If              the material is considered “negative” (e.g., calcite) 

• If              the material is considered “positive” (e.g., quartz)

 
e o

n n n∆ ≡ −
 0n∆ <
 0n∆ >

272

O

1x

n
e

n
o

Propagation in a uniaxial crystal

 22 2
31 2

2 2 2
1

e o o

xx x

n n n
= + +

• index ellipsoid: ellipsoid of revolution or spheroid

• 1 circular section only => 1 optic axis

• an incident wave with u in the direction 

of the optic axis will maintain its 

polarization going through the crystal, 

n=no

2 3

1

  "ordinary" index

   "extraordinary" index

o

e

n n n

n n

= ≡

≡
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Propagation in a uniaxial crystal: arbitrary u

principal plane: formed
by u and the optic axis

• The index ellipsoid is symmetrical about 
the principal plane 

• Resulting elliptical cross-section Γ: 
symmetrical about

• Plane Π: normal to u

• Semi-axes of Γ:

• One perpendicular to       :     ,

• One parallel to         :       , 

2 3

1

  "ordinary" index

   "extraordinary" index

o

e

n n n

n n

= ≡

≡

o
n

n′′

e
n

u

1x

'
d

"d

1: optic axisx

'
d

on n′′

"d

 22 2
31 2

2 2 2
1

e o o

xx x

n n n
= + +

274

Propagation in a uniaxial crystal
2 3

1

  "ordinary" index

   "extraordinary" index

o

e

n n n

n n

= ≡

≡

e
n

u

on n′′

1x

• Semi-axes of Γ:

• One perpendicular to       :     ,

• One parallel to         :       , 

on

n′′

'
d

"d

• No matter how u is tilted, perpendicular

semi-axis always has the same length 
and direction

Ordinary wave

• The length and direction of the parallel
semi-axis depends on u

Extraordinary wave

1: optic axisx

22 2
31 2

2 2 2
1

e o o

xx x

n n n
= + +
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Propagation in a uniaxial crystal

n
e

u

1x

'
d

Ordinary wave

• n’ = no no matter the orientation of u

• d’ is in the (x2, x3) plane, and εr2 = εr3 = no
2

2 2
2 0 2 3 0 3;   o oD n E D n Eε ε= =

• d’ is perpendicular to 

D and E are parallel!

Poynting vector S and the wave normal u are 
also parallel

Wave behaves as if it is in an isotropic 
medium! 

o
n

2 3

1

  "ordinary" index

   "extraordinary" index

o

e

n n n

n n

= ≡

≡
1: optic axisx

276

Propagation in a uniaxial crystal

n
e

u

1x

"d

Extraordinary wave

• n’’ depends on the orientation of u

• d’’ is in the plane

• D and E are NOT parallel

• Poynting vector S and the wave normal u are 
NOT parallel

• Wave does NOT behave as if it is in an 
isotropic medium! 

n′′

1: optic axisx
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θ

2x

u

θ
2
"

x

1
"

x

O

Propagation in a uniaxial crystal: determining n’’

1x
• C: cross-section of the index ellipsoid in 

the principal plane

• n’’: length of the semi-axis of the ellipse                

is in the plane perpendicular to u

length of the vector OM’’

2 1
" "cos  ; sinx xn nθ θ′=′′= ′coordinates of OM’’: (A)

2 2
1 2
2 2

1
e o

x x

n n
= +equation of ellipse C: (B)

Plug (A) into (B) and solve for n′′ 2 2

2 2

sin cos
1

e o
n

n
n

θ θ′ = +′

1: optic axisx

278

θ
2x

u

θ
2
"

x

1
"

x

O

S

θR

Propagation in a uniaxial crystal: determining the direction of 
S, the Poynting vector

1x

• Recall: S in the same plane as u, E, D, 
perpendicular to B

• Recall: S is tangential to ellipsoid at M’’

Want to find θR

α

α
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Propagation in a uniaxial crystal: determining the direction of 
S, the Poynting vector

θR

S

2x
θ

2
"

x

1
"x

O

1x

• Recall: S in the same plane as u, E, D, 
perpendicular to B

• Recall: S is tangential to ellipsoid at M’’

Want to find

• Find first the normal to C at M’’

θR

θR
( )

2 2
1 2

1 2 2 2
, 1

e o

x x
g x x

n n
= + −

2
1 1

2
2 2

/ 2 /

/ 2 /
e

o

g x x n

g x x n

  ∂ ∂   = =    ∂ ∂   
N θR1

2

N

N

  ≡   
1N

2N

tan
R
θ = 1

2

N

N

2
1

2
2

/

/
e

o

x n

x n

′′
=

′′

2

2
tano

e

n

n
θ=

tangent to C

N

280

Index ellipsoid and wave normal surfaces

2x

u

O

S

M ′′

1x

"P

Index 

ellipsoid

Wave normal 

surface

1x

• For each u, associate two vectors 

whose lengths are proportional to the 

two corresponding indices of refraction 

n’ and n’’

Recall: wave-normal surface:

"P is on the normal surface

wave-normal surface

S is perpendicular to wave normal ellipsoid
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According to Dijksterhuis,[12] "In De natura lucis et

proprietate (1662) Isaac Vossius said that Descartes had

seen Snell's paper and concocted his own proof. We

now know this charge to be undeserved but it has been

adopted many times since." Both Fermat and Huygens

repeated this accusation that Descartes had copied

Snell. In French, Snell's Law is called "la loi de

Descartes" or "loi de Snell-Descartes."

Wikipedia (italics and underlining mine)

Snell’s (Descartes’?) laws for 
anisotropic media

Snell’s laws

282

• Basic premise: the tangential component of the wave vector k must be 

continuous across an interface

• The wave normals (u) of the incident, refracted waves and the normal to

the interface are all in the same plane (the plane of incidence)

 

1 1 2 2sin sinn nθ θ=

Recall Snell’s laws for isotropic media:

n1

n2 > n1

Optical axis
θ1

θ2οθ2e

n2o, n2e

isotropic

anisotropic

Second medium anisotropic (uniaxial):

 

1 1 2 2 2 2sin sin sino o e en n nθ θ θ= =

Note: 

• Snell’s laws apply to k and NOT to S, 
the Poynting vector

• n’’ changes with direction in the anisotropic 

medium!
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Graphical method for applying
Snell’s laws: two isotropic media

n1

n2 > n1

θ2

k1
k2

Optical axis

k2

k1

θ1
1 1 0 1k n k n

c

ω= =

2 2 0 2k n k n
c

ω= =

Method:

• Draw half circle with radius k1

• Draw half circle with radius k2

the tangential components are equal 

Rescale diagram

n1

n2Wave normal 

surfaces

284

θ2ο

n1

no

2 0o o ok n k n
c

ω= =

anisotropic

Optic axis

k2e

θ2e

Wave
normal 
surfaces

d”

2 0" "
e

k n k n
c

ω= =
"n

Ordinary wave: same result as for two isotropic media!

Optical axis
θ1

 

1 1 2 2 2 2sin sin sin
o o e e

n n nθ θ θ= =

isotropic

Graphical method for Snell’s laws: an 
isotropic and a uniaxial anisotropic media

1 1 0 1k n k n
c

ω= =

n1
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Main points!

285

0 rD Eε= ε

��

Tensor!

• Wave vector k is (in general) NOT in the 

same direction as the propagation of 
energy

• Two waves! unless… 

In an anisotropic medium: 

• Graphical method for finding indices 
and polarizations 

n
e

u

1x

"d
n′′

• Wave normal surfaces for refraction

286

Lecture 7: Experiments

• Experiments:

o Place Scotch tape between crossed

polarizers

o Rotate Scotch tape

 observations

o Place a clear plastic object (e.g.

protractor) between crossed

polarizers

=> observations
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Experiment!
• Experiment:

o Draw a black dot on a piece of

paper

o Place calcite crystal on top

o Rotate crystal

There are two dots!  One is stationary, 

the other rotates as the crystal rotates.

Stationary dot: ordinary wave

Rotating dot: extraordinary wave

Extraordinary wave Poynting vector changes 

direction as the optic axis direction is 

changed!

288

Experiment

• Experiment:

o Look through a polarizer at

crystal

o Rotate polarizer

One or the other of the black dots is visible.

Polarization directions of the ordinary and 
extraordinary waves are perpendicular!!!



145

289

Controlling the polarization of light

Arbitrary 

polarization 

“in”

What you 

want “out”

Quarter-

wave plate

Half-wave 

plate

Quarter-

wave plate

Outline

– Polarization states of light—mathematical description

290

D

– Jones vectors 

– Manipulation and control of the polarization of light
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Polarization

291

https://www.edmundoptics.com/resources/application-notes/optics/introduction-to-

polarization/

Polarization: 

• direction and variation of the electric displacement vector D 
during propagation 

• Monochromatic plane wave in a 
transparent medium

D orthogonal to the propagation 
direction z. 

Polarization

( )

( )0

0

0

0 c

c s

os

o

x x x

y y y
D

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −

292

• Monochromatic sinusoidal plane wave in a transparent medium

D orthogonal to propagation direction z. 

00 , 0
x y

DD ≥

D
z

y

x

Elliptical polarisation

xD

y
D

0 yD

0x
D

Amplitudes

,
yx

ψ ψ Phases, constant

00

, 

y

xy

x

m

DD

mψψ π

≠

− ≠ ∈ℤ
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State of polarization

293

D
z

y

x
xD

y
D

0 yD

0x
D

( )

( )0

0

0

0 c

c s

os

o

x x x

y y yD

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −

The state of polarization is determined by

0

0 y

x

D

D

• •
xy

ψ ψ−OR

0

0 y

x

D

D
•

• angle of ellipse axis 

• rotation direction

Determining the rotation direction of the polarization ellipse

294

A

0 2
x

t kz mω πψ =− −

( )0 0 0sin
y

y y

dD
D t kz

dt
ω ω ψ=− − −

n

0 left polarization

right polari0 atio

y x

y x

ψ

π

ψ

ψ ψ

π< < ⇔

− < − <

−

⇔

( )0 0 siny y xDω ψ ψ= −

D
z

y

x
xD

y
D

0 yD

0x
D

( )

( )0

0

0

0 c

c s

os

o

x x x

y y yD

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −

• Consider when D points to A: 
0x xD D=

• In order to know the rotation direction, we need to know the sign of   ydD

dt

AS

T C

counter-clockwise

x

y

clockwise
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Determining the rotation direction of the ellipse

295

A

( )0 0 0sin
y

y y

dD
D t kz

dt
ω ω ψ=− − −

d

0 left elliptically polarized

right elliptically polarize0

y x

y x

ψ

π

πψ

ψ ψ

< < ⇔

− < − <

−

⇔

( )0 0 siny y xDω ψ ψ= −

D
z

y

x
xD

y
D

0 yD

0x
D

( )

( )0

0

0

0 c

c s

os

o

x x x

y y yD

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −

counter-clockwise rotation as a function of time when the wave is

travelling towards the observer

Polarization: special cases

296

If

( )

( )0

0

0

0 c

c s

os

o

x x x

y y y
D

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −
00 , 0

x y
DD ≥

components are in phase or out of phase

D

xD

y
D

0 or 
y x

πψ ψ− =
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Linear polarization

http://cddemo.szialab.org/

Linear polarization

298

If ψy − ψx = 0 :

0

0

0

0

If 0 : tan .

If : tan .

x

x x

x

y y

y

y y

x x

y

D D

D D

D D

D D

θ

ψ π θ

ψ ψ

ψ

− = = =

− = = =−
x

y
D

xD

yDθ

If ψy − ψx = π :

x

y

D

xD

yD
θ

( )

( )0

0

0

0 c

c s

os

o

x x x

y y yD

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −

D makes an angle ±θ with the x axis. 
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Circular polarization

299

 If ψy − ψx = + π/2: left circular polarization

 If ψy − ψx = − π/2: right circular polarization

( )
( )

0 0

0 0

cos

sin

x x x

y x x

D D t kz

D D t kz

ω ψ

ω ψ

=+ − −

=± − −

What if ψy − ψx = � π/2 and D0x = D0y ?

The end of D draws a circle of radius D0x. 

( )

( )0

0

0

0 c

c s

os

o

x x x

y y yD

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −

300

Circular polarization
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Diverse polarization states

( )

( )0

0

0

0 c

c s

os

o

x x x

y y y
D

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −

Jones vectors

302

Handy mathematical formulism for describing and manipulating polarization states

Write
( )

( )0

0

0

0 c

c s

os

o

x x x

y y yD

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −
in complex notation, i.e., 

[ ]0

0

exp ( )

exp ( )

x x x

y y y

D i kz t

D i kz t

ω ψ

ω ψ

= − +

 = − +  

D

D

[ ]0 0

0 0

exp

exp

x x x

y y y

D i

D i

ψ

ψ

≡

 ≡   

D

D

Define the Jones vector for the polarization state as: 

[ ]

0

00

0 exp

expx x

y y

x

yD i

D iψ

ψ

    = =          
u

D

D
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Jones vectors

Jones vectors for linear polarization:

[ ]

0

00

0 exp

expx x

y y

x

yD i

D iψ

ψ

    = =          
u

D

D

Linear polarization oriented along the Ox axis:
 1

0
x

 =    
u

Linear polarization oriented along the Oy axis:
 0

1
y

 =    
u

x

y D

xD

y
D

Orthonormal basis!

What is the Jones vector for linear polarization at an angle θ with 
respect to the Ox axis?

x

y
D

xD

y
Dθ

x

y

D

304

Jones vectors [ ]

0

00

0 exp

expx x

y y

x

yD i

D iψ

ψ

    = =          
u

D

D

Recall from math class:

x

y

θ
ˆ

ˆ

ˆ ˆcos sin

ˆ ˆsin cos

x

y

x y

xy

θ θ

θ θ

′

′
= +

=− +

 

( )
cos sin

sin cos
R

θ θ
θ

θ θ

 − =    

Jones vector for linear polarization at 
an angle θ with respect to the Ox axis:

 
( )

1 cos sin 1 cos

0 sin cos 0 sin
Rθ

θ θ θ
θ

θ θ θ

      −      = =  =                      
u

(normalized) Jones vectors for circular polarization?

Recall:ψy − ψx = � π/2 and D0x = D0y

[ ]
[ ]

0
0

2
0

00

exp

exp

2
exp

1
x

i

x x

x x

x xy

D i

D i

e
D i

ππ

ψ

ψ
ψ

 ±   

           = = =       ±   


   


 
   

u
D

D

1

i

 ∝   ± 
circular polarization
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Jones vectors for circularly polarized light

305

Left circular polarization:
11

2
L

i

 =   + 
u

Right circular polarization:
11

2
R

i

 =   − 
u

Orthonormal basis!

Polarizers and the Jones formulism 

306

Ideal polarizer whose transmission axis is aligned with Ox: 

 

0

1 0

0 0

 =    
P

What about the Jones matrix for an ideal polarizer whose transmission 
axis is at an angle θ to the Ox axis? 
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Polarizers in the Jones formulism 

307

What about the Jones matrix for an ideal polarizer whose transmission 
axis is at an angle θ to the Ox axis? 

x

y

θ

Recall: 

 

( )
cos sin

sin cos
R

θ θ
θ

θ θ

 − =    

gives the coordinates of the 

new axes Ox’y’ in terms of 

the old coordinates Oxy

1. Find old axes in terms of the new 
coordinate systemˆ cos sin

ˆ s

ˆ ˆ

i ˆ ˆn cos

x y

x y

x

y

θ θ

θ θ

′=

+

′

′
−

′=
 

( )1 cos sin

sin cos
R

θ θ
θ

θ θ

−
 =   − 

Thus, the incoming polarization 
 

x

y

D

D

     
in terms of the coordinate system of the 
polarizer  is

 

( )1 cos sin

sin cos

x x

y y

D D
R

D D

θ θ
θ

θ θ

−
       =       −    

Polarizers in the Jones formulism 

308

2. Next, apply the effect of the polarizer: 

 

( )1
0

1 0 cos sin

0 0 sin cos

x x

y y

D D
R

D D

θ θ
θ

θ θ

−
          =            −     

P

3. Finally, express in terms of the original coordinate system

 ( ) ( )1
0

2

2

cos sin 1 0 cos sin

sin cos 0 0 sin cos

cos cos sin

cos sin sin

R Rθ θ θ

θ θ θ θ

θ θ θ θ

θ θ θ

θ θ θ

−=

   −     =             −   
  =   

P P

Jones matrix for an ideal polarizer whose transmission 
axis is at an angle θ to the Ox axis
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Glan-Taylor prism polarizer

Controling the polarizaton
Goal: light with arbitrary polarization “in”, linearly polarized light “out”.

40°

Calcite

air gap

optic 

axis

Ordinary wave polarization: 

out of screen no = 1.658

Extraordinary wave polarization: 

ne = 1.486parallel to optic axis

θcrit-o = arcsin(1/no) = 37°

θcrit-e = arcsin(1/ne) = 42°

Extraordinary wave continues!

Ordinary wave is reflected!

Controling the polarization of light

310

• Use polarizers

• Use a birefringent optical flat “wave plates” or “retarders”

z

d’
d’’

• Normal incidence • Walk-off is negligible

Recall: • d’ and d”, special polarization directions for which the polarization 
is maintained as the light propagates

• associated indices n’ and n’’

For a uniaxial crystal, whose optic axis is 

parallel to the plane of the optical flat (i.e., 
u is perpendicular to the optic axis)

n’ = no and n’’ = ne
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What happens to the polarization as the light 
propagates through a birefringent crystal?

311

d

Recall:
( )

( )0

0

0

0 c

c s

os

o

x x x

y y yD

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −

[ ]

0

00

0 exp

expx x

y y

x

yD i

D iψ

ψ

    = =          
u

D

D

d’’

d’

x

y

Each component travels at a different speed!

0

0

2
exp

2
exp

x

y

n

n

i d

i d

π

λ

π

λ

 =   

 =  
′



′


′

D

D

( )
( )

0

0

exp

exp

x x

y y

ik d

ik d

′=

′′=

D D

D D

Note that if n’ < n’’, d’ and d” are called the

fast and slow axes respectively

Choose x and y to 

be along d’ and d” 
respectively

What happens to the polarization as the light 
propagates through a birefringent crystal?

312

d

d’’

d’

x

y

Jones matrix for a wave plate:

Find Jones matrix corresponding to propagation through 
a birefringent crystal of thickness d

( )

0

0

2
exp 2

exp

x

y n
i d

i n d
n
π

π
λ

λ
′′



    =       −    
′



′
D

D

0 0

0 0

1 02 2
exp exp

0

x x x

i i
y y y

i dn ni d
e e
ϕ ϕ

π π

λ λ

                 = =                          
′ ′

D D D

D D D

0

0

2
exp

2
exp

x

x

y

y

ni d

i dn

π

λ

π

λ

          =                
′

   
′

′D
D

D
D

( )2
dnn

π
ϕ

λ
′ − ′= ′Let Phase delay

1 0

0 i
e
ϕ

 ∝    
M

0

0

x

y

  =   
u

D

D
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Quarter wave plate

313

Phase delay:

Example: quartz at 560 nm: ( )
15.4 µm

4
e o

d
n n

λ
= =

−

( )
( )2

1 0 exp 4 01 0 1 0

0 exp 40 00
i i

i

ie ie

π
ϕ

π

π

       −     ∝ = = ∝                
M

A phase of 2π corresponds to one wavelength, so a 
quarter wave plate corresponds to a phase delay of π/2 !

Choose thickness d such that

2

π
ϕ=

d

d’’
d’

x

y1 0

0 i
e
ϕ

 ∝    
M

How does a quarter wave plate change the 
polarization of a linearly polarized wave?

314

y

x
α

2

1 0

0
i

e

π

   =    
M

y

x
left elliptically polarized light!!!

0xD

0 y
D

0

0

;    tan
2

x

x

y

y

D

D
ψ

π
ψ α− = =

Before

After
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How does a quarter wave plate change the 
polarization of a linearly polarized wave?

315

y

x
α

2

1 0

0
i

e

π

   =    
M

y

x

elliptically polarized light

0xD

0 y
D

0

0

;    tan
2

x

x

y

y

D

D
ψ

π
ψ α− = =

What is the Jones vector for the initial state? 

( )
1 cos sin 1 cos

0 sin cos 0 sin

x

y

R
α α α

α
α α α

        −        = =  =                           

D

D

Apply the quarter wave plate: 

1 0 cos cos

0 sin sin

x

y i i

α α

α α

            =  =                    

D

D

Before After

( ) ( )

( )

0 0

0 0

cos cos 0 cos cos

sin cos sin sin
2

x

y

D t kz t kz

D t kz t kz

α ω α ω

π
α ω α ω

= − − = −

 = − − = −  

 0

2

x

y

ψ

ψ π

 = =

( )

( )0

0

0

0 c

c s

os

o

x x x

y y y
D

D D z

D z

k

k

t

t

ω ψ

ω ψ

= −

−

−

= −

Quarter wave plate: special case, α = π/4

316

y

x

1
cos sin

2
α α= =

amplitudes are equal!

Recall: quarter wave plate adds π/2 phase delay.

Equal amplitudes + π/2 phase delay gives Circular polarization! 

( ) ( )

( )

0 0

0 0

1
cos cos 0 cos

2

1
sin cos sin

2 2

x

y

D t kz t kz

D t kz t kz

α ω ω

π
α ω ω

= − − = −

 = − − = −  

y

x

α= 45°



159

Quarter wave plate

317

y

x

y

x

Before After

α

Input wave linearly polarized:

Input wave linearly polarized, α=π/4:

y

x

y

x

Before
After

45°

Half wave plate

318

Phase delay:

A phase of 2π corresponds to one wavelength, so a half wave plate 
corresponds to a phase delay of π !

1 0 1 0 1 0 0

0 0 0 1 0i i

i

e e i
ϕ π

       −      ∝ = = ∝                −       
M

ϕ π=

d

d’’

d’

x

y

Choose thickness d such that
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How does a half wave plate change the 
polarization of a linearly polarized wave?

319

y

x
α ( )2

e o
n n dϕ π

π

λ
= − =

1 0

0 ie π

 =    
M

−α

Get linearly polarized light “rotated” by 2α

symmetrical with respect to

d

d’’

d’

x

y

,  ′ ′′d d

How does a half wave plate change the polarization 
of an elliptically polarized wave?

320

y

x

Before

α

Y X

• Consider elliptical polarization as a sum of 

two linear polarizations

• Submit each y component of each linear 
polarization to a π delay

x

After
y

−α

Y’

X’

• Right polarization becomes left 
and vice versa!
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Half wave plate

321

y

x x

Before After
y

α
−α

Y X
Y’

X’

Before After

y

x x

y

α
−α

Wave plate axes
= x and y
=

Symmetry with respect to ,  ′ ′′d d

,  ′ ′′d d

Producing the desired state of polarization

322

y

x

Goal:  elliptical polarization with a specific orientation and axis ratio 

Desired 

orientation of 

polarization 

ellipse

0 yD′

0xD′

0

0

y

x

r
D

D′
=

′



162

Producing the desired state of polarization

323

y

x

y

x

1. Produce linearly

polarized light with a 

polarizer

Elliptical polarization 

with the right “shape” 

but wrong orientation

α
Orient quarter wave

plate axes to get

Desired 

orientation of 

polarization 

ellipse

2. Next step: use a 

quarter wave plate to 

change polarization to 

elliptical with the desired 

“aspect ratio”  r

tanr α=

324

What should the 

half wave plate 

orientation be?

Producing the desired state of polarization
3. Next: use a half wave 

plate to change the 

polarization ellipse 

orientation

Half wave plate axis 

should bisect the 

angle between the 

current and desired 

ellipse axes!

y

x
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What should the 

half wave plate 

orientation be?

Producing the desired state of polarization
3. Next: use a half wave 

plate to change the 

polarization ellipse 

orientation

y

x

Action of half wave 

plate

Half wave plate axis 

should bisect the 

angle between the 

current and desired 

ellipse axes!

326

Arbitrary 

polarization 

“in”

What you 

want “out”

Quarter-

wave plate

Half-wave 

plate

Quarter-

wave plate

Polarization control in optical fibres

https://youtu.be/5O7TL2SUAlo

Optical fibres are made of isotropic media (glass). However, optical fibres 
exhibit stress-induced birefringence

When they are coiled (looped), they become anisotropic!

Can easily make quarter and half wave plates by looping fibre!

Number of loops determines if it is a half or 
quarter wave plate!

“Fiber paddle polarization controller” or

“Mickey Mouse ears”
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Interference and retarders

327

xD

y
D

xD

i

y
D e ϕ

• Dy and Dx are coherent (from the same light!) and have now a definite

phase difference. Sounds like the right conditions for…interference.

• However, Dy and Dx are perpendicular to each other so they cannot

interfere…

u u

Retarder

Interference and retarders

328

P

XWhite 

light “in”

x

y

α

• Components of incident wave projected on the retarder axes
0

0

cos

sin

D

D

α

α

     

x

y

α
0D

0

0

cos

sin exp( )

x

y

D

i

D

DD ϕ

α

α

      =       
After retarder: 

A
x

y

β

• Place another polarizer (the “analyzer” A), at an 
angle β to the x axis of the retarder

Retarder

1 0

0 i
e
ϕ

 ∝    
M

x
D

yD
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Interference and retarders

329

P A

X

x

y

β
White 

light “in”

x

y

α

• Two methods for next step:

0

0

cos

sin exp( )

x

y

D

i

D

DD ϕ

α

α

      =       

After retarder: 

Method 1: Consider the components that are projected on the transmission axis of the 
analyzer A:

x

y

β

x
D

yD

A

β
( )0 0

cos sin

cos cos sin sin exp    

A x y
D D

D i

D

D ϕ

β

α α

β

β β

= +

= +

Next, find intensity
2

A AI D=

( )0 0cos cos e sin s n x  i p D D iα β ϕα β= +

Interference and retarders

330

P A

X

x

y

β
White 

light “in”

x

y

α

2

A AI D=

2

A A
I D=

( ) ( )222
0 cos cos csin sin sin sin2 cosos cosD α β ϕαα β αβ β = + +  

x

y

β

xD

y
D

A Compare to:

2

2

2

1

2

212 costot totI D DDD D ϕ = = + +  

Equivalent to the interference between two 

rays with fields D1 and D2 which have a ϕ
phase delay between them! 
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Interference and retarders

331

P A

X

x

y

β
White 

light “in”

x

y

α
0

0

cos

sin exp( )

x

y

D

i

D

DD ϕ

α

α

      =       

After retarder: 

Method 2: Jones matrix notation

Find transmission matrix for second polarizer A.
Recall: 

 2

2

cos cos sin

cos sin sin
θ

θ θ θ

θ θ θ

  =   
P or in the current case: 

 2

2

cos cos sin

cos sin sin
β

β β β

β β β

  =   
P

2
0

2
0

coscos cos sin

sin exp( )cos sin sin

D

D i

αβ β β

α ϕβ β β

     =       
AD

( )
( )0

cos cos sin sin exp

cos co s

cos

p se ii ns in s n x

i
D

i

βα β α β

α α β

ϕ

β β ϕ

  +   =    +  

Wave is indeed polarized linearly with an 
angle β to the axes of the retarder

( ) ( )0

222 ssi 2n so inc sin sin sc s os co cos co
A

I D α β α β ϕα β α β = + +  

22

A Ax Ay
I D D= +

Interference and retarders

332

White 

light “in”

Coloured 

light 

“out”

Result after sending the “output” through a prism:

P

A

X

x

y

β
x

y

α

( ) ( )0

222 ssi 2n so inc sin sin sc s os co cos co
A

I D α β α β ϕα β α β = + +  

( )2
e on n d

λ
ϕ

π
= −
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Lecture 8—Experiment

https://www.exploratorium.edu/snacks/rotating-light

• Experiment:

o Place a solution (corn syrup, sugar…)

between two polarizers

o Look at a light source through this

“sandwich”

 observations

o Rotate the nearest polarizer

 observations

o Increase the amount of solution in the

graduated cylinder

=> observations

Circular birefringence: Optical activity and  
the Faraday effect 

334

Where does it come from?

Optical activity:

Why care about it?What is it?

?
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Optical activity or circular birefringence

335

• Optical activity: An optically active material will cause the direction of incident 
linearly polarized light to rotate, i.e., the polarization remains linear but the 
orientation changes.

• The rotation angle depends on the distance traveled in the optically active 
medium

α

α = ρ d

d

ρ:
Depends on:

• material

• concentration

• wavelength of light

• propagation direction

• temperature

336

Why care about optical activity?
Exists in many molecules, 

in particular those of 

chemical and biological 

interest!

• Amino Acids

• Antibiotics

• Steroids

• Cocaine

• Diuretics

• Tranquilizers

• Analgesics

• Vitamins

• Carbohydrates

• Dextrose

• Lactose

• Fructose

• Sucrose

• Glucose

Examples: 

Food and drugs

Examples: Flavor, Fragrance, 

and Essential Oil Industry

• Orange oil

• Citric acid

• Lavender oil

• Spearmint oil

• Lemon oil

Use the optical activity of 

substances in the food, 

drug and fragrance 

industries to quickly, 

cheaply, and non-

destructively  monitor 

quality, measure purity…

https://rudolphresearch.com/products/polarimete

rs/polarimetry-definitions/



169

Where does optical activity come from?

337

Optically active materials: 

• Solutions containing asymmetric molecules 

Amino acid

https://en.wikipedia.org/wiki/Chirality

• no symmetry plane, i.e., 

such a molecule cannot be 
superimposed on its mirror image

Chiral

Chirality: some vocabulary

338

Chiral molecules exist in general in two 

versions:  a “left-hand” and “right-hand” 

version, though often only one of the 
two may exist in living organisms.

Enantiomorphs: a chiral object and its mirror 
image

same atoms and bond structure, but the geometrical 

positioning of atoms and functional groups in space differs so 
the molecules are mirror images of each other

https://www.masterorganicchemistry.com/2018/09/10/types-of-isomers/
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Where does optical activity come from?

339

• crystal of symmetric molecules in an 
asymmetric arrangement

Optically active materials: 

http://www.quartzpage.de/gen_struct.html

Quartz: symmetric molecules 

arranged in an asymmetric 

structure

• optical activity apparent for 
propagation along the optic axis

Rotation direction

340

α = ρ d The two enantiomorphs (or asymmetrical 

arrangements) give rise to a different sign

for the parameter ρ

dextrorotatory clockwise for incoming light

levorotatory counter-clockwise for incoming light
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http://cddemo

.szialab.org/

Towards Fresnel’s interpretation of optical activity

Linearly polarized light may be considered the sum of right-handed 
circularly and left-handed circularly polarized light

Fresnel’s phenomenological hypothesis

342

Fresnel: in an optically active material, the indices of refraction for 
right-handed and left-handed polarized light are different!

Using this hypothesis, define in 

the material: 

( ) ( )0 ˆ ˆcos sin
2

R RR

E
t z t k zkω ω = − − −  E i jRight circular polarization

( ) ( )0 ˆ ˆcos sin
2

L LL

E
t z t k zkω ω = − + −  E i jLeft circular polarization

Linear polarization outside

of the material (e.g., in air)

2
R Lk kk

π

λ
= = =

2
R R

k n
π

λ
=

2
L L

k n
π

λ
=

R L
= +E E E ( )0

ˆcosE t kzω= − i

In air:
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Fresnel’s phenomenological hypothesis

343

In the material, the initial linear

polarization becomes:

( ) ( )0 ˆ ˆcos sin
2

R RR

E
t z t k zkω ω = − − −  E i j ( ) ( )0 ˆ ˆcos sin

2
L LL

E
t z t k zkω ω = − + −  E i j

Using trigometric identities:

2
R R

k n
π

λ
=

2
L L

k n
π

λ
=

R L
= +E E E

( ) ( ) ( ) ( )0 0ˆ ˆ ˆ ˆcos sin cos sin
2 2

L LR R
k

E E
t z t z t z t zk k kω ω ω ω   = − − − + − + −      E i j i j

cos cos 2cos cos
2 2
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Fresnel’s phenomenological hypothesis
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Fresnel’s phenomenological
hypothesis…using Jones vectors

• We know that a linear polarization will be rotated by an angle     .

• What is the Jones matrix for this? 
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Apply this now to circularly polarized light:

Circularly polarized waves are eigenmodes of an 

optically active medium!

,
i

L Re α= u∓

The parameter “ρ” and the indices of 
refraction
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Phase difference between

left and right circularly

polarized waves after passing 

through an optically active 

material of thickness d
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Caution!  Sign convention different in French and English!!

0ρ> dextrorotatory in English; lévogyre en français!!!
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Specific rotation

347

α = ρ dRecall:
d

α

 [ ]T d
α
γλ

α =Specific rotation: T: temperature in °C

λ: wavelength 

α: measured rotation angle

γ: solution concentration in g/lD=>sodium line 589.3 nm

+: dextrorotatory

Wavelength dependence of the rotatory
power

• Optical activity depends strongly on the wavelength:

• Biot phenomenological law:

• If you take into account the wavelengths λi of the electronic transitions 

that exist in the  UV:

• Seems like the optical rotatory power may be related in some way to 

the index of refraction! (looks like the Lorentz model)

348
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349

350

A microscopic theory for optical activity
Recall Lecture 3: 

•Material constants depend on E-field in the past (i.e., the response is non-

instantaneous, i.e., not localized in time) 

( , ) ' ( ') ( , ')
j jl l

l

D t dt t t E tε= −∑∫r r

frequency dispersion, material properties depend on ω

frequency dispersion  absorption
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A microscopic theory for optical activity

•Material constants depend on E-field within a small volume, e.g., the volume of a 

molecule (i.e., response is non-local in space)  

31
( , ) ( , ) ( , )

j jl l

l V

D d E
V

ω ε ω ω′ ′ ′= −∑ ∫r r r r r

Wavevector dispersion (optical rotation dispersion)  circular dichroism

(i.e., differential absorption of left and right-handed light)

wavevector dispersion, material properties depend on k,

i.e., optical rotation varies with wavelength and direction

Can demonstrate that spatial dispersion gives rise to optical activity

Conclusion: natural optical activity

352

• Right-handed and left-handed circularly polarized waves are the

eigenstates of these materials!!!

• Spatial dispersion leads to circular birefringence!

• Different indices of refraction for right-handed and left-handed

circularly polarized waves!
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Faraday effect—induced circular birefringence

353

Applied magnetic field parallel to the propagation direction 

V = Verdet “constant” (varies with 
wavelength and temperature) 

Occurs in most transparent dielectric materials, i.e., isotropic / symmetrical structures

Faraday effect—induced circular birefringence

354

V = Verdet “constant” : same sign in English and French

Important difference with optical activity: it is the magnetic field direction

and NOT the propagation direction which determines the rotation 

direction (for a given V)

In this case V>0
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Comparison of  the Faraday effect and optical
activity

Magnetically-induced 

circular birefringence

Optical activity

x

z
y

z

z

z

z

α−
α−

Fixed

axes

Propagation 

direction axes

Reciprocity

356

Compare the polarization rotation for propagation in the +z and –z directions

Optical activityα

With respect to 
absolute (x,y,z) 
coordinates

With respect to the 
propagation 
direction k

Faraday effect βRotation angle 
measurement

Polarization
eigenmodes

Reciprocal effect Non-reciprocal effect
(symmetry broken by B 

field)
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Recall: Lorentz model

357

Atomic resonances at frequences ω0
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Zeeman effect

358

The ground level is degenerate. Light is propagating in the z direction

B = 0

J = 1

J = 0
Bz ≠ 0

mz = –1 mz = 0
mz = 1
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Zeeman effect and the Faraday effect

359

Circular birefringence

Rotation of linear polarization

The ground level is degenerate for B=0. Light is propagating in the z direction

With an applied field:

Application: optical isolator

360

No reflected light!

http://www.chinacablesbuy.com/what-is-fiber-

optic-isolator.html

Reflected 

light
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Polarization-independent optical isolator

361

Use circular and linear birefringent 
materials together!

Polarization-independent optical isolator

362
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optic axis

Next:  use Faraday rotator to 

rotate polarization by 45°
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Polarization-independent optical isolator

363
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optic axis

Next:  use Faraday rotator to 

rotate polarization by 45°

d

Choose V, B, d so

that
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Polarization-independent optical isolator
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Next:  use half wave plate to 

rotate another 45° so that

polarization is perpendicular

to the result after the beam

displacer.  How should the 

half wave plate be oriented?

d
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x

optic axis
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x
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Polarization-independent optical isolator

365
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“Top” ray is now the 

ordinary ray!
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“Bottom” ray is now 

the extraordinary ray!

Conclusion and 
summary

366

Circular birefringence:
Louis Pasteur
(1822-1895)

François Arago
(1786-1853)

Jean-Baptiste Biot
(1774-1862)
here with Gay-Lussac

 Linear polarization remains linear but is rotated!

 May be intrinsic to the material or may be induced

 Faraday effect:
 Induced by a magnetic field

 Optical activity:
 Found in  non-centrosymmetric materials

 May be due to the arrangement of symmetric molecules or due the 
asymmetry of the molecules themselves

 Characteristic of many biological molecules

 Reciprocal effect

 Non reciprocal


