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Course structure

TR « 8 x 2h lectures
e 8 x 2h tutorial sessions

* Final examination

- * Lecture notes and recommended reading

(eCampus)

* Ask questions!




Goals of this course

* Plane waves: the Fresnel equations
for reflection and refraction

* Matrix optics and optical cavities

* Propagation in dispersive media and causality

Diffraction (plane and spherical waves)
* Wave guides
* Propagation in anisotropic media

0/

* Polarization and wave plates

* Circular anisotropy

Wave Optics

What is optics?

The study of...

..light, its propagation, its production, the changes
that it undergoes and produces, and other
phenomena closely associated with it*
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*Merriam Webster http://hdwpro.com/sunlight.html




Why study optics?

Why study optics?

optical
tweezers
bead Alain Aspect,
) _ Nobel Prize in
kinesin Physics 2022

motors
®___,

OB C 9
microtubule




Goals for today:
* Maxwell’s equations and Poynting’s theorem: energy

conservation of EM fields in matter
¢ Plane waves

« Fresnel equations for reflection and refraction

If you wake up a physicist in the middle of the night and say
“Maxwell” they are sure to say “electromagnetic field”.
Rudolf Peierls (1962)

https://en.wikipedia.org/wiki/Rudolf_Peierls

Maxwell’s equations in vacuum

In the presence of charges and currents

VxE= (1)

VxB= Eolly — (2)

V.-B= 3)

V-E-= “

J = current per unit area perpendicular to flow

p = charge per unit volume

£,= vacuum permittivity 1

MU= vacuum permeability €,




Maxwell’s equations in matter

“Simple” matter: . .
* isotropic

* homogeneous
* non-dispersive

* non-magnetic

¢ linear dielectric

Dielectrics
é ¢

|ectr0n ; Polarization P: dipole moment

Nucleus%’ per unit volume

Ioh()mn/ = Iob = _D I])
9P

Jotarizati
polarization
at

Prouna = bound charge per unit volume

= polarization current density
= jp

-]po/a rization
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Linear dielectrics

In matter we define: D= (SOE + P) D: Electric displacement

or auxiliary field.

For a linear material: P= go)(eE ‘ X.: Electric susceptibility
) |D=g,(1+x,)E=g£E=¢E

11

Dielectrics

Permittivity as a function of frequency

v
EA:EE' h %ipolar T
©
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Frequency in Hz Wikipedia




Maxwell’s equations in matter:

Oxg=-8 (2.1)

ot
D=¢E [IxH :jfree +aa—D (22)
5

B=uH

For “simple” media

B =0 (2.3)
LD = P (2.4

13

Poynting’s theorem: conservation of energy
for electromagnetic fields in matter

Goal: Find energy stored in EM fields and an expression for the energy flow

What is work done by EM forces on free charges in interval dt?
Recall:  j(7.1) = p(F.0)V(F.1)

Recall: F, ~=gE+VxB)

14




Poynting’s theorem: conservation of energy
for electromagnetic fields in matter

aw,.. _ == . oD oB
T—JEEyde DXH—,]fm,'i'E (22 DxE:_E 2.1

vol

O{ExH)=HOxE)-E{OxH)

[Bejav =] [H-(—%—?) -0+«(ExH) —E-%—ﬂ av

vol vol

15

Poynting’s theorem: conservation of energy
for electromagnetic fields in matter

[ {E.‘;‘t) +H-?;jdv =~ [ Eej,av - [ O(ExH)av

vol vol vol

OE
ot

Forlinearmedia: D=¢E; B=yuH Note also: %£62|E|2 = cE.
t

16




Poynting’s theorem: conservation of energy
for electromagnetic fields in matter

[ {E.‘?t) + H-%ljdv == [ Eej,av - [ O«(ExH)av

vol vol vol
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Poynting’s theorem: conservation of energy
for electromagnetic fields in matter

[ [E'%l: +H.‘;ﬂdv == [ Eej,av - [ D«(ExH)av

vol vol vol

dUEM - — dWmech _I S []Ei
dt dt §
Ou

Mew — _§ B-O[S
ot b

18




Plane waves

19

Plane waves: relations between E,H,k

Goal: find relations between E, H and k

“Simple” medium:
+ homogeneous
* Isotropic

+ non-dispersive

» (keep the possibility of magnetism)

» No free charges nor currents

20
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Maxwell’s equations in simple media
with no free charges nor currents...

UxE = L (2.1)

ot
(OxH :a—D (2.19)
ot

For “simple”
media

D=¢E OB=0 (2.3)
lom=0 @21

...or more explicitly for linear media... spatially

homogeneous

OXE = —yaa—}tl (2.26)

OxH = ga—E (2.27)
ot
OMH=0 (2.28)

OE=0 (2.29)

11



Intrinsic impedance of the medium, index of
refraction

Recall: c=

z,= |*o <3770
80

23

Expression for a plane wave

* Fields are real quantities

* We use complex notation for convenience

Monochromatique plane
wave:

|

E(r,t) = Sexp[—i(at -k H‘):l +c.c.

H(r,t)= ’Hexp[—i(a,t—k H’):|+c.c. (

) E(r,t) :Sexp[—i(at—k E}')]+S* exp[+i(at—k H‘)]

24
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Relations between E, H and k

Substitute

|

E(r,t) = 8exp[—i(at -k Ei')] +c.c.
H(r,t) = ’Hexp[—i(at -k E})] +c.c.

Recall: DX(fA):fDXA+|:|fXA

kx& =wuH

OH

in OXE= _/JE (2.26)

(2.34a)

25

Relations between E, H and k

Substitute

|

E(r,t) = f,'exp[—i(at -k Ef):l +c.c.
H(r,t) = ’Hexp[—i(m -k H’)] +c.c.

Recall: DxUA):fDxA+[VxA

kxH =—-we€

OE

in OxH=¢c— (2.27)
ot

(2.34b)

26
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Relations between E, H and k

Substitute

{E(r,t)ZEexp[—i(&t—k EI')]+c.c. " |:| |:H = O (228)
H(r,t)—’Hexp[—z(at—k EI'):|+c.c. |:| I:E — 0 (2.29)
Recall: | EGfA) = f|:| (A + Df [A

K[H =0 (2.33a) KkIE=0 (2.33p)

Relations between E, H and k

k X g — C(),UH (2.34a)

E
k X 7_[ —_ —afﬁ (2.34b) |

v

k m —_ () (2.33a)

k(£ =0 @3




Ratio between E and H

kKxXE& =wuH | 2349

Kk XH = —cEeE (2.340)

29

Dispersion relation

From k X 8 - CUIJH

1

Recall: V —
\ HE

(2.34a)

30
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Phase velocity w=2"

E(r.t) :Sexp[—i(at—k I})]+8* exp[+i(at—k H‘)]

31

Phase velocity

¢ =k-r,—ckt

p=kr, - ckt

(p:k-rz—('k;’

32

16



At what speed does electromagnetic energy
propagate?
Consider: (S) time-averaged energy per unit surface per unit time

<MEM> time-averaged energy per unit volume

Unit a alys S:
ni n IS:
< EM>

Speed of energy propagation

Find (S) =[£ei“’+8* e_"¢’}x[ﬂei¢+ Mo e-iw] Q=keF —ax

Recall:
<ei2“’> =0

Eliminate 34" from Ex ‘ Recall: ’kxg = 0),&17'[‘(2.3461)‘

Recall: Ax(BxC)=B(AC)-C(AB)
-—) £><(kx8*):

34

17



Speed of energy propagation

w_c_ 1 . 1 )
Recall: ;—;—ﬁ (2.37) ExXH :@k"g”

What are we <S>
trying to do? Find <”EM>

Recall: Uy :%[SHEHZ +,LI||H||2}

= [8 e+ & e_i‘”]o[g e+ & e_i"’]

Similarly <||H||2> = 2"7—["2

35

Speed of energy propagation

o= el Bl ] () =2lel (P) =2

el

Recall: ||’H|| =

2 ~ N
Thus: (S)= 2K (i) = 26] €' &

36

18



Energy balance in simple matter but including
absorption (no free charges nor currents => no
mechanical work)

Let the electrical permittivity be com

‘D = éE:(e’+i£”)8‘

Amplitudes € (t) et H (t) are now decreasing functions of time!

<_[dAf1~(E><H)>+%jd3r(8’||8||2 +ulHf)=-[a’r 26@|8||2
N \4 \4

L J L ]

i AJ | P
Eriergy leavmgt Change in stored -Energy dissipated
Vo uni.e perunt energy per unit time or absorbed in the
me medium

37 37

Reflection and refraction of plane waves at an
interface

Z4 Ht n,sin @ =n, sin g
6=6

r i

82’/’12

»

.l X

Goals: find Snell’s equations
find Fresnel’s equations

Incident, transmitted and reflected waves are all plane waves
Incident, transmitted and reflected waves have the same frequency 2

19



Reflection and refraction of plane waves at an

interface
ZA Ht

E (r,)= (f,’i exp[—i(at -k, H')] +& exp| —i(ar -k, )] "'C-C-) (2.46)

E, (r,1) :(5, exp| —i(ar -k, Hr)]+c.c,) (2.47)

39

Boundary conditions
n, [GDI _Dz)
n, I:GBl _Bz)

= The perpendicular components of D and B are continuous across the interface

f,*(E -E,)=0

0 (248

0 (249

(2.50)

n, X(Hl _Hz) =0 @

= The tangential components of E and H are continuous across the interface

40
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Snell’s laws from boundary conditions

E, (r,t) = (& exp[—i(al -k, Er)] +& exp[—i(al -k, ﬁr)] +c.c.)

Use
E, (r,t) = (St exp[—i(al -k, H’)} +c.c.)
and boundary conditions to find Snell’s laws
The boundary conditions (2.48)-(2.51) must be satisfied
for all instants in time, for all (x,y) on interface (i.e., z=0)
ﬁlzt
41
Fresnel equations
24 Ep__H,
& K Find the reflection and transmission
t coefficients.
2 H h of th
>y =) ow much of the wave
K 6, g k, 1 is transmitted?
E; ' E,
. H) =) How much of the wave

is reflected?

42
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zA H

Fresnel equations

43

Fresnel equations: reflection and

transmission coefficients

“s” polarization

“p” polarization

.
w

t

£
g

i

&
5 s

i

_Z,co88 —Z cosf

- Z,cos8 +Z cosf
2Z,cos 6,

Z,cos6 +Z cosb,

.
]

oo |

o |

|

|

_Z,cosf -Z,cos8,

B Z,cos@ +Z,cosf

2Z,cos 6
Z,cos8 +Z,cosb

2.66

2.67

2.61

2.62

“s” polarization

24

44
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Fresnel equations: reflection and _ - 7,
Zl = == = —
e transmission coefficients & Vanm
L& Z,cos@+Z cosf
[e]_  2z,cos8 In terms of the indices of refraction for .
5 _{El " 7,0056+7,c056, an interface between two dielectrics: 11~ /2~
Normal incidence
“s” polarization
p ;= & :nlcosé’i—nzcosﬁt 2.66 e _n-n
" L& ] mcos@ +n,cos6, = & mn
.= &l _ 2n, cos G, & _ 2n
s & T COSGI. +n, Cosa 2.67 f.= E ) - n, +n,
“p” polarization
.= & | _nycos§ —n cosf 261 & _n-n
PlE ) n, cos 8 +n, cos @ T £ p_n1+n2
& _  2nmcos@ &) - 2
== F——— 2.62 i
&, mnycosf+n cosg ' &1, m+m

45

Fresnel equations: air / perfect conductor interface

Normal incidence Z =

r = Q _Z,-Z ro= é _Z2,-Z,
) &\ Z,+Z ’ & Z,+Z,
s »

- gz - 222 & 22,
t=| = = t, ==L =
CLEL Z,+7Z "lLE], Z+Z,

i

46
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“Impedance matching”

Normal incidence

47

Energy transport

24 H
How much energy (intensity) is reflected? o, K
t
_L_[s)m@ n 2
R="r= .
I, <Si>ﬁﬁ k B > k 1'X
) 3 H ! H,
Recall:  |(S\=(ExH)==|l€lf k 7=-<
(8)=(ExH)="]| M E
(s,)@| _|ef
R == ) :|r| (2.74)
(S)m[ |&

24



Energy transport

z4 H E
How much energy (intensity) is transmitted? o, K
t
L _[(s)m i 4 2
T="t= g
I, <S,.>|]i k f] > k, 1 X
H; ' H,
el |(5)=(ExH)=[lefk |z=-5 e :
zZ H ’ ’
r|S)Bl_Zeosglef  Zieosd
|<S,.>Efi| Z,cos@|&|  Z,cos '
49
Energy conservation
24 H E,
o, .
. ’
il 2,
KB~k 1 *
H ‘ H,
E, E)

50
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Reflection coefficient: amplitude and phase for an
air/glass interface

n<n
6= arctan >
nl
I, OR S
150}
o
o 100
2 P
— z sof
M=K =H
0 By

g ()

51

Reflection coefficient: amplitude and phase for a
glass/air interface

1.0

r]] > n2 06-

6= arctan -2 00%
r,r,UC 180
6.= arcsin& >
N—
S 0
o0
— z
:ul B :uz B :uo
180

52
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Total internal reflection: evanescent waves

H=H=kK
n=n 2
6>, E,(r.t)=€exp[-i(ot—k, r)]+cc.
ﬁt 3) N nz’,Ug = expl:—i(wt—ktxx—k,zz)]+c.c.
K, . . X
6" ' K‘z = iK
)

E (rt)=¢€ exp(—lcz)exp[—i(a)t - k,xx)]+ cc.

Evanescent wave: propagates in the x-direction, decays
exponentially in the z-direction

53

Frustrated total internal
refraction

z

n1<n2

54
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Scanning Near-Field Optical Microscope
(SNOM): Effet tunnel optique

Piezoelectric
scanning

Silica prism
Incident
wave

http://iramis.cea.fr

aluminum

cvanescent

-280 0 d=180 0 wave

This is a topographic picture showing a Scanning Near-Field
Optical Microscopy (SNOM) image of a sub-micrometric
S triangular pattern of holes drilled on polymethyl methacrylate

(PMMA) by electron beam lithography and wet etching,
g performed in the Materials and Microsystems Laboratory.

http://www.azonano.com

55

Lecture 2: Fresnel’s equations and

applications, geometrical optics
Goals today

e Applications of Fresnel’s equations: Fabry-
Perot etalon, Bragg mirror

e Matrix Optics (geometrical optics)

¢ Relation between geometrical and wave
optics: the eikonal equation

Refraction Matrix Translation Matrix

.

P = surface power d = lens thickness or

or lens power lens separation
d d
d =
-2
3 1l 0 1 d 1P d
“n =Sl
System Matrix

28



Fabry-Perot interferometer

t , I :transmission and reflection coefficients, n,<n,
' .. . . .
l” I’ :transmission and reflection coefficients, n,>n,

57

Fabry-Perot: phase difference?

/ Recall: SinHi :nSiIlHt

58

29



Fabry-Perot interferometer

59

Stokes relations

Time reversal

60

30



Stokes relations

Lecture notes p.26 ol

Fabry Perot interferometer

tt, P+ =1
E = —— 2.92 gt =
t i l_rIZezA{a ( ) trr:+_rrt’ 0 (2.93)-(2.96)
tt'=1-r=1-R
2 2
I, _le ‘ _ (1-R)
L& (1—R)2+4Rsin2A—2¢
Resonance?

A= 2% cos @,
¢

dn

62

31



Transmission

Fabry-Perot interferometer

2(m-1)n 2mn 2(m+1)n

n+l
=0.25forn=3 )
A¢ (rad) 63

Highly reflective mirror

Metallic mirror: R ~ 99 %. Can we do better?
Try a dielectric thin film stack!
I-n

1+n,

r=20 n-n
—_ 1 2
”"'”1 fy=—"7"
| ' A n]+n2

3

for = L =-r

Need another Tt phase change
for each round trip in a layer

I

27]-[n12el :277T1122e2 =
Jes . p)
Layer thickness= —

32



Geometrical vs wave optics

Matrix optics

— 2\ 3%(000)*}1-—)

66

33



Matrix optics (for paraxial rays)

Y

z optical axis

Reduced slope

n(z) : local index of refraction r’(z) = n(z)g

Ray vector: R(z)z{ (2 ]

67

Matrix optics: free space propagation

Reduced slope
= , _ dr
n(z)=n, o r(3=n()
- {/'drz/dz
nn e
______,,,,_;_;.;J—é— - a—rz/dZ _______
L
Ve Y6 \Z

68
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Matrix optics: free space propagation

; n(2)=n
n=r+-LL z 0 B drydz
"o r.r aeemm T
1 T
e .;.;.;.;.;.JAt,__d'rj/d ______
L
2 2

69

Matrix optics: thin lens of focal length fin air

Just before the lens: I dﬂ\\ z

Just after the lens:

70
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Matrix optics: thin lens of focal length fin air

A=1;C=-1/f
Just before the lens: /ﬁ' i _(;l """" % """"

Just after the lens:

f >0 for a convergent lens

71

Matrix optics: sphercial mirror of focal length f

R > 0 for a concave mirror

72
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Matrix optics and an optical system

A 4

74L(...) ~_'n

I N A

}

73

Matrix optics and cavity stabiliy

~Ss—=

=

STABLE CAVITY!

\ Za

UNSTABLE CAVITY!

74
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Cavity as a series of periodic elements

M M

mirror_L prop mirror_R

[ 1
L J

M

Mprop Mmirror_R Mprop Mmirror_L Mprop Mmirror_R etc...

1 period = 1 round trip | = M,

75

Plan of attack for investigating cavity stability

[ 1.
\ |

1. Find eigenvalues of (general) round-trip matrix M, =

2. Find corresponding eigenvectors = @
3. Express initial ray in terms of these eigenvectors

4. Find an expression for in terms of these eigenvectors and

eigenvalues and examine it.

76
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Find eigenvalues

1. Find eigenvalues of (general) round-trip matrix M, =

+
A, =m*~m® =1 with m = A2D

77

Cavity stability: steps 2 to 4

2. Eigenvectors: M,,r. =Ar,

4. [r|=2

3.Let T, =ar, +br.
M, r =Ar

Condition for stability?

Recall: At:mi\/mz—lwithm:A;D = -1<sm<l1

78
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Cavity stability

A :mi\/mz—lwithm:A;D =>_1sl’i’lsl

+

A+D

Let =cosd

- A, =cos@=*~/cos’ @—1=cosGxisinf ="

Recall: I, =M}, x, =M}, (ar, +br_) = allr, +bA'r

r, =ae"’r, +be "’r_ =r,cosnf +s,sinnd

79

Stable cavity

! g

e | T

r, =ae"’r, +be "’r_ =1, cosnf +s,sinnd

3
<
~

80
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K } * Unstable cavity
=

A >Tor|d|>1  5=Mun=0, (on or) ok, st
Ai=mi\/m2—lwithm:A;D ‘m‘>1
+
Let m=A D=icosh0
2
m=) ), =cosh@=~/cosh’ -1 =coshB=*sinh @ =e*’
r, =aAr, +bA'r. = a(ieg)n r, +b(ie_g)n r r, =r,coshnf+s,sinh nd

81

Unstable cavity

n n+l n+2 n+3

82

41



Example: Cavity with two spherical mirrors

o 1)

> M,, =

L prep 0 1

W'\ ﬂ z 1o
M | 7 _{ J

L= 2
\&Rl RZA mirror _i _E 1
Nk:( A BJ:
rc D
o Iy
R R ) R R,
MRT:
2wy 2wy
R[ RJ R R,
A+D L L
= =2/ 1-—||1-—— |-1 =2 1
"mT { RJ Rj 8182
5 -lsms<l

Example: Cavity with two spherical mirrors

C e >
>

M

Stable cavity |4==p 0<gg <1

e R

N
>
ot 9o = 1-L/R,
Ry R Z

42



Transmission

Fabry-Perot interferometer

WAVAYA

i 1 r' T
: 6,
6,
1 Finesse:
) _TNR
075+ -
At resonance:
05+ 2_7T z
f ]inside :;Ii
0.25+
e N ey
0 2 R=0.9 (n +1j
(m-1n 2mn 2(m+Dn =0.25forn=3
A¢ (rad) -

Photon lifetime in a high finesse cavity

- Cavity is filled with light (resonance)

Perfect mirror Mirror with o
transmission T - Turn off incident beam
Intra-cavity light - At 1 =0, intensity /(0) in the cavity
Propagating plane wave Loss

Time for 1 round trip in the cavity: L., /c
Intensity lost per round trip: 7'/

1(;+ﬁj=(1—T)1(t)

Miroir

. C
parfait

If the losses are low (T << 1): [(Hﬂ):](z).kﬁﬂ
c c dt
ﬂ —_ i I = _L Il Teat photon cavity lifetime.
dt L, 7. It is as if the photons complete 1/T roundtrips in
the cavity 86

43



Cavity ring down spectroscopy

= - - threshold value
200+

s

E 150

©

c

=

% 1 004 empty cell ringdown

=]
B - TRy o ringdown signal with
g Build up)l(_ ng Down —> % 504 absorbing gas present
= o
w
a .
o o~ 7 . : : .
i light source 20 30 40 50
(=] switch off 2

time (ps)
Laser Ti
Ime
Shutoff
www.picarro.com
L L

— ‘cav — ‘cav

cav

" cxlosses c(l—R] +1-R, +1-R, +aL )

cav

87

Eikonal equation: link between Maxwell’s equation
and ray optics

Consider the general form of a propagating wave (harmonic time
dependence)

Y= Aexp[il// —iat] +c.c.

Optical path length:

88
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Shortest time to person drowning: optical
path length

L’|FE6|UA’RD

89

Maxwell’s equations

oB
VxE=-2 (15)
No free charges nor ot
currents, simple oFE
media that may be VxB=¢,e u,— (1.6)
inhomogeneous ot
V-B=0 (1.7)
g =¢(F)
V (&¢&E)=0 (1.8)
£ =n’
r n: index of refraction

90
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In search of the eikonal equation

Recal: Y = Aexp[i(// —iax] +c.c.

Define: S(r)= kﬂ

0

(1.1,1.2)

:> {E(r,t) :S(r)exp[ikOS(r)—im]

B (r,t) = B(r)exp[ikOS(r) —ial]

91

What 1s the eikonal?

* The eikonal links geometrical and wave optics

« Eikonal: S(r) = kﬂ: spatial phase normalized by the wavevector in vacuum
0

{E(r,z)ZE(r)eXP[ikus(r)_im] (1.1,1.2)

B (r,t) =B (r)exp[ikOS(r) —i(d]

- S(r) = constant; surfaces of constant spatial phase, perpendicular to
rays

- OS= |||:IS|| t= n(r)f in the direction of ray trajectories and energy flow

jr ds=SM")-Sm) ~ Optical

L, = n(x,y,z)ds = .Os-
Pt JMAM ¥y J‘MAM 5 path length

« Approximation of geometrical optics: A, - 0O,ie., ky, - o

Amplitudes vary slowly as
compared to the phase

Y = Aexp[iy —iax] +cc.

92
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In search of the eikonal equation

Plan of attack: substitute (1.1), (1.2) into Maxwell’s equations in order to find and expression for S(r)

E(r./)=€ ik, S(r) =i
(<) (r)eXp[l_ ® l,m] (1.1,12)  in VxE=_8 (15
B(r,t) =B(r)exp|ik,S(r) —iax] ot
Recall.  Ox(fA)=fOxA+0f xA D=
OxE +ik,OSxE = icB
OXE ,insxe="B -5
0 0

93

In search of the eikonal equation

Use the approximation of geometrical optics!

Method 1: consider A <« all other dimensions, i.e., /]0 - 0, k0 - 0
Ox& . . . .
+iOSxXE =icB :> ik, OSXE =icB (1.11)
0
Method 2: consider only situations where the
amplitudes and &,vary slowly with distance as
compared to the phase
OxE+ik,OSxE=icB  m)y ik, OS%E = iwilB (L.11)

94
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In search of the eikonal equation

VXE= _B_B (1.5)
Similary, substitute ot 9K
VxB=¢,e u,— (1.6)
E(r,t) :S(r)exp[ikOS(r)—im] . ot
) ) (1.1,1.2) into V:B=0 (1.7)
B(r,t) =B(r)exp|ik,S(r) —iax]
V-(&&E)=0 (1.8)

And using the same approximation (geometrical optics) get:

ik, S E =icB (1.11)
ik,O0S xB = —iwe, . 1,€ (1.12)
OSmB=0 (1.13)
OSE=0 (1.14)

95

In search of the eikonal equation

ik, S %€ =icwB (1.11) 0SB =0 (1.13)
ik, 0S xB = —iwe,&. 1,€ (1.12) OSZ=0 (1.14)

Next, eliminate B from 1.12

Recall: AX(BXC) :B(A [C)—C(A [B)

96
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Eikonal equation
|os|’ =, =n*(r) (115

08 =|08] t=n(r)t (1.16)

t : unit vector in the direction of (1S

VS

wave fronts=> planes of constant phase

t tangent unit vector

97

The concept of a light ray K

Recall: <S>=£Re[5xg*] ik,0Sx € =i (1.11)
’ Recall: AX(BXC):B(A[C)—C(ADE)

2 k, A 2 2
<S>=?O[ex;(|35xs )}_C—%Heu os (1.19)
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Lecture 3: Pulse propagation in
dispersive media

99

Goals for lecture 3

* Dispersion
— Where does it come from?
— What are its consequences?

* Propagation of pulses or wave packets in dispersive
media

If we accept the electromagnetic theory of light, there is
nothing left but to look for the cause of dispersion in the
molecules of the medium itself.
Hendrik Lorentz (1878)
Nobel prize (1902)

100
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Introduction

* Dispersion occurs since

a medium cannot respond instantaneously

to an electromagnetic wave.

* The response of a material to an EM field must be

causal |i.e., it can depend on values of the field
that existed in the | past

but not on those that will exist in the | future!

* Consequence:

frequency dispersion and energy dissipation

are intimately related.

101

Convolution:

£(1) Dg(t)](t):_];dr f(t-1)g(7)

g(1): excitation

f(#): (non-instantaneous) impulse response function of the system

A g(t)

v

f(t)

v
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Convolution: excitation +
system response (linear

system)

CA() 0e(0)](0) = Iodr (t-1)g(7)

f(t—T) AQ(T)
t

v

[ fCg](t)

103

What 1s the origin of dispersion?

Example: Conductivity j=0E

N\

Causality: can only depend on

4
j(r,t) :(Rdt' g(t —t')E(r,t') (4.1)  values of the field that existed
b in the past

Letr=¢r-¢ Build causality into the conductivity; define
o(r)=0for r<0

J(Z’) > 0forr - —o0 Distant past has no influence.

- j(r,t):zdt'a(t—t')E(r,t')

104
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Fourier analysis

S T A

https://commons.wikimedia.org/wiki/File:Fourier_transform_time_and_frequency_domains.gif

105

Fourier analysis for non-periodic functions

_ 17 "
fw=-- j fk)e™ dk

FUO= [ fx)e™ dx Fourier

transformations

()= _]ida) f(w)e™

1
27T

£ (@) =_]idt £(t)e

Note: signs and position of 1/(2) is a matter of convention.

106
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Fourier transforms

A physical interpretation ‘

|F(w)[? is the power spectral density of the function F(7), i.e., it
tells us how much power is present at each frequency

50-
00+
A50-
20
250+
30
30+
400

L I S S A [ A S
00 06 12 19 25 31 38 44 50 56 62 69 75 81 88 94 10,

Spectre

Fréquence [kHz]

[ e A e e e s R
000 0,12 025 038 050 062 075 088 100 112 125 138 150 162 175 1,88 200

)
£
9
a
;
n
0

Some properties of Fourier transforms

Derivatives and the Fourier transform

%F(t) = —iwF (o)

iF (1) = %F(w)

Fourier transform of a real function:

F(1)OR= F(-w) = [F(a))]
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Some properties of Fourier transforms

F() =exp[— £ Flo)= maexp[_afz(ﬁJ

F(t+t))

11111

' (1) Fla+ay)

109

Some properties of Fourier transforms

| Widths |

Suppose that for F(¢) and F(w) : j t)dt=0 and J. w)dw=0

—00

Suppose that F(7) is normalized: | F | at=1

Then:

The larger F(¢) the
thinner F(w) and vice
versa |

PARSEVAL-PLANCHEREL theorem.

110
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Reciprocal spaces

Time <> (temporal) frequency

Position ¢ spatial frequency

Miguel Covarrubias,
http://www.loc.gov/pictures/item
/acd1996002431/PP/

| think you are my
reciprocal space

111

Dirac delta function

I(t) =lim e

E-0

0 tz0
o) =
(1) {mtzo

2&

Fourier transform:

1= ]2 o(t)e™ dt

5ty = T e dw

(27) =,

Area=1 |[d(di=1

o) =9d(-1)

[ 8 fwde = f(0)

[ 8t =1, (e = £ (1)

112
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Recall: Fourier transforms and the convolution
integral

In general:

()= ] o )] - @)= far(ger

[1(0)00(0](0)= ] o 1(t=r)(r) = [ ()12 ()

“The Fourier transform of a convolution integral is equal to the product of
the Fourier transforms of the individual functions”.

277 f (1) B (1) | 4t || f (0) Og() () :Ioda)’ flo-w)g(w)

113

Fourier transform pairs

A — f i — 1 f A —iax
a(a))—_[oa(t)e dt a(t)-;T__[)a(a))e dw
_ 1 (e —iax
E(r,t) —;T:[OE(r,CU)e dw

00

R | % —icx
J(r,t) :?TJ‘ J(r,a))e dw

—00
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Non-instantaneous response of a dispersive medium

(00)

j(r.f) = _jmdt' a(t—t')E(r,t')

l Fourier transform

j(r.w)=0(w)E(r,w)

0(w) =0 (W) +iod"(w)

What can you say about the symmetry of the
real and imaginary parts of 0?

115

Properties of the real and imaginary
contributions

Recall: 0 (1) isreal U(t) =g (t)
From the definition of the Fourier transform:
1°°' o —iax _*_1‘” . n +iax
40 =;T:|;[U(a))+zaJ (W] e™“dw=0" (1) —Ei[a’(w)—za (@] e“dw

Change w to — w in the second integral and conclude!

116
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Non-instantaneous response of a dispersive medium

g (a)) even

o(7)0R= 6(-w)=6" (w) = {a" (&) odd

Same conclusions for a(a),p(a),j((a),é(a)
All are complex and depend on the frequency.

117

And what if dispersion didn’t exist???

What happens if the response is the same for all frequences?

ie., |0(a)=0
Instantaneous
l (inverse) Fourier transform
response--
impossible! U(t):LT G
Frequency 2
dlsper3|qn Recall: 3(f) = % [ dwe
MUST exist ke
!
lmA_,-wt _6m—iwt A
o(t):E_J;oe dw—ﬂie do=66(1)
278(1)
12
INSTANTANEOUS RESPONSE OF THE SYSTEM e
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Next: Classical models for frequency dispersion: the
Lorentz model

Basic idea: the movement of the (bound) electrons in a material

is that of a damped, driven, simple harmonic oscillator

% \. I': displacement from equilibrium .
Nucleus%.m electron mass [ damping constant
d’r dr
‘@ m—+mr—+m r =—cE
dt

And for “free” electrons? = No spring! = | Drude model for metals!!!

“electron”

(y, resonance frequency

119

Lorentz Model
2
mj—z +ml % + magr =—cE| (4.45)

Consider a steady state regime:
Monochromatic field E(;) = Eexp(—iwt)+c.c. (4.46)

Expression for displacement: r(t) =Rexp(—iwt)+c.c. (4.47)

Plug (4.46) and (4.47) in (4.45) and solve for R!

—el/m
o; -0 —iol

2

/m .
Dipole moment: p=—er(t)= —Sexp(—lwt) +c.c.
Wy —0O" — iol”

120
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Lorentz Model

2

/
Dipole moment:  p=—er(t)=—; SRAL

————=Eexp(—iwt)+c.c.
o, —0* —iol (i)

Polarization (electric dipole moment per unit volume):

2
ne - /m
P=np(t)=—————Eexp(—iar)+c.c. (4.49)  n:number of electrons per
&g - —iadd ( ) unit volume
2
Recal: D= gOE +P =¢cE  Use (4.49) in this expression  Let g7 =%
R " gm
Solve for 42 (5 = £(%) 0
onetor it (w)= g, This n is the
index of
refraction!
. Elw W’
Pla)= s D
& W, —w —lad
121
Lorentz model
Complex index of |, _ é(a)) _ Ct),2J , _ne
. Pla)=t@ape G | o
refraction &, W -’ - iad Pogm
2 2
- a)p(wj -w )
2
(w§ —wz) +w'T?
2
0.- W,
2
(a)§ —af) +wT?

w—_@() . . Almost Lorentzian if I << @

122
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Dielectrics

Frequency dependence of the permittivity

dipolar

atomic .
elettronic

103 10° 10° 102 1013
rlmicrowavej infrared RIIIS FUVL\
Frequency in Hz

Wikipedia
123
Comparison of the Lorentz model with data
30 Si0; i
n'(w) [ ]
2. g
Silicon 1F .
( . Silicon : N le'en'lz :J i ......1/.....‘..1 N ‘X,..l PP B
| | § | 1012 Ao13 1014 | 1015 o6 1017
! L @ (Hz)
| &/ Vibrational
' o excitations (IR)  visible
| 0‘ : Electronic
A i Y excitations (UV)
0 5 0 0 4 3
E (eV) E (eV) 124
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Frequency dispersion and energy dissipation

aD JoB . Poynting
jd3 (E Z+H 5) —ldhl -E—ld3rV~(E><H) o
+
D(r’a) - g(“)E(r’a) Lecture notes pp. 76-78
B(r,w) = (w)H(r,w) or Zangwill p. 627-629
4
jd*r(Ea‘Lt+Ha%_‘fj = [ L, (1) + [ar (1)
Vv Vv Vv

with
()= 3 { [ 02 (@) ECOF + ol ()M CO

a(t)= w| & () [EL)[ +x (@) H () |

125

Frequency dispersion and energy dissipation

£d3( GOL+HBGLJ Id*r—uEM +_£d3rQ(t)

with
o (0 =3 { [N JIEF + ol e Mo |
:w@wmw@www

For quasi-monochromatic fields (i.e., strongly peaked around a single
frequency—wave packet).

Upy (f) is the total energy per unit volume (transiently) stored in the medium

0 (t) is the rate of energy absorption (per unit volume)

126
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The consequences of causality:
Kramers-Kronig relations

Recall: P=¢XE; 5:50(1+/Y)

In order for causality to hold: ~ P(r.z) =&, T dr X(t —tV)E(r,t')

with ‘)((T):O for r<0\
We can write ’)((t):@(t)X(t)‘ 1“@(0

! Heaviside function

A 1A
X(w)= 2—@(60) Ux(w)
. ! i 1 % 2 s

= —_ --’ 9 :-—-A R t AT T
&) = (@) +pv.— jo)= )((a))+2ﬂ73:[dw

v

-
X (w)= ——73_[ do’ % (@) Kramers-Kronig relations
-’
Link between real and
” do’ X (@) : :
1 (w)= ,[ P imaginary parts

127

Cauchy principal value

f(X) c—¢
lim | f(x)ax=-w
-0
a b
¢ b x !1}})1 f(X)dX:+oo
cte

gil})l(Jf dx+jf de—ij )dx

CTE

Cauchy principal value integral (if finite)

J.pv dx Pjg )

128
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Interpretation of the Kramers-Kronig relations

If &'(wjis not constant anywhere, £ (w)is non-zero everywhere

i.e., frequency dispersion in any interval of frequency implies that
non-zero absorption occurs in every interval of frequency

Conversely, frequency dispersion occurs everywhere in frequency
if absorption occurs anywhere in frequency.

Why is there this intimate relation between
dispersion and energy dissipation?

X (w)= —lPJ dw’Lw,)
n 0-

=& (1+x)

xl’(a)) Jd /x (w )

129

Frequency dispersion, absorption and causality

Wave packer " Tl ﬂ ﬂ H (\ﬂ I

medium A U 1L

Absorbed

Component
A
material {\/\/\/\/\/\/\“’“’)
absorbs only for \/ \/ \/ \/ \/ ~,
W=

0

i AR
\)&

= A

Time

Zangwill, p.651 130
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Short light pulses and consequences of dispersion

Pulse as a function of time

I think you are my
reciprocal space

Frequency space

131

Pulse propagation

n 2 7

z2=0 . 2
E(z=0,0)=E(z=0,0)e " +c.c.=EV (2 =0,1) +c.c.

Analytic signal

I
. A

Pulse as a function of time Frequency space

132
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Pulse propagation

il N(e) el

z2=0 pa
E(z=0,0)=E(z=0,0)e " +c.c.=E (2 =0,1)+c.c.

: t’
Example: Gaussian envelope &£(z=0,1) = E exp[— AL ]
0

) 4
EY(z=0,1)=E, exp| — e
( )=k p[ 2At02]

l Fourier transform

133

Pulse propagation
E(z=0,0)=E(z=0,1)e " +c.c.=E™ (2 =0,1) +c.c.

t2
Example: Gaussian envelope £(z =0,1) = E, exp(— A }
0

)
E®(z=0,1)=E,exp| — e

FT

Ac = /A,

( _wp)zJ E =\2mt,E,

E®(z=0,w) = E, exp| ———21-
(=00 =E p{ NS

134
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Pulse propagation

As we will see when we study diffraction, we can write an expression for the pulse at
the entrance to the dispersive medium as a sum of monochromatic plane waves

E(+)(Z =0,1) :L I da,e'i“’E(+)(Z =0, w)
21 e,

Each component propagates with its own wave number 1 (w) = n(w)ﬁ’

EW(z,0) = € j dee ™@EW (7=0,w)e" @ | (4.73)
21 e,

Assume wave packet is sharply peaked at a)p

mmm)  Taylor's expansion of k(w) around w,

(to second order)

1 d’k
+5((D—(0p)2

o, ®

Dispersion: k(@)= n(a))% = k(a)p)+(a) - wp)%

135

Pulse propagation

dk 1 d’k
Dispersion: k(w):n(w)%:k(wp)+(a)—wp)% +5( - p)2 pys: (4.75)
— ——
k(w)=n(w) 1y,
¢ Group velocity
c c dispersion
Ve an dn | (4.76) _d%
n+w— n—Aa Bz—dwz . (4.77)

Group velocity

Substitute (4.75-4.77) in (4.73), evaluate integral!!!

E(+) (Z,t) - L J' d&k_imEH)(Z — 0, C()) eik(w)z (4.73)
2 e,

136
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Propagation of a Gaussian pulse

(@-a,)

201,

; 5 = d*k
D= =E - + ! i 2T
E™(z=0,w) Eoexp[ Ae? ] E( )(Z — O,I) — E() exp[_ ]e Wyt d&)z ,

Phase velocity ‘ l Propagation in a dispersive medium

k =k
Gy v ( ”) Envelope propagates at

v, =—2
¢ k, I the group velocity v,

| | 2 2
E9 (00 Ee ) xexp (-7 vgz exp _iﬂ BAW 7
2Ai (2) 20(z)
'\

‘ B, #0: pﬂlse spreading ‘

rrTy
Ni(z) =0 +Aaf,8§zﬂ/ e £

E(+)(Z,t) =L j d&B_imE(+)(Z — 0’ C()) eik(w)z
27,

137

Phase and group velocities

v Phase velocity:

w c
— P
V¢—

k, n(w,)

v Group velocity:

Cc

n+ o
da

AN
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Normal dispersion

139

Normal dispersion and slow light

Kramers-Kronig relations: link between dispersion and absorption

v

Normal dispersion--
positive slope

v

=10 _—5 o :ﬁ 10 .
(=T Slow light

Peak in transmission:

140
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Normal dispersion and slow light

Light speed reduction 08 RN

to 17 metres per second § o5

in an ultracold atomic gas e

I:gye:zsxrg:::ollia‘l;“r. S. E. Harrist, Zachary Dutton*{ : :10 S . . is

* Rowland Institute for Science, 100 Edwin H. Land Boulevard, Cambridge,

Massachusetts 02142, USA 1hoe b
+ Department of Physics, § Division of Engineering and Applied Sciences, g 1o
Harvard University, Cambridge, Massach 02138, USA £ e
+ Edward L. Ginzton Laboratory, Stanford University, Stanford, California 94305, g 1o
USA g 008
B
o« 0996
NATURE|VOL 39718 FEBRUARY 1999 | www.nature.con 0994 ‘ ;
-30 —20 -10 10 20 30
Probe detuning (MHz)

% T=450nK
Touay = 7.05£0.05 s

L=229£3um

v,=325£05ms”

PMT signal (mV)

Time (us) 141
Anomolous dispersion and fast light
Kramers-Kronig relations: link between dispersion and absorption
1
— Peak in absorption:
; 7
’ o Anomolous dispersion--
S negative slope
<
0 v
-10 =5 0 5 10 Fast hght
(w—w,)[T
v,=— >¢ oreven <0
g
nt
dw
142
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Anomolous dispersion and fast light (v, > ¢)

The speed of information in a

‘fast-light’ optical medium

NATURE |VOL 425 | 16 OCTOBER 2003 | www.nature.com/nature

Michael D. Stenner', Daniel J. Gauthier' & Mark A. Neifeld”

'Duke University, Department of Physics, and The Fitzpatrick Center for
Photonics and Communication Systems, Durham, North Carolina 27708, USA
2Department of Electrical and Computer Engineering, The Optical Sciences

Center, University ofAr.Eza.»m. Tucson, Arizona 85721, USA

12
10
» What about causality? g
. 2
» Can you transmit 5
information faster :cg

than ¢?

—:{_ k— t=274ns | s
I)F A\-L
1.2
Advanced , 0.9
0.6
0.3
T T T T T 0.0
-200 100 0 100 200 300
Time (ns)

Power (uW)

143

Anomolous dispersion and fast light (v, > ¢)

NATURE |VOL 425| 16 OQCTOBER 2003 | www.nature.com/nature
What about causality?

Optical pulse amplitude (arbitrary units)

a I
1.5 \ oy
/ 1
1.0 1 / 1l. Advanced
!
Advanced /% \\ 1\
os{ N\ ol )
\> 0 i N N\
0.0 4 =~ Vacuum \\ \_f\/\*‘}m
-300 -200 -100 0 100 200 300
1.8
1.21b <«— Advanced -
1.0 e v
T~ 14
0.8 ~ 12
0.6 ~ .
~H10
0.4
0.2 Vacuum ——» 0.8
' ' ; 0,6
60 40 _o0 o
Time (ns)

1jicpe)
apny|dwe ss|nd [eondo

B

<2

(suun

At what moment can you
distinguish a 1 from a 0?

Transmission

(w=ew)T

A step edge contains
a multitude of
frequencies!

n -1

A’

-10 -5 0o 5 10

144
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Propagation of a Gaussian pulse

Phase velocity ‘

0« Envelop propagates at

v, =—=%
4 K, I the group velocity v,

| |
/(wt kz)

2 2
X exp —(t ng) exp —/ﬂﬁzszz

E*(zt)OE,
(ZOHEe 2A t(2) 204(2)°
A

‘ 5, #0: plﬁlse spreading ‘
M(2) = AL + DB 2

Consequences of ,‘|

» Pulse spreads out in time [lf
|
» Pulse becomes “chirped”: instantaneous frequency

varies linearly with time

145

Chirp: instantaneous frequency varies linearly with time

t=zw) | (tmzv)

204(2)° =P 2At()

—gt2 = 2
EO e @) a=arn

=%:wp+2bt

Instantaneous frequency: = di

(wtk)

E”(ztyOEe’ X exp

T BAw

+l(w—a)p)2 'k

Recall: k(a’)=”(a’)2:k(wp) (a) @ )dk 2

c do|,

Eh

‘ B, > 0: high frequencies propagate more slowly than the low frequencies ‘

Front
Back

S (<)

146
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Pulse spreading as a function of the initial pulse

width
N ;
nice)
Time
(o = - _U | i EO (2.0) 0 E.o~ @) _0_4%) _(’_4%) A
E'"(z=0,t) = E,exp A;g}’ (z,) O Ege Xexp 280(2) exp| —i 2802y Bbwz
““““““““““““““ At(2) = A2 + AP B Z
5003, = 100 fs¥/mm (2 0 2
400}
~ 300} Aty =101s
s
5 200f
100
Aty = 100 fs
07\ Il Il Il Il \7
0 10 20 30 40 50
z (mm)

The shorter the pulse, the larger the spectrum, the more it will spread!!!
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Pulse spreading, pulse compression...

Ap=sofs Initial chirp

C=3

300+

B> =100 fs>’mm

& 200
3
100}
of_— . . . N
Pulse 0 10 20 30 40 50
width z (mm)

decrease!
More in tutorial!

148
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Chirped pulse amplification:
2018 Nobel Prize in Physics

Gérard Mourou Donna Strickland

Why do you need Chirped Pulse
Amplification?

Too high power in gain medium! Plasma filamentation! 149

Chirped pulse amplification:
2018 Nobel Prize in Physics

Stretched i Amplified
pulse Amplifier pulse
Amplified
Slu])rt short pulse
pulse
Stretcher @
Compressor

150
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The information highway = optical fibres

= dispersive medium!

Figure 1. Five Traffic Milestones and Three Traffic Generator Milestones by 2015
2015
The annual run rate of total IP traffic reaches
the zettabyte threshold

2015
Internet trafhc from wireless devices exceeds.
Internet traffic from wired devices.

80
2014
70 Ono-fifth of consumer Internet video now
originates from non-PC devices.
60 2012
The number of households genarating over 2015
1 T8 per month hits the 1 million mark The number of
£ networked
E so0 dovices s double
= 2012 the sizo of the
= Intemet video reaches 50 porcent consumer entice global
g a0 Intornet traffic population
8 20m
) 2010 The screen
2 30 Intemet vidoo surpasses P2P bs the largest :"J:f;::;:’é::
& consumer Internet video traffic category ikherentiphco
foot per capita
20 2003 2011
Cansumer internet surpasses The number of
business Intemet networked devices
10 equals the size of
the entire global
population
0 o
2000 2005 2010 2015

Source: Cisco VNI, 2011

151
Summary
» Dispersion: optical response depends on frequency of light
» Origin of dispersion: the material cannot respond
instantaneously!
» Consequences of dispersion:
» light pulse « shaping » (most often spreading...)
» Energy dissipation in medium
> Speed(s) of light in matter: can have 0< v, <¢, v, >¢, v, <0.
Speed of signal is always in agreement with special relativity.
152
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Lecture 4: Diffraction

Knowing the distribution of the electric field on a plane
at z=0 (e.g. on an aperture), can we find an expression
for the field at a distance z>07?

Why study diffraction?

https://en.wikipedia.org/wiki/Huygens%E2%
80%93Fresnel_principle

https://en.wikipedia.org/wiki/Diffraction 153

Knowing the distribution of the electric field on a
plane at z=0 can we find an expression for the field
at a distance z>0?

z=0

In principle, quite complicated: partial differential equation, boundary
conditions, vector fields...

154
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Solution!
—

ANALYTIQUE

DE LA CHALEUR,

Pan M. FOURIER-

4 £\

oals for the rest of today's class:

¢ Express an arbitrary wave as a sum of plane waves
e Spatial frequencies

» Fraunhofer (far-field) diffraction

Joseph Fourier (1768-1830)

155

The electric field and its
Fourier transform

The electric field is a function of E(r,t)

) E(r,w)= jth(r,t)e"m (8.2
- Fourier transform with
respect to time / angular
P ) frequenc
—) E(r,1) :%Tj dwE (r,w)e™ (3.3) auency
— E(k k., z.t) = [[dxdyE(x, v, z,t) e Fourier transform with
( ot ) H o (x he )e respect to position / spatial
frequency
1 i(kx+k,y
‘ E(X’ -‘"Z’l) :Wﬂ-dkxdk)'E(kx’k,\ ’Z?t)e et

156
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Diffraction and propagation of a light beam:
How will we get to our goal?

Difficult!!

E(r,y,2=01) )  E(r.y 21

FT FT!

E(kg, ky,z=0,w) — E(ka, ky, 2,w)

Easy!!

157

Wave propagation equation

» Consider one component of the electric field, i.e., a scalar
function (good approx. when not near aperture).
Recall:

Maxwell’s equations in vacuum (no free
charges, no free currents)

0B
E = -— (
Ox 3 )]
OE
OxB=pe,— (2
*B=thg 5o @)
OB=0 (3
O@E=0 4
Ox(OxE)=0(0E)-0OE ()
1 0°E(r,t¢
O%E (r,t)-— —~=0 (1)
(r ) c2 at2
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Helmholtz equation

2
0 (v, 1) L S E(1)

=0 3.1
¢t or? (31)

Express E (r,t) as a Fourier series or transform with
respect to time / angular frequency

—3

E(r,t):%T dwE(r.w)e™  (33)

8

Plug (3.3) into (3.1)

TE(r )+ L E(rnw)=0 64

159

Towards a propagating wave as a sum

TE(r )+ E(rw) =0 ©4
C

o 0
+
x> Oy’

Plug (3.5) into (3.4)! Recal: V’=

of plane waves

(3.5)

82
0z°
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Towards a propagating wave as a sum of
plane waves

{;’—ZE(kx,ky,z,w){ﬁz—kj —kysz(kx,ky,z,w)} =0 (36)
< c

CUZ 2 2 - wz 2 2
C—z_kx _ky if c_2>kX+ky

k.= (3.8)

i\[k; +k; == otherwise
C

161

Towards a propagating wave as a sum of plane waves
E(kx,ky,O,a)):A(kx,ky,a)) (3.7b) for =0

Recall: E(kx,ky, Z, a)) = A(kx,ky,w) e (3.7b)

2
Recall: E(x,y,z,w):(zi) HdkxdkyE(kx,ky,z,w)e"“‘*“""—"’ (3.5)
JT
1

(272)

E (x, v, Z, C{)) = J‘I dkxdkyE (kx, ky ,Z= 0’ Cl)) ei(kxx+k),y+kgz) (3.11)

@

2 2 2
Kivk]+k=2

(dispersion relation) (3.12)
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Propagation and spatial frequencies

E(x.y.z.0) = (Z:T)z [[ ak,ak,E(k,.k,,z =0,w) o/ lrrhi) (3-61012 )
ke +k H k==
C

E(kx, k,,z=0, a)) = J.J. dxdyE(x, v,z =0, a)) e_i(k‘”k)'y) (3.13)

A 4

Concept of spatial frequencies

Which grating has the higher spatial frequency components?

164
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Concept of spatial frequencies

Which image has the most spatial frequency components?

X X

2

X

2 |E(k)

|E(k)

X

X

165

Spatial frequencies and propagation direction

* After propagation, the resulting field may be expressedasa
sum (integral) of plane waves with wavevectors 242 +2 =%
pe
1
E(x,y,z.0) =—— || dk dk E(k k, z=0,w)e
» Each plane wave in the sum corresponds to a specific spatial frequency

i(koxk, 4k, 2)

» Each plane wave in the sum corresponds to a specific propagation direction!

166
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Spatial frequencies and propagation direction

E(xy,z0)= ﬁ ([ atai E(k k2 =0, ) )

=i kxx+kyy)

E(kx,ky,z :O,a)) :dedyE(x, y,2=0,0)e (

4‘ ‘M’h’\ ‘1‘ } \
V W W/ ' ) )

z=0

167

Divergence

From the properties of Fourier transform pairs: AxAkx >1

kZ
X 4{ """"""
k| Kk
2
_ A

e NG = =

168

84



Propagation as a low-pass filter

E(xy.2.0)= ﬁ [[dk i E (k. k.2 = 0,0) "

kx+k, y+k.2)

X
kZ
X S
‘ Ki| k
) g
zZ
w/c
w . W )
C_Z_k)f_k\z if ?>kf+ky kzwc

k.=

/ W .
ik} +k;—— otherwise
c

169

Propagation and spatial frequencies
z=0

A

170
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Propagation and spatial frequencies

72> A

171

Scanning Near-Field Optical Microscope
(SNOM):

e

collection mode of NSOM

https://www.photonics.com/Articles/NSOM_D Change in resolution as a
iscovering_New_Worlds/a25127 function of tip-sample
distance

172
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Propagation as a low—pass filter

(x.y,2,0) Hdk dk E(k, .k, 2 =0, @) ¢t
K2 +E2+K? —6—7
_----f ......
k k
2z )
z
w/c
a)z 2 2 . a)2 2 2
C_Q_kx _ky lf ?>kx +k." k=(lyc

k.=

f W
i\|k} +k == otherwise
e

173

Summary: resolution and spatial frequencies

174
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Exact solution to our problem:

Knowing the distribution of the electric
field on a plane at z=0, can we find an
expression for the field at a distance z>07?

1
(27)

kxx+k).y+kzz)

E(x,y,2,0)= ([ ik E (k. K,z = 0,) "

(kb2 =0.0)= [ty (5 .2 0.0 )

...but still a bit complicated to calculate!

175

Fraunhofer or far-field diffraction

Two methods:

e starting with the Huygens-Fresnel principle of secondary wavelets

« using the stationary phase approximation

176
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Huygens-Fresnel principle

Every point on a primary wavefront serves as the source of spherical secondary
wavelets such that the primary wavefront at some later time is the envelope of
these wavelets. The wavelets advance with a speed and frequency equal to those

of the primary wave.

primary wave secondary wavelets

! 2 3

http://www.fisica.uniud.it/irdis/Ottica/Diffrazi

one_guida/DiffrazioneGuida.htm
177

Fraunhofer approximation

& » Source is located at z=0
.+ Area dS assumed covered with coherent point sources; dS << A ;

r! (x,,2) » dS assumed to emit a spherical wave

|
) Tz P « £,is the source strength per unit area = E(x’,y',O, a))

4 [ "’-
Y
l- eikr'
dE=-—¢& ds
/1 A ]
r

Fraunhofer condition:

Point of observation at a distance >> size of source

178
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Fraunhofer approximation
. ikr'
dE = —%gA ¢

ds

!

r

o () GRS

Fraunhofer approximation
. ikr'
R l e
Yl dE =——&,~—dS
A4y
[ PR R
| ISR r - 4
¥ 4 [ /J ) < ’
4
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% ; Geometry
.

Hecht Optics

(x,.z)

181

Fraunhofer approximation

//y.’) E(x,y,z,0)= } e J.J‘ dx'dy’ [E («,y',0,w) e_ik*xv_ikyyv]
/ L T aperture
’ ‘I./:; -_ r/ : (x,y,z )
P

The field distribution in the Fraunhofer diffraction

pattern is proportional to the Fourier transform of the

field distribution across the aperture!!!

182
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Far field pattern: 1-D periodic grating

0 +1 +2 +3 +4 +5 +6

-2
- = & e & = =

|E(k, k.2 = 0.0

https://www.researchgate.net/figure/1D-diffraction-pattern-of-
CLC-grating-probed-by-He-Ne-laser_fig3_254248651 183

Method 2: Stationary phase approximation

1
(27)

i(kxx+k).y+kzz)

E(x,y,z,a))Z

” dk dk E (kx,ky, z =0, a)) e z large

k2l k)
k, = k2 -k -k =k -52

2

k2 k)
=k|1-—=5-—5| if k. k, <k
i(kx.v+kyy+k(.z) ikz . kvzz
e =e"exp|i| k.x— ex
p[ ( ’ 2k p

2k*  2k?
k’z
i ky-t

[ak E (k. k,.0,0) exp{i[kxx - k; kz H =777

184
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Stationary phase approximation

b ) ) k2
1(/]) =Idxf(x) e 1 large J.deE(kX,ky,O, a)) exp{z[kxx— 2szﬂ
H n If f (x) : slowly varying amplitude
F (0 S Re| ¢'4”
S g(x): rapidly varying phase
|
X, X
a b o i .
...only significant contribution to integral
U occurs at a stationary point, i.e. where

If g’(x) has only one zero x, in the interval [a,b]: 8 (x) =0
271 iAg(x) Zsign[g’(xo)]
I(A)= | f(x)e Ko)g 4
( ) )»g (x0)| ( 0)
Stationary phase approximation
b . k*z
I(/]):Idxf(x)et/ig(x) /llarge J.dkxE(kx,ky,O,CL))eXP i(kxx_ 2‘]{}
H n f (x) : slowly varying amplitude
F(X) T Re| &' o
g(x). rapidly varying phase
|
I
Xo X k’z
a b k) =k x——=
U = g(k)=kx-—
k.z
. g'(k,)=x-===
If g’(x) has only one zero x,, in the interval [a,b]: k
kx " 0 Z
23‘[ iAg(x) iﬁsign[g"(xo)] » k)(: =-— 8 (kx):__
I(A)= |[——f(x,)e" e k
( ) )\'g”(-xo)| ( 0) <
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z large

Method 2: Stationary phase approximation

b

(27

E(xyzw)=

J] dkx dkyE( kx, ky, z=0, w) ei(kxx+ky}’+kzz)

» Do same thing with respect to ky
« Put everything together

2 k2
k, = k> —k2 -k =k,/1—%—k—;

2 k2
:k(l—k—X——y} if kk, <k

2k* 2k°

¥

. ikz
E(xy,z,0)= —%E(kx =E,k_, S =o,w)e—

2
i(kovrkyrkz) ik . ku H k_y <
e =e"expli| k.x— exp|i| k,y-

l Stationary phase approximation

[ dic E(k,.k,.0.0)exp

2 &2 _i%
il k- K22 ,ME(k‘=@,kv,0,a))e g 4
} 2k z Tz

187

Method 2: Stationary phase approximation

E(x.y.z.0)= (2]17)2 [ dk.d, E (k.. k,. 2 =0, ) B [
If k>k k :
| ikz
E(-x’ y’Z,CU) = _%E(kx :ﬁ,ky :Q,Z :O,wj
4

Fourier transform as a function

of t

Fourier transform as a function
of ¢, x and y of the electric field

of the electric field

Far field diffraction = 2D spatial Fourier
transform of incident field!!!

188

94



Fraunhofer diffraction: an example

. ikz
E('x’y’Z’w) =_%E[kx =%’ky =Q’Z =0,wje

Z

Z

w, .

¢ . sink w
j dx E,e™™" =2E, s
w.

X

2w,

0.010

0.005

2V, —) £ 00w

~0.005

-0.010

-0010 -0005 0000 0.005

0.010
X (m)

189

y (m)

Fraunhofer diffraction: QUIZ

E(x,y,zw)=—)|iE( Xy =

ékz
ko=—,k=—",2= O,w]—
z z z

y (m)

03 -002 -001 000 001 002 003
x{m)

03 -0.02 -601 000 001 002 003
x{m)

03 002 -0.01 000 00L 002 0030
x{m)
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Diffraction in 2D

Single slit Square aperture  Hexagonalaperture Circularaperture

CheckPoint 2

Phys. 102, Lecture 23, Slide 10

Summary

» Using Fourier analysis we can express a wave as a sum of plane waves

» Each wave in the sum corresponds to a specific spatial frequency and

propagates in a specific direction with respect to the optical axis

» Spatial frequencies |k,| > w/c give rise to evanescent waves which do
not propagate

« Diffraction and propagation is thus a type of spatial filtering

* Inthe far-field, the resulting diffraction pattern is the spatial 2D Fourier

transform of the intensity at z=0
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Lecture 5: (More) diffraction and waveguides
Goals today:
« Express an arbitrary wave as a sum of spherical waves
* Huygens-Fresnel principle

» Fresnel approximation—diffraction before the far-field

* Waveguides

https://en.wikipedia.org/wiki/Huygens%E2%80  https://qualitysurgicalrepairs.com/video
%93Fresnel_principle _cameras__consoles___fiberoptic_cable 193

Summary: express an arbitrary wave as a sum of plane waves
(same |k}, different k,.k,.k.(k,.k,))

E(x, y,z=0,t)
FTt—>w ﬂDecompose in terms of spectral components
FT xy =>k,k,
E(x y,2=0,0)| 3 > E(kx,k,z:O,a))
Decomposein Y
terms of plane .
wave components X ékzz Plane wave
Too
I
hard!  function of k_, k.,
FT! k,k,—>x,y .
E(xy.z0)| < < E(K,.k,, z.0) = E(K .k, z=0,0) x&**
FT!' w —> tﬂ
E(x y.21)

194
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Spatial frequences

195

Spatial frequencies

196
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Fraunhofer approximation

gy l Fraunhofer condition:
oy
' / | Point of observation at a distance >> size of source
( ‘ ! r (xjy’Z)
| i -
B g
// . [ / <
x/ ‘ /
i kx elkZ
E(x,y,z,w)=——E| k =—.k ZQ,ZZO,Q)
y x y
A z Z Z

Fourier transform as a function
of t, x and y of the electric field

Far field diffraction = 2D spatial Fourier
transform of incident field!!!

197

Now: express field as a sum of spherical waves

Huygens-Fresnel principle

Fresnel approximation—diffraction
before the far-field
198
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Arbitrary field as a sum of spherical
waves: Rayleigh-Sommerfeld expression

Recall: Field as a sum of plane waves:

E(xy.2,0)= ﬁ [k d,E (k.. k.2 = 0.c0) O ()

“The Fourier transform of a product is equal to the convolution of the separate Fourier transforms”.

199

Weyl plane wave decomposition
of a spherical wave

exp (ikr) _L'J-J-dk " exp[i(k,gﬁkyy+kZ

r Com Y k

Z

Z

)] (3.18)

i =

‘E(x’ y.2,0) = E(x,y,2=0,0) IZIFT"{(;’*?}
C

In the search to find FT“{e"k-’} calculate | 9 exp (ikr)

0z r

200
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Geometry

201

Towards the Rayleigh-Sommertield relation

2770z r

E(X’Y’Z’w)=E(x,y,z:o,w)[(-iiM]

MOk (5)= [aen(e)e(e-7)  pler)=le-r|={e=x] + (=) +2

—00

202
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Towards the Huygens-Fresnel principle

1 Sl 0 exp|ikp(r,r'
E(x,y,z,a))=—§T”dxdyE(x,y,z=0,w)a—z% (3.20)

Rayleigh-Sommerfeld relation

ikp 2 2
Find: 2% p(rr) =l —r=(x-x) +(y-y) +2
Yo

1 L o exp| ikp(r,r’ 1 .
E(xy.2.0) :_Zrﬂ.dx‘iyE(x’y 2=0.0) ,E(r f)z )]Z(_P(r r') +lkJ

203

prx)=lr-r|=y(x-x) +(y-y) +2
Huygens-Fresnel Principle

1 g P exXp lkp r’r’ 1 .
E(xy.2.0) =‘5T”dxdyE(x,y,z:O,a)) /E(r f) )]Z[_P(r r') +lkJ

exp [ikp(r, r')}

cosd (3.24
() (3.24)

E(x,y,z,0)= —ﬁ” dx'dy'E (x',y',z =0, w)

Huygens-Fresnel principle

204
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Fresnel approximation

y » Valid “before the far
Tj; field” (to be defined
more precisely).

plex) =l v =f(x=2 + (y-y) +2

exp [ikp(r, r')}

cosd (3.24
) (3.24)

E(x,y,z,0)= —%”dx’dy’E(x’, y,z2=0,0)

205

Fresnel approximation

L per)=feor] = Jxmx) () 2
1

T et

exp[ikp(r,r’)]

E(x,y,z,w)=—%ﬂdx'dy'E(x’, y,z2=0,0) ()

cosd (3.24)

206
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Fresnel approximation: summary

. ikz D L, . k o )
E(x,y,Z,a)):—lj—zﬂdxdyE(x,y,z:O,w)exp{zzz[(x—x) +(y_y)2}}

207

Connection to Fraunhofer approximation

Starting with

je' 'y ror . k r\2 2
E(x,y,z,a))Z—%dedyE(x,y,z=0,a))exp{zz—z[(x—x) +(y=y') J} (3.48)

208
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Link between Fresnel diffraction and the plane
wave expansion

Fresnel Difraction:

. ikz L o k , ,
E(x,y,z,aJ)Z—lj]Z ”dxdyE(x,y,z=0,a))exp{zz—z[(x—x)2+(y—y)1}

Fresnel Diffraction = convolution of the field at z = 0 with the transfer
function

. ikz

Zez exp[iziz()c2 + yz)}

h’Fresnel (‘x’ y’ Z’a)) == /]

The FT of this transfer function is:

/- (kx,ky, zZ, a)) = exp{—iz—zk(kf + k‘z)}

F(t‘)=exp[—2’;2 — F(w)=«/ﬁaexp[—“’22‘72j

E(k,.k,,z,0)=E(k,.k,.2=0.w)h,,,. (k. k.20

Link between Fresnel diffraction and the plane wave expansion

Fresnel: E(kx,ky,z, w) = E(kx,ky,z = 0,a))-h,.“,w‘,,(kx,ky, 20 @) P (Ko 2,0) = € BXP{—I'Q%(A’? +kf)}

Plane wave expansion:

E kx,ky,z,a)) =E(kx,ky,z zo’w)eikzz

Plane wave expansion = product of field at z = 0 and transfer function

; kz k\2 a2 2 2
exp|ikzy[1-—=—— | if kI +k. <k
hplaneiwaves (kx > k‘v 5 s w) = k‘ kk :

0 otherwise for z>> A (evanescent waves)

2

) 2k
e )= 3 (k2

Thus the Fresnel approximation is valid for k,, ky << Kk, i.e., for
small diffraction angles => PARAXIAL APPROXIMATION

210
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Conclusion: validity of the different
formulations for diffraction

0,
z=10m 4
.3
x (m)

212

—>
—>
_— L
—> 2
—>
—
Plane wave expansion
Rayleigh - Sommerfeld
~ Fresnel R
P Fraunhofer R
211
Example: Fresnel diffraction tor a slit of
width w =1 mm; A =0.5 um
z=10pum z=100 um z=1mm
Intensité Intensité Intensité Intensité
L 4 4 4 4
3 3
2 2 2 2]
1 1 1 1
0.0006-0.0004-0.0002 00002 0.0004 00005 <™ Z0.0006-0.0004-0,0002 00002 0.0004 00005 <™ T0.0009008508.0004020 0 5 QuuE® B
z=1lcm z=10cm z=50cm
Intensité Intensité Intensité
5,
4 4
3
2 2 2
1 1 1
-00010  -0.0005 F 00005 00010 ™ 0002 0001 pmehee 0001 0002 ™ g0z ~0001 F 0.001 2002 ™
0.
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Waveguides

Slab Slit Cylindrical

n,< ng

n, ﬁ Total internal reflection
cladding 213

Why study waveguides?

Avoid diffraction

214
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Why study waveguides?

Electrical Towards integrated optoelectronics...
response time
I=RC Sn:1a11
Fast
A
cfA
d
Modulsted
g
215
Metallic planar waveguide
E field polarized in x direction
y
L L L L LT
d Z
T e e e e e e e e e e e e e e e e e e e e e e e e e e
216
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Optical modes

https://www.photonics.com/Articles/Large-
Mode-Area_Optical_Fibers_Maintain/a62269

217

B .-+ Metallic planar waveguide

E field polarized in x direction

Twice-reflected wave

Mode: Twice-reflected wave must be identical to the incident wave

218
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Fundamental mode, single mode waveguides
y

sin@, =mi m=1,2,3....
L L 2d

Single mode if 2d> A > === Micron-sized waveguides

219

Propagation constants, group and phase velocities
Y

puiilinN

sing, =mi m=1,2,3....
2d

B, =k =kcos8,

v, depends on m:

intermodal DI—— ‘ c-JJJh_. ' 0 J.M]lﬂ_. r

dispersion

220
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Field distributions

Mode of order m

T
m — . —
K™ = ksing, = m—

Mode of order m: interference between plane wave with wave vectors
(0, k™, ,Bm) and (0, —k;”” .B, ), in such a way that the fields cancel at the
mirrors.

Em(r,t):8mf(um(y)exp|:—i(a)t— mz):|+c.c.
u, (y) - )
\/:cos Ity for m=1,3,5...
d d

\/zsinmﬂy for m=2.4.6...
d . d

221

Field distributions

Electric field distributions
E, (rt)=£%u,(y)exp[—i(wt-B,z)]+cc.
d/2+

s S—
-d/2 T

222
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Metallic planar waveguide

Multimode fields

y LU AL L L] L ALY 1
= -
R S - - e e
Mode 2
- *4{:— — -
LA A A R AR NN R AR AR RRRRARRRARRSRRA] LLARAARARARALAL LAARASRAAARAS T
\] LULLLLLLL LU L) LULLLLLLLLLLL | L AL LALLLL
| \ ; K —
Mode 1+2 I -
|

Saleh and Teich, Fundamentals of Photonics, p. 247 e

Planar dielectric waveguide

» Medium with index n,
between two media with
lower indices

» 2D problem: invariant
along the x direction

Twice

reflected » Propagation in the yz
wave plane
. n e
Total internal 6<6,= arccos—= > E.lectr.lc field in the x
reflection: direction
“Self-consistency condition”
TE in’ 2nn _
with |tan b __ [sin G -1 L2dsin@+2¢, =2
2 sin’ @ A

d . Vs sin® @
tan| /m, —sinf-m— | =,|——<-1
A 2 sin” @

224
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Planar dielectric waveguide

A S tan(lm dsmH mE) sin” 6,
““““““““““““ A sin’6

2
\“" \\\ \\\\\\\ -
‘. \ \\\\ \ \\(\\

d

Twice-reflected wave

Of

10

<
A A

There is always at least

one mode.
Left-hand side

Monomode if: L >sind
0 1 2nd
0

sin G,

sin@ ¢
i W/
2nd A

225

Planar dielectric waveguide
Propagation equation
2 2
O, (r,1)—— (r)a—E (r,1)=0
c
d’ Z

with E, (r,7) = A[é’mﬁum (y)exp[ -i(a-B,2)]+ c.c.}

Exponential
y\ \ \/ decay!
di2+ - e
N o=
—d/2+ / D <\
“‘ \ / Even or
dd!
m=0 m=1 m=2 m=3 m=4 ° 226
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Nobel in Physics 2009 : Charles K. Kao

"for groundbreaking achievements
concerning the transmission of light
in fibers for optical communication"

http://nobelprize.org/nobel_prizes/physics/laureates/2009/index.html .

Conclusion

» Huygens-Fresnel = diffraction in terms of spherical waves
» Rayleigh-Sommerfeld, de Fresnel (= paraxial), and Fraunhofer
approximations
» Metallic waveguides: based on reflection at metal surfaces. Problem
of losses for non-ideal metals.
» Dielectric waveguides:
» very low losses in the IR;
» may be used to miniaturize opto-electronic components, thus
increasing their bandwidth and decreasing their consumption;
» along with the laser, are at the origin of the internet.

228
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Lecture 6: Light propagation in
anisotropic dielectric matter

Anisotropy of materials

* Where does it come from?
* What are its consequences?

Why care about it?

. Polarizing filter
Polarizers: control

orientation of electric field
of electromagnetic wave

Polarization
direction

Direction

—JIE
S of ray
\\E

229

Calcite

¢ Experiment:
o Draw a black dot on a piece of
paper
o Place calcite crystal on top
o Rotate crystal
=> observations

o Look through polarizered
sunglasses at crystal

o Rotate crystal or sunglasses
=> observations

230
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Applications

Withaut with
polacized polarized
lenses, lenses.

) PH

MEDIA  photoncacom

.: Diagnostic Method Employs
Birefringence of Liquid Crystals
A detection system that uses birefringence as the sole optical output signal holds promise

as a low-cost, rapid diagnostic tool for identifying bi rk viruses, bacteria and
parasites in the field.

Scientists from ETH Zurich (the Swiss Federal Institute of Technology) used the
phenomenon of birefringence of polarized light from lipid-based lyotropic liquid crystals,
which consist of self-assembled structures of fat molecules in water.

231

Anisotropy in daily life

232
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Recall: Light propagation in isotropic dielectric matter

“electron”

233

Light propagation in anisotropic dielectric matter

“electron”

234
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Anisotropic properties arise from an asymmetry in the
atomic structure

O
/ - ./(. N -
. JO‘ f‘j ~
O b
. \\-"“x
o .

&—o0 (./. o 08? ;‘
CO

Na Cl

Isotropic (cubic) Anisotropic

235

Consequences of anisotropy

* The index of refraction is now a tensor

\‘_\& = D and E are notin the same direction

~
Q/\/\D V\/@ | =The speed of light will be different depending
A

on the propagation direction in the material.

g |

.

.fmﬂ\

» Wave vector k is (in general) NOT in the same direction
as the propagation of energy

k: perpendicular to planes of a plane wave
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Consequences of anisotropy

» Aplane wave incident on an anisotropic crystal results (in
general) in two waves:

» one which acts in an “ordinary” (i.e. usual) fashion

E 3
Not the

general case » one which acts in an “extraordinary” fashion *

« The initial polarization state is (in general) altered for
propagation in an anisotropic medium

» There exists, however, certain initial polarization
directions for which a linearly polarized light wave may
travel “unperturbed”

237

Medium characteristics

* homogeneous --same everywhere

~—-permittivity does NOT

* no losses
depend on frequency and
is real
* non-magnetic —~U=H,,
* No free charges or
currents...
* Linear and D=7E
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Dielectric permittivity tensor

—

D=¢rE

|
E1 Tensor!
Ez

D, =&Y &E; k=123
1

Anisotropic matter:

€ S &3
or

D:‘go €y Ex;  Ep3

€ €y Ex)|E;

511E1 + 512E2 + 513E3 . o
—¢, 521E1 + 822E2 + 823E3 D and E are notin the same direction
€3E, +e3,E, +¢,,E,
&, =n’ The speed of light will depend on the
n: index of refraction propagation direction in the material
T =< since g; is a tensor
n

239

Dielectric permittivity tensor

“It may be shown” that in order to be consistent with the principle of

conservation of energy the permittivity tensor must be symmetric, i.e.,
E
EZ

E,

EH g!? El\

€ En &3

sy D=¢,
gkl glk €3 €3 Ep

Recall from math classes: a real symmetric matrix is diagonalizable.

= Can find eigenvalues and eigenvectors of this matrix!

= The eigenvalues are the principal dielectric constants

= The eigenvectors are the principal dielectric axes

= Defined by the crystal structure of the material.

S0 o0
€
2 0
np 0 0 B Dielectric permittivity tensor in
e, =|0 nz2 0[=|0 = 0 the principal axis coordinates
€
0 0 n 0
e
0o o0 =
60
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=

Eigen phase velocities

Eigen phase, wave normal, or principal propagation velocities:

v=cln, v,=cln, v,=cln, u=k/k

Resulting phase velocities if the wave vector is perpendicular to one of the
principal dielectric axes e.g., if u=(1,0,0), Vo=V V3

n 0 O|E |
D=¢|0 n O0[E C:m
0 0 nlE,
2
1
Di:5onl'2Ei:500_in:_in
Vi HoV;

D and E will not be parallel unless E is parallel to a principle axis,

eg, E=Ei

241

Some definitions

n 0 O0]E
D=¢,|0 n, O]JE,
0 0 nllE,

n, = n, = n,: matter is isotropic
n, = n, = n,: crystal is uniaxial (calcite, quartz, ice)

n, = n, = n,: crystal is biaxial (mica, topaz, borax)
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Plane wave propagation in an anisotropic medium

E=E, exp[i(k r— wt)] (A) ‘ + similar expressions for D, B and H.

VXE:—a—B (a) V-D=0
ot
VXH:%—]? (c) V:-B=0 (d)

o

B= MOH ()

Ox(fA)=fOxA+0Of XA (@)

From (a):

OrA)=fOMA+0Of A ()

From (b):
ikxE=iwB (1 k-D=0
ik xB = —iwy,D (3) k-B=0 (4)
From (d):

From (c), (f):

243

Plane wave in an anisotropic medium

ikxE=iwB (1)
ik xB = —iwy,D (3)

kD=0=k-E (2)

(1.4)
k-B=0 (4

S:EXH:EXE

Ho

(D,B) Lk

(E,B) LS

E, k (or u), D, S are coplanar

\D /E
g S: Poynting vector, direction of
u=k/k energy flow or rays
% .
k: wave normal, direction
S perpendicular to wave fronts

S is NOT in the same direction as k !!
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For a given wave normal of direction u,
what is the resulting phase velocity?

In other words, what is the index of refraction for this direction?

Let u :% i.e., a unit vector in the direction of the wavevector

k = nﬁ)u where 7 is the index of refraction for the direction U
c

Desired phase velocity: V. (u) _v_c
i k n

245

First: find an expression for D in terms of u, K and Vv,

ikxE=iuB (1) kD=0=k-E (2)

w c
v (u)==—=— ] (1.4)
’ k- nlikxB=—iwu,D (3) k-B=0 4)
» From (3) - From (1)
1 E
D:_kXB :_EHXB :_LM 5) B:—u>< (6)
Wity W Hy Vo Ho Ve Ho
* Plug (6) in (5) + Use vector identity Ax(BxC)=B(ALC)-C(AB)
1
D=- ux(uxE
,Uovi ( )
D= 12 [E—u(uE)]
/JLOV¢
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Plane wave in an anisotropic medium: find indices of refraction for a given
propagation direction u

1
D=—3 [E—u(u-E)} (1.5)
KoV,
2
Di:80ni2Ei:€Oc_2Ei: 12Ei
: 1oV (1.3)
n 0 O|E
k
vl.:c/nl. D=¢,| 0 n22 0 ||E, u=(u1,u2,u3)=;
0 0 nllE
*(1.3) =(1.5) ; solve for E,
/v

o A T T

247

Plane wave in an anisotropic medium: find indices of refraction for a given
propagation direction u

1/v?
®

.= W(u 'E)Lli (1.6)

*Multiply both sides by u,

/v
Eiui :%(UE)MIZ
/v, =11y,
*Add the resulting three equations (i=1,2,3)
1/v2
Eu = — 2 _(w-E)u?
;z“,s o i§;31/v§71/vi2( Ju
+Divide by ul(E
2
1= llvv 5

— U,
2 27
i=1’2’31/v<p _l/vl
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Plane wave in an anisotropic medium: find indices of refraction for a given
propagation direction u

lzz 1/v; 5

U
2 27
istas /v, =11,

*Subtract 1= Z u’

i=1,2,3

1/v?
0= — 1l
,-2’;’3[1/11;—1/\/,.2 ] '

*Simplify l

2 2
u u u
2‘2+22 +— =0 (1.7)

FRESNEL EQUATION

249

Fresnel equation

L+ > I+ i =0 (1.7) vy_(u):

» Equation is of order 4 in v@ and of order 2 in vi

mm) Get TWO solutions for V@ m

(Negative roots: waves propagating in the opposite direction!)
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If no refraction

Fresnel equation: interpretation

A plane wave in direction u will (in general) split into two waves,

each with its own phase velocity!!!

What determines how the plane wave splits? The initial polarization!

These two waves propagate independently => will become more and more

out of phase with each other as propagation continues

Their wave vectors are in the same direction (u)...but not their Poynting
vectors!!! 1

- The light associated with these waves will

become separated with propagation!

251

What are the

associated displacement vectors d’and d’for v; and v;/ ?

Method 1: Algebraic method

Use Fresnel equation to solve for viyand v’

Use equation (1.6) to solve for electric field 1/ 2
_ 4 .
components: E = —1 170 (u E)ui (1.6)
@ i

Find ratios for E,:E,:E; andthus D,:D,:D,

Note: since everything is real in above equations, above ratios will be

real, thus the E and D fields will be linearly polarized

!

The structure of an anisotropic medium permits
two monochromatic plane waves with two different
linear polarizations d’ and d” and two different
velocities to propagate in a given direction
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What if the initial wave polarization is along d’ ord” ?

» The wave will NOT split into two
+ The wave will travel at v; or v/
» The will be NO change in polarization

* Only one beam exists!

253

Finding v/, v, d’, and d” graphically

=

Recall: v, (k):ff :

C
_— u=—
k n

>~

For a given propagation direction u, what are the associated

indices of refraction n” and n", and displacement vectors d/ and d”

== | index ellipsoid

Recal: D= %[E —(uwE)u] @)

|, ()

« Take dot product of each side with D; Recall: D.u=0

‘ D.D:;ZD.E

“0["»9 (k)]
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Index ellipsoid

1 :
DD=——"5DE @ w22 ©®

o [Vw <k>] "
Recall: D— z—:ogrE Choose the coordinate system such
that e, is diagonal = principal axes
=) D =cn’E, (0 Plug (C) and (B) into (A)
2 2 D2
D-D=n" [D—;+D—§+—§
n n, n
Define the following coordinate system:
D — i
(x,%,%5)=n—=nd or X, =ny—r
B o]

255

Index ellipsoid

D, D! D! D
X, =ny—ul  SolveforD, plugresultinto  D-D=n’| b+ 2=
”D” n ) i

!

XN N o
l==+—=5+— Index ellipsoid
nl nz I’l3

consistent with conservation of energy

the principal indices of refraction

e Ifn=n,=n, Sphere! Isotropic!

« Set of all possible indices (for a crystal with n, n, n,)

« Semi-axes of this ellipsoid are equal to ny, n,, ns,
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Finding the indices and displacement vectors
(d”and d’) for a given incident wave
with wave normal u

Index ellipsoid
» Propagation direction U, normal to wave
fronts, through origin

» The intersection of a plane perpendicular
to u, passing through the ellipsoid origin
mm) (in general) ellipse,

D
Recal: D_lu (xl,x2,x3)£n"35nd

S \

0 n’d’, n”’d”, must be on
Mk /k this ellipse since d’, d”
0 are perpendicular to u

257

Finding the indices and displacement vectors
(d’, and d”) for a given incident wave
with wave normal u

« Let OM be in the direction d’ or d”

+ Whatis the normal to the ellipsoid at

point M?
N 2 2
« From math, if g(x,x,x%)="5+2+2_1=0
1 »
g/ 0x, 2x,/n
N=|0dg/0x,|=|2x,/n?| isthe normal
0g 1 Ox, 2x,/n}
Thus D,
" E,
2n| D 2ne,
N="1|22| = E
X, =it L i« | = |©2| =» [NJE
=Up]  Di=enE ol Pl

=
NS

258
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Finding the indices and displacement vectors for
a given incident wave with wave normal u

- t:tangentto " at M; in the plane of the ellipse
N|E m=) Thustlu
+ By definition t L Nandthust L E

Recall:

o E andu are in the same plane

\D FE m=) Thust||B == t1 D == ¢ | OM
(%
u—k/k Where on an ellipse
g is this true???
; 1 —¢
S 1 ~—_ |
When OM is one of
the semi-axes!!! 259

Graphical method for determining the directions of the two displacement
vectors (df and d”) for a given incident wave with wave normal u

- d, d" areinthe directions of the two semi-

axes of the ellipse I

» the associated indices n’, n” are the

lengths of the semi-axes

L S

d’, d” are perpendicular to each other

» incoming light splits into two orthogonal linear

polarizations, each with its own phase velocity

« initial polarization along d"or d”

=) -« one index, one velocity 260
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Graphical method for determining the direction of
the Poynting vector for a given incident wave with
wave normal u

S
Recall:
E + Sis perpendicularto B and E
« B is tangential to the ellipsoid and E is normal
S must be tangential to the ellipsoid in order
to form the necessary orthogonal triad
\D fE
6
u=k/k
[

261

More handy geometrical tools: normal surfaces and
optic axes

What is a normal surface?
» Place an origin inside the crystal.
« Consider a wave vector direction u

» For each direction u, associate two vectors whose lengths are

proportional to the two corresponding indices of refraction n’and n”

» Repeat for all values of u. The endpoints of the index vectors give
rise to a surface consisting of two “shells”and known as the

wave-normal or normal surface

* i.e., the set of all points N such that ON=nu

262
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Normal surfaces

Wave-normal or normal surface: the set of all points N such that ON=nu

2 2 2
u] MZ M3
« Start with Fresnel’s Equation ——+—5——5+———-5=0
vVo—v o vo =y, v -,
2 2 2
n2 — xz +y2 +Z2
+ LetON =(x,y,2) ‘
Xy .z
==, u, ==, uy==
n n n
c c
¢ Recall: vV, =— v, =—
n n

« Plug the above expressions into the Fresnel equation to obtain:

2.2 2 2 2 2 2 2 2 2
nx (x Ty +z _nz)(x Ty otz _n3) Equation for
+2y (¥ 4y + 2 = (x4 )+ 2 =] normal

+n}z? (x2 +y*+7° —nf)(xz +y*+7 —nj)zO

263

Wave normal surfaces and optic axes

nlxz(xz+y2 +z —ni)(xz +y'+2° —nj)

+n§y2(x3+y2+zzfnlz)(x2+yz+zzfn§) n. > n, > n,
S -
+n§zz(xz+_vz+zz—nlz><x2+y2+zz—n22)=0
P4 y z
n, » n,

DA/ SR\ NP
DA/ *

@

Result for x =0 Result for z=0 Result fory=0

y2 +77= nf : circle of radius n,
2 Z2
nn. ( v +7 ) [y_2 +—- 1] =0 : ellipse with semi-axes n, and n,

n
3 2 264
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Optic axis

The two curves cross!!!

—

Two particular directions
where there is only one value

of the phase velocity

‘ + Optic axis

optic axis optic axis
n1

n3

Result for y=0

Note: optical axis is not the same as the optic axis!!!

optical axis

265

Index ellipsoid and optic axes

\
Wave propagation t x 1

in the direction of
an optic axis:

Circular
cross-section

optic axis

index ellipsoid

optic axis

Circular
cross-section

3

ANY polarization d will maintain its
polarization going through the crystal

Champeau et al., p. 729
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Normal surfaces and optic axes

z y

n3

N fﬁ optic axs

z

n

nG

n. _ optic axis

@

PZAA ST

Result for x =0 Result forz=0 Result fory =0

General case: n, =n, = n,

What if n=n,=n 2

X

267

Uniaxial vs biaxial crystals

Recall:
y

Touches!

X

Result forz=0
n, =n, =n,

n2 n3 0
I/l1 =n,
e

n >n
o e

=n_ "ordinary" index

"extraordinary” index

268
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Uniaxial vs biaxial crystals

Recall:

Result forx =0 N "

n, =n, =n, "ordinary" index

n, =n, =n n, =n, "extraordinary" index
nO > n€

269

Uniaxial vs biaxial crystals

Recall:  piaxial crystal uniaxial crystal

z z  Touches!

optic axis %__ optic axis
n, n n, opticaxis
nG
X e

Result fory=0

=n_ "ordinary" index

n,=n
n, =n, "extraordinary" index

|

n, =n, =n, N
n() nL’
2 optic axes n,<n(k) <n,
’ 1 optic axis
270
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An=n,—n,

e If An <(the material is considered “negative” (e.g., calcite)
e If An > (@he material is considered “positive” (e.g., quartz)

TABLE 8.1 Refractive Indices of Some
Uniaxial Birefringent Crystals (Ao = 589.3 nm)

Crystal n, n,
Tourmaline 1.669 1.638
Calcite 1.6584 1.4864
Quartz 1.5443 1.5534
Sodium nitrate 1.5854 1.3369
Ice 1.309 1.313
Rutile (T105) 2616 2.903

Hecht, Optics

271

Propagation in a uniaxial crystal

index ellipsoid: ellipsoid of revolution or spheroid 2 o2 2

S W R 2

1= 2 + 2 + 2

1 circular section only => 1 optic axis X e Mo M
- 1

an incident wave with u in the direction

of the optic axis will maintain its

polarization going through the crystal, ¢
n=n

o

— nrdimary! 3
, =n, "ordinary" index

"extraordinary" index

272
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Propagation in a uniaxial crystal: arbitrary u
n, =ny, =n, "ordinary" index
principal plane: formed n =n, "extraordinary" index
by u and the optic axis

X,: optic axis

(s

~——

» The index ellipsoid is symmetrical about
the principal plane

» Plane : normal to u

» Resulting elliptical cross-section I':
symmetrical about ( 5)

« Semi-axes of I':
« One perpendicularto (S ) n, d

"

« One parallelto (s): 72 d"

273

Propagation in a uniaxial crystal

, =n, =n, "ordinary" index | _ . .
Semi fre ) ) X,: optic axis
* oemi-axes orl : n,=n, "extraordinary" index

+ One perpendicularto (S> n,d
« One parallelto (5) a”.d"

+ No matter how u is tilted, perpendicular
semi-axis always has the same length
and direction

~<

» The length and direction of the parallel
semi-axis depends onu

‘ | Extraordinary wave |

274
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Propagation in a uniaxial crystal

- n, =ny; =n, "ordinary" index
Ordinary wave _ s
n, =n, "extraordinary"index

A x

X,: optic axis

« d’is perpendicular to (5)
* n’ =n,no matter the orientation of u

+ d'isinthe (x,, x;) plane, and &, = &5=n,°
_ 2 . _ 2
‘ D2 _£0n0E2’ D3 _EOnoES

D and E are parallel!

d

Poynting vector S and the wave normal u are
also parallel

>

Wave behaves as if it is in an isotropic
medium!

275

Propagation in a uniaxial crystal

| Extraordinary wave |

X,: optic axis

« d"isin the plane (5)
» n” depends on the orientation of u

* D and E are NOT parallel

» Poynting vector S and the wave normal u are
NOT parallel

« Wave does NOT behave as if itis in an
isotropic medium!

>
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Propagation in a uniaxial crystal: determining n’

X,: optic axis

» (C:cross-section of the index ellipsoid in A
the principal plane i
u
* 1’ length of the semi-axis of the ellipse (I') c
(I'is in the plane perpendicular to u 0

1 .

=10
Ry
y

length of the vector OM” 7 >
. . % M
coordinates of OM™: |x, = n" cos ; x, =n"sind| (A)
XX
equation of ellipse C:  [I=-L+4==2| (B)
ne nO
. "
Plug (A) into (B) and solve for 5 , sin’0 cos’d
=1 >t
n’e nD

277

Propagation in a uniaxial crystal: determining the direction of
S, the Poynting vector

* Recall: S in the same plane as u, E, D,
perpendicular to B

+ Recall: S is tangential to ellipsoid at M’

4 ANV

Want to find QR C
6 n
| @ ARG
" 9 o
D fE X,
ra 1 WVl
u=Kk/k

o
4
S

278
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Propagation in a uniaxial crystal: determining the direction of
S, the Poynting vector

* Recall: S in the same plane as u, E, D,
perpendicular to B 9R
A

: S
+ Recall: S is tangential to ellipsoid at M X4

‘ tange/nt toC

Wantto find g, "

» Find first the normal to C at M’

2 2

e 0

No 0g/0x| (2x/nl| (N,
|0g/ox,) |2x,/n2) TN,

" 2 2

N, x//n n,
tanf, = —t=——% =—2tan0
N, x)/n, n

e

279

Index ellipsoid and wave normal surfaces

Recall: wave-normal surface:

A
. 'xl S
« For each u, associate two vectors u
whose lengths are proportional to the
two corresponding indices of refraction C Wave normal
surface
n’and n” p"

Q
VNX

‘ P is on the normal surface >

‘ S is perpendicular to wave normal ellipsoid

Index
ellipsoi

X, wave-normal surface

e~ _ LHFT =

..'.

O

— 1 +———— 1,4

| ) T, I,‘ J
S 280
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Snell’s (Descartes’?) laws for
anisotropic media

According to Dijksterhuis,*2l "In De natura lucis et
proprietate (1662) Isaac Vossius said that Descartes had
seen Snell's paper and concocted his own proof. We

now know this charge to be undeserved but it has been

adopted many times since." Both Fermat and Huygens
repeated this accusation that Descartes had copied
Snell. In French, Snell's Law is called "la loi de

Descartes" or "loi de Snell-Descartes."

Wikipedia (italics and underlining mine)

281

Snell’s laws

» Basic premise: the tangential component of the wave vector k must be

continuous across an interface

Recall Snell’s laws for isotropic media:

» The wave normals (u) of the incident, refracted waves and the normal to

the interface are all in the same plane (the plane of incidence)

n,sin¢, = n,sin0,

Optical axis
Second medium anisotropic (uniaxial): 1
' . .
ISOtI’OpIC

n,sin¢, =n,, sin6,, =n,, sind,, n,
Note: n20, Nje >Ny
* Snell’s laws apply to k and NOT to S, . .

the Poynting vector 9 anisotropic
» n” changes with direction in the anisotropic 0=\ \

medium!
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Graphical method for applying
Snell’s laws: two isotropic media

Method:
» Draw half circle with radius k; # the tangential components are equal

+ Draw half circle with radius k,

Rescale diagram Optical axis w
kl = nlk() =-n—
C
n;
n,>n,

Wave normal
surfaces

283

Graphical method for Snell’s laws: an
1sotropic and a uniaxial anisotropic media

Ordinary wave: same result as for two isotropic media!

n,sinf, =n, sinfd, =n,, sinb,,
Optical axis w
k, =nk,=n —
C
isotropic
anisotropic
N \Wave
] normal
) surfaces
......... w
Optic axis o~ nnk() -n, ?
n" w
— A\l — n
k2e k2e_n kO_n’_
¢ 284

142



i Biréfringence Biréfrin
< . efringenc J= ﬁ
| Main points! =@ &
Jiringeq
In an anisotropic medium: E L efringeq
iD fE Hinge, _
(7] — foe ﬁ‘u o ‘:::g‘e:é; Biréfringen
— D=¢,cE
g Tensor!
B
S » Wave vector k is (in general) NOT in the

same direction as the propagation of
energy

« Two waves! unless...

« Graphical method for finding indices
and polarizations

« Wave normal surfaces for refraction

285

Lecture 7: Experiments

* Experiments:

o Place Scotch tape between crossed
polarizers

o Rotate Scotch tape
= observations

R

“‘?m‘:\:? 120 u,”’f”’/””/////
£ 27T o Place a clear plastic object (e.g.
S'/ protractor) between crossed

polarizers
=> observations

286
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Experiment!

« Experiment:
o Draw a black dot on a piece of
paper
o Place calcite crystal on top
o Rotate crystal

A 4

There are two dots! One is stationary,
the other rotates as the crystal rotates.

Stationary dot: ordinary wave
Rotating dot: extraordinary wave

L 4

Extraordinary wave Poynting vector changes
direction as the optic axis direction is
changed!

287

Experiment

» Experiment:

o Look through a polarizer at
crystal

o Rotate polarizer

A 4

One or the other of the black dots is visible.

\ 4

Polarization directions of the ordinary and
extraordinary waves are perpendicular!!!

288
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Controlling the polarization of light

Slow Axis
- Fast Axis

What you
want “out”

Arbitrary Rotation
polarization ~ As.

“in” g Fiber

Twist 2

V _
Twist 1 Half-wave
Quarter- plate
wave plate

289

Outline

— Polarization states of light—mathematical description
— Jones vectors

— Manipulation and control of the polarization of light

9

290
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Polarization

Polarization:
» direction and variation of the electric displacement vector D
during propagation

* Monochromatic plane wave in a
transparent medium

4
D orthogonal to the propagation
direction z.

https://www.edmundoptics.com/resources/application-notes/optics/introduction-to-

polarization/
291

Polarization

+ Monochromatic sinusoidal plane wave in a transparent medium

3

D orthogonal to propagation direction z

D =D, cos (wot —kz— wx) Dy, Dy, = 0|  Amplitudes
D, =D,, cos(wot —kz — 1/)y)

wx ) wy Phases, constant

D, =D,

Ox Oy

Y, =, =mr, meZL

Elliptical polarisation 29
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State of polarization

The state of polarization is determined by

D, =D, cos(wyt—kz—1b,)
D, = DO), cos (wot —kz — wv)

D, OR * Dy, -,
D D()x

Ox
angle of ellipse axis

rotation direction

293

Determining the rotation direction of the polarization ellipse

D, [”Y
D, =D,, COS(‘%[ —kz— U\) - ——
D), =D, cos (a}nt —kz— '1/)),) D A
Zr . D, R
\J DX D()x X
* Consider when D points to A: D =D, Wyl — kz — 1/)X =2mr
* In order to know the rotation direction, we need to know the sign of y
dt
dD, ) )
Pa —w,Dy, sm(wot —kz— Q/Jy) = wODOy sin (¢y — ¢x)
y
s 0< lby — be <T <= counter-clockwise
—
T X<y, -9, <0 clockwise
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Determining the rotation direction of the ellipse
D,

0y

y
D, =D, cos(woz —kz— ;siv‘) A
D, =D,, cos (wot —kz— z/}v) D
) ) ) z D,
(4 >
DX

/
/ DOX Ax
db, , :
" =—w,D,, Sln(wot —kz— 1/1}) = wODOy sin <¢y — wx)
0 <, —9, <z left elliptically polarized
—m <, —1, <0 <% right ellipti¢ally polarized
counter-clockwise rotation as a function of time when the wave is
travelling towards the observer
295
Polarization: special cases
D =D t—kz—
= Dy, cos{wnt ke =), D,..D,, >0
D, = D, cos(w,t —kz—1), ) :
If ¢ —¢ =0orm
D

‘ components are in phase or out of phase
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Linear polarization

http://cddemo.szialab.org/

Linear polarization
D.x = DO,\' COos (wot - kZ — L")

DOx’DOy Z 0
D, = D,, cos (wot—kz— 7/)),)
If - ¢.=0:
D D,
y D Ife), —, =0:tanf = —= =—>
4 D ' ( D,\‘ DO,\‘
_ L D, D,
D, Ify, =1, =m:tanf = D, :EBDX
fy-g=n D makes an angle +@with the x axis.
y
D\
0 «x
D,
D )
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Circular polarization

Whatif ¢, = ¢, =+ 72 and D, = D, ?

D, =D, cos(w,t —kz—1,)

—y

D, =D,, cos(wot —kz — 1/@)

D _=+D,, cos (wot —kz— @Z)x)
D, ==£D,_ sin(wyt —kz—1),)

The end of D draws a circle of radius D,,.

> If , = ¢, =+ 712: left circular polarization

> If Y, — ¢, = — 712: right circular polarization

Circular polarization
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Diverse polarization states

C RO

¥, =1, =0 0<t, =t <m/2 —t =m/2 T/2<Y —th, <m

a ~
(O C

—, =T w<,—%, <3w/2 Y, -9, =31/2 3w/2<¢, -, <2m

D, =D, cos (wot —kz — wx)
D, =D, cos (wot —kz— w},)

301

Jones vectors
Handy mathematical formulism for describing and manipulating polarization states

D =D, cos(wy —kz—1

Write in complex notation, i.e.,
D, =D, cos(wyt —kz—1), )
D, =D, exp [i(kz —wr+ 7/&)] D, =D,
D, =D, exp|ithz —wi+1,)] D,, = D, expliv, |

Define the Jones vector for the polarization state as:

D, exp [”/%]
D, exp[iwy]

DO X
D,

302
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Jones vectors >

Doy

D, expliv), ]
DO), exp [iw), ]

Jones vectors for linear polarization:

y4 D
Linear polarization oriented along the Ox axis:  u, ] —]=DD-‘X

Linear polarization oriented along the Oy axis: u

Orthonormal basis!

What is the Jones vector for linear polarization at an angle @with
respect to the Ox axis? D

303

Jones vectors T
u= =
Dy, D, exp[hﬁ‘,]
Recall from math class:
% =cosfx+sinfy 0)— cosf —sinf
3/ = —sinfx +cosh3 R( )7 sinf  cosf
Jones vector for linear polarization at _ R0 1) (cosf —sinf|(1) (cosf
an angle @with respect to the Ox axis: - u, = R(0) 0] |sin6 cos@ Jl0] |sin®

(normalized) Jones vectors for circular polarization?
Recall: ¢, = .= + 712 and D, = D),

1

1
] =D,, exp[iu\}‘ ii[ﬂ]’ OC[:i:i] circular polarization

D, expliv]

D,, explit), i%

e
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Jones vectors for circularly polarized light

1 (1
Left circular polarization: u, =—
V2 [+i]

1
Right circular polarization: u, = ! [ J
i

Al

N

Orthonormal basis!

305

Polarizers and the Jones formulism

Polarizing filter
Polarization
’J’“ direction

Dlrectlon
of ray

Ideal polarizer whose transmission axis is aligned with Ox:
10
P, =
0 0

What about the Jones matrix for an ideal polarizer whose transmission
axis is at an angle @to the Ox axis?

306

153



Polarizers in the Jones formulism

What about the Jones matrix for an ideal polarizer whose transmission
axis is at an angle @to the Ox axis?

gives the coordinates of the
new axes Ox’y’ in terms of
the old coordinates Oxy

Recall: .
sinf  cosd

R(0) [cose —sin 6]

1. Find old axes in terms of the new
2= cosft —sin 85 coordinate system

$ =sin 03" +cos 63’

- (9)_[ cosd sine]

—sinf cos6

Thus, the incoming polarization [Dx] in terms of the coordinate system of the
y) polarizer is

. D, cosf sinf (D,
R (0) D |~ —sinf cosf)|D.
: S N

307

Polarizers in the Jones formulism

2. Next, apply the effect of the polarizer:
POR’I(Q) D, _ 10 CO.SQ sinf (D,
D, 0 0){—sinfd cosh)|D,
3. Finally, express in terms of the original coordinate system
P,=R(0)P,R'(0)
_ cosf —sinf|(1 O} cosf sinf
~|sin@  cos® J|0 0)(—sin® cos6
_ cos’@  cosfsinf
|cos@sind  sin’0

Jones matrix for an ideal polarizer whose transmission
axis is at an angle 8to the Ox axis

308

154



Controling the polarizaton

Goal: light with arbitrary polarization “in”, linearly polarized light “out”.

Glan-Taylor prism polarizer

Ordinary wave polarization:

_— ‘ out of screen n,=1.658

f Extraordinary wave polarization:

v

<
4_

‘ parallel to optic axis n, = 1.486

409 optic
axis
8.,.., = arcsin(1/n,) = 37°
I ... = arcsin(1/n,) = 42°
air gap

Extraordinary wave continues!
Ordinary wave is reflected!

309

Controling the polarization of light

» Use polarizers
+ Use a birefringent optical flat “wave plates” or “retarders”
+ Normal incidence » Walk-off is negligible

Recall: . g’ andd”, special polarization directions for which the polarization
is maintained as the light propagates

» associated indices n’and n”’

For a uniaxial crystal, whose optic axis is
parallel to the plane of the optical flat (i.e.,
u is perpendicular to the optic axis)

n=n,and n”=n,

XX >
NIRIR

310
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What happens to the polarization as the light
propagates through a birefringent crystal?

DOx
2 =

Oy

Recall: D cos(wit —kz= ) u=
D, =D,, cos(wot —kz— 1/1y)

D, exp [iwx}
Dy, exp[iwy]

Each component travels at a different speed!

2w,
Dx:DOXexp<ik’d) :DOX‘”‘P[ZTW”‘{]

N D, =D, exp(ik”d) =7, exp[i%n”d]

X

> Note that if n’ < n”’, d’ and d” are called the
d fast and slow axes respectively
Choose x and y to
be along d’ and d”
respectively

311

What happens to the polarization as the light
propagates through a birefringent crystal?

Find Jones matrix corresponding to propagation through Dox
a birefringent crystal of thickness d Dy,
2
D, exp|i—n'd 2,
Dx _ )\ exp[l 27'(' n/d] 2 X
- = N LTy /
2 A 2 exp[z— n'—n d]
YD, exp[tln”d] ” A ( )
A
Let 2Ty d Phase delay
- o ="(n" =)
Dx . 27T / DOx
=exp|li—n'd D o
D, A 0y €
Jones matrix for a wave plate:
1 O
M x .
0 e”
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M oc[(l) eo] Quarter wave plate

A phase of 2mtcorresponds to soa
quarter wave plate corresponds to a phase delay of

Choose thickness d such that

X

27 T
Phase delay: p=—yI|n —n |Jd=— -
i le=lnon)d =2 -
E le: 560 nm: =0.0091 d—;—154 m
xample: quartz at nm: (ne—na)— . 4(”6—”(,) Au

S|

0 0 i 0 exp(in/4)

e, 9]:[1 °]=[1 ool o

313

How does a quarter wave plate change the
polarization of a linearly polarized wave?

- i —
D x ‘ left elliptically polarized light!!!

0y

T
Y, =, =—; tana=
2 0x

After

314
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How does a quarter wave plate change the
polarization of a linearly polarized wave?

D, = D,, cos (w'“l —kz—1), ) y

D, =D, cos (w(,t —kz—1), )

0 e?

90=2—7T(n —n)a’:z le "
> AL 2

What is the Jones vector for the initial state? Apply the quarter wave plate:
Before After
D, _ R(a)[l] _ [cosa —sina][l] _ [cosa] D, :[1 0][cosa]:[cosa]
D, 0] (sina cosa J|0) [sina 2,) |0 ij{sina) lisine
¥, =0
D,, y ‘ [wy =m/2
\ D = cosacos (wot —kz— 0) = oS x COs (wot - kz)
® DoAx . s . .
/ A D, :smacos[wot—k _E] = sinasin(wyt — kz)
P, —1p, :E; tan @@ = —2
elliptically polarized light 2 D,

315

Quarter wave plate: special case, o = 174

. 1
cosa=sina=-—
V2

X amplitudes are equal!

Recall: quarter wave plate adds 172 phase delay.

Equal amplitudes + 172 phase delay gives q Circular polarization!
Y

"y

D, :sinacos[wot—kz—z]: t—kz)

Lsin (w
\/E 0

D, = cos acos (w,t —kz —0) :%COS (wyf —kz) /

L\
/
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Quarter wave plate

Input wave linearly polarized:

y y
a > @ >
X / X
Before After

Input wave linearly polarized, a=1v4:

Y

\ ]

Before

After 317

Half wave plate

A phase of 2mcorresponds to so a half wave plate
corresponds to a phase delay of

Choose thickness d such that

27

Phase delay: p=—1In —nld=mn
v g A(Z )
1 0 1 0 1 0 — 0
M x = = o
0 €¥ 0 €7 0 -1 0 I
p=m

318
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How does a half wave plate change the
polarization of a linearly polarized wave?

‘ Get linearly polarized light “rotated” by 2a

symmetrical with respect to d/, d’

ot

319

How does a half wave plate change the polarization
of an elliptically polarized wave?

Before

« Consider elliptical polarization as a sum of
two linear polarizations

» Submit each y component of each linear
polarization to a rtdelay

» Right polarization becomes left
and vice versal!

320
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Half wave plate

Wave plate axes

=x a/nd );/ Before After
=d,d
\Y
a N
e
Before

Symmetry with respectto d’, d” 321

Producing the desired state of polarization

Goal: elliptical polarization with a specific orientation and axis ratio

Desired
orientation of
polarization ,
ellipse DO_\.
- =
D(),\‘
X

322
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Producing the desired state of polarization

1. Produce linearly 2. Next step: use a
polarized light with a quarter wave plate to
polarizer Desired change polarization to
Y’ orientation of elliptical with the desired
polarization y .
ellipse aspect ratio” 1

Y Orient quarter wave

o plate axes to get

I’ r=tan«o
X’

—
"

Elliptical polarization
with the right “shape”
but wrong orientation s

Producing the desired state of polarization

3. Next: use a half wave What should the Y \ / Y’ X
plate to change the half wave plate ) 7
polarization ellipse orientation be?
orientation
Half wave plate axis X
should bisect the \
angle between the \
current and desired ,
ellipse axes! X

324
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Producing the desired state of polarization

3. Next: use a half wave What should the Y \ / Y’ X

plate to change the half wave plate IA 7

polarization ellipse orientation be?

orientation >
Half wave plate axis x

should bisect the \
angle between the \
current and desired ,
ellipse axes! X
Y Ty v

Action of half wave
\ plate
\ X X

X’
325
Polarization control in optical fibres
Optical fibres are made of isotropic media (glass). However, optical fibres
exhibit stress-induced birefringence
When they are coiled (looped), they become anisotropic!
Can easily make quarter and half wave plates by looping fibre!
Number of loops determines if it is a half or "
Slow Axis v
quarter wave plate! _, Fast Axis
= What you
“Fiber paddle polarization controller” or want “out”
“Mickey Mouse ears” Ll
Arbitrary Rotation
polarization ~ Axis
“in” i Fiber
: Twist 2
Twistd Half-wave
Quarter- plate
wave plate
https://youtu.be/507TL2SUAIo 326
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Interference and retarders

Retarder
D" u Dx u
—_ _
D, Dye"v

¢ D, and D, are coherent (from the same light!) and have now a definite
phase difference. Sounds like the right conditions for..

* However, D, and D, are perpendicular to each other so they cannot

interfere...

327

Interference and retarders Mo([l 0]

Retarder

White
light “in” R
o ) Dy cosa
» Components of incident wave projected on the retarder axes .
Dy sin«
y A D() D D
1 After retarder: o o COS v
D, a D | |D,sinaexp(iy)
D X » Place another polarizer (the “analyzer” A), at an
: angle Sto the x axis of the retarder
328

164



Interference and retarders

+ Two methods for next step:
After retarder:

White

D D, cos
light “in > p |~

D, sin acexp(ie)

y

Method 1: Consider the components that are projected on the transmission axis of the
analyzer A:

= +
= D, cosacos 3+ D, sinasin Fexp(iy)

2
Next, find intensity 7, =D, |

329

Interference and retarders

White
light “in”

1, = |DA|2: D; [(cos a.cos 6)2 + (sinasin [3)2 +2cosacos Bsin asin 3 cos cp]
Compare to:

Itot :|Dt

i :“D1|2 +

DZ

gt 2D, D, cos go]

ot

Equivalent to the interference between two
rays with fields D, and D, which have a ¢
phase delay between them!

330
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Interference and retarders

Method 2: Jones matrix notation

White
After retarder: light “in”
D D,cosa
D, B D, sin o exp(ie)

Find transmission matrix for second polarizer A.

Recall:
cos’f  cosfsin® [ cos’3  cosBsin ﬁ]

cos@Bsin  sin’f3

= ] orinthe currentcase: P, =

cosfsinf  sin’ 0
[cos acos B+ sin asin Fexp (i

)]cos 3
- [cosacosﬂ+sinasinﬂexp(iap)]sinJ

D — cos’f  cosfBsinf3 D, cosa
cos@sin3  sin’ B || D, sinaexp(ip)

2 Wave is indeed polarized linearly with an
‘ angle B to the axes of the retarder

I, :|DAx

2+‘DAy

”

1,=D; [(cosacos ,6’)2 +(sinasin 3) +2cosacos Bsin asin Jcosgo}

331

Interference and retarders

Coloured gozz—ﬂ(n —no)d

light @)

“out”

White

w o n

light “in

1,=D; [(cosacos B)z + (sinasin ,:"7’)2 +2cosacos Bsin asin 3 cos

Result after sending the “output” through a prism:

j
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Lecture 8—Experiment

» Experiment:

o Place a solution (corn syrup, sugar...)
between two polarizers

. Fﬂﬁ o Look at a light source through this

“sandwich”
= observations

o Rotate the nearest polarizer
= observations

o Increase the amount of solution in the
7o % graduated cylinder
.//

=> observations

https://www.exploratorium.edu/snacks/rotating-light

333

Circular birefringence: Optical activity and
the Faraday effect
Optical activity:
‘ What is it? ‘ ‘ Why care about it? ‘
‘ Where does it come from? ‘

g Polarizing filter

B Optically
, active

Axis

334
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Optical activity or circular birefringence

» Optical activity: An optically-active material will cause the direction of incident
linearly polarized light to i.e., the polarization remains linear but the
orientation changes.

» The rotation angle depends on the distance traveled in the optically active
medium p.

a =p d Depends on:
g Polarizing filter .

material

* concentration

* temperature

» wavelength of light
* propagation direction

Optically
active

Axis

335

Why care about optical activity?
Exists in many molecules, ~ RUDOLPH

in particular those of s RESEARCH
chemical and biological l ANALYTICAL
interest!
Examples: Examples: Flavor, Fragrance, | Use the optical activity of
Food and drugs and Essential Qil Industry substances in the food,
. Amino Acids . Orange oil _drug a.nd fragre_mce
«  Antibiotics . Citric acid industries to quickly,
M Steroids . Lavender oil Cheaply, and non-
+  Cocaine «  Spearmint oil destructively monitor
*  Diuretics +  Lemon oil quality, measure purity...
. Tranquilizers
. Analgesics
. Vitamins
«  Carbohydrates i
. Dextrose
. Lactose
. Fructose N\
. Sucrose https://rudolphresearch.com/products/polarimete |

. GlUCOSG rs/polarimetry-definitions/ 336
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Where does optical activity come from?

Optically active materials:
» Solutions containing asymmetric molecules

* no symmetry plane, i.e.,

such a molecule cannot be
superimposed on its mirror image

O O

®NH; ®ONH;

Amino acid

https://en.wikipedia.org/wiki/Chirality

337

Chirality: some vocabulary

Chiral molecules exist in general in two
versions: a “left-hand” and “right-hand”
version, though often only one of the
two may exist in living organisms.

Enantiomorphs: a chiral object and its mirror
image

same atoms and bond structure, but the geometrical
‘ positioning of atoms and functional groups in space differs so
the molecules are mirror images of each other

https://www.masterorganicchemistry.com/2018/09/10/types-of-isomers/ 138

169



Where does optical activity come from?

Optically active materials:

crystal of symmetric molecules in an
asymmetric arrangement

optical activity apparent for
propagation along the optic axis

http://www.quartzpage.de/gen_struct.html

Quartz: symmetric molecules
arranged in an asymmetric
structure

339

Rotation direction

a =pd

The two enantiomorphs (or asymmetrical
arrangements) give rise to a different sign

for the parameter O

dextrorotatory  clockwise for incoming light

levorotatory counter-clockwise for incoming light

340
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Towards Fresnel’s interpretation of optical activity

Linearly polarized light may be considered the sum of right-handed
circularly and left-handed circularly polarized light

http://cddemo
.szialab.org/

341

Fresnel’s phenomenological hypothesis

Fresnel: in an optically active material, the indices of refraction for
right-handed and left-handed polarized light are different!
Rec 2
’Natei” fOr b/'refr' kR = E nR kL = _71' n
for fWolal * diffe re Ingent A A
pO/ariZa?'ThOgONG; "Ndlceg Using this hypothesis, define in
"ons lingq, the material:
Right circular polarization E, = %[cos(wt —kqz)i—sin (wr — kRz)j]
E

Left circular polarization  E, = To[cos(wt —k,z)i+sin (wr — kLz)j}

. 2
1 In air: kR:kL:k:T7T

Linear polarization outside .
E=E,+E, =E, cos(wt—k
of the material (e.g., in air) w T EL = E, cos(wr —kz)i

342
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Fresnel’s phenomenological hypothesis

E,= %[COS(W — kypz)i—sin(wr — kRZ)j] E, = %[cos(wt —k,z)i+sin (wt — k,_z)j]
27 27
kR = TnR k, = 7”1‘
In the material, the initial linear E=E,+E,

polarization becomes:

E= %[cos(wtfk,ez)ifsin(wtfkRz)j]+%[cos(wtkaz)§+sin(wtkaz)ji]

. . L -, _ a=b a+b
Using trigometric identities: °°S“+°°S”*2°°S[ 3 ]COS[ 2 J
sinafsinb:ZSin[aib]cos{aerJ
2 2

—k ) & —k ) 4
E:Eocos[wtf[kk—'_kL]z] cos[k’fizkL]ziJrsin[kR2 L]Zj]

2
- COS["R;’& . Recall:
+ COS«
E=E,cos|wt— u]z]
0 [ [ 2 sin kkikL ‘ ua = .
5 JF sin o

343

Fresnel’s phenomenological hypothesis
Cos[k”;kL]Z m=) Recall: u, :[

. kR—k,]
sin|——
[ 2 )

Cos Oé]

sin «v

2

E:Eocos[wtf[k’? +k"]z]

k,+k A
For a material thickness d: E(z=d)=E, COS[W— [%]d]

COSE(an")dl

sing(annL)a’

=) a:—(nR —nL)d

344
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Fresnel’s phenomenological
hypothesis...using Jones vectors

*  We know that a linear polarization will be rotated by an angle Q.

*  What is the Jones matrix for this? M — R(a) — [

cosa  —sin a]

sina  cosa

Apply this now to circularly polarized light:

won g, (1) )

Iy 1 {cosa —sinal( 1 . L
u, ,=— =
LR \/5 sinae  cosa || i \/5

cos Fisin a]

sin v icos o
1 ia 1 16
:%(cosa¥isina)[ii] :Eeq: [j:l] = ejF uL,R

Circularly polarized waves are eigenmodes of an

optically active medium!
345

The parameter “0” and the indices of

refraction
M 7L cosa —sinal( 1 R 1 g
e = 2 lsine cosar || +i _ﬁe +il ¢ Uir
Phase difference between a—(—a)=2a =(k, —k,)d
left and right circularly
. . 2
polarized waves after passing = T(nR —n,)d

through an optically active
material of thickness d

= =Efn-n)

Caution! Sign convention different in French and English!!

p > () dextrorotatory in English; lévogyre en frangais!!!

346
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Recall: (O =,0d

Specific rotation:

Specific rotation I

[a]T a_| T temperaturein °C

D=>sodium line 589.3 nm

E

A: wavelength

a: measured rotation angle

y: solution concentration in g/l

Compound [a]p [(/(dm g/L)] Compound [alp [A(dm g/L)]
Benzene 0.00 Cholesterol -31.50
o-D-glucose +112.00 Morphine -132.00
B-D-glucose +18.70 Penicillin V +223.00
Camphor +44.26 Sucrose +66.47

+: dextrorotatory

347

Wavelength dependence of the rotatory

Biot phenomenological law: p=—

that exist in the UV:

power

p:ZAZi)\?

Optical activity depends strongly on the wavelength:

If you take into account the wavelengths A; of the electronic transitions

Seems like the optical rotatory power may be related in some way to

the index of refraction! (looks like the Lorentz model)

348
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60. Specific Rotation
Table 6o-1. SpeciFic RoTaTiON®
Solids
R Wave- Rota- Wave- | Rota-
. Substance length, tion, Substance length, | tion,
um deg/min 4m  |deg/min
Cinnsbar (HgS).. ... D 4325 |Quartz........... 0.3726 | +58.804
Lead hyposulfate. D 5.5 0.3609 | 63.628
Potassium hyposuliate, , D 8.4 0.3582 04.409
Quartz................ 3.676 0.34 0.3466 | 69 454
1.342 3.89 0.3441 70.587
07604 12 688 0.3402 72118
0.7184 14.304 0.3360 | 74.571
0.6867 15.746 0.3286 78.579
, 0.6562 17.318 0.3247 B0 459
0.5805932] 21.7010| 0.3180 B4.872
10.5805 21.684 0.2747 | 121.052
0.5892617| 21.729 0.2571 | 143.266
0. 5889965 21 7491 0.2313 | 190.426
0.5889 21.727 0.2265 | 201.824
0.5460741) 25.538 0.2194 | 220.731
0. 52069 27.543 0.21740{ 229.96
0.4861 32,773 0.2143 | 235.972
0.4307 42 604 0.1750 | 453.5
0.4101 47.481 0.1525 | 776.0
0.3968 51.193 | Sodium bromate. . D 28
0.3933 52.155 | Sodium chlorate . . D 3.13
0.3820 85 625
Bpecific rotation or rotstory power is given in degrees per decimeter for liquids and solutisas and
in degrees per millimeter for solids; + signifies right-banded rotation, — left. BSpecific rotation varies
with the wavelength of light used, with temperature and, in the case of solutions, with the concentration.
When sodium light is used, indicated by D in the wavelength column, & value of A = 0.5883 may be
e Optical rotatory powe: for a large sumber of orgasie compounds will be found iz the “Interaational
Critical Tables,” vol. V1I; for sugar, vol. II.
"Most of the data taken from “Handbook of Chbemistry and Physics,” 38th ed., pp. 2752 2753,
2754, Chemical Rubber Publishing Company, 1954-1955. 349
Recall Lecture 3:
*Material constants depend on E-field in the past (i.e., the response is non-
instantaneous, i.e., not localized in time)
' r r
D(r,1)= E fdt e, (t—1)E (r,1")
1
‘ frequency dispersion, material properties depend on w
‘ frequency dispersion < absorption
350
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A microscopic theory for optical activity

*Material constants depend on E-field within a small volume, e.g., the volume of a
molecule (i.e., response is non-local in space)

Dj(r,w):Zlfd%’sﬂ(r—r’,w)E,(r’,w)
Ve

wavevector dispersion, material properties depend on k,
‘ i.e., optical rotation varies with wavelength and direction

Wavevector dispersion (optical rotation dispersion) < circular dichroism

(i.e., differential absorption of left and right-handed light)

Can demonstrate that spatial dispersion gives rise to optical activity

351

Conclusion: natural optical activity

» Spatial dispersion leads to circular birefringence!

* Right-handed and left-handed circularly polarized waves are the

eigenstates of these materials!!!

« Different indices of refraction for right-handed and left-handed

circularly polarized waves!
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Faraday effect—induced circular birefringence

Occurs in most transparent dielectric materials, i.e., isotropic / symmetrical structures

Applied magnetic field parallel to the propagation direction

3=VBd

V = Verdet “constant” (varies with
wavelength and temperature)
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Faraday effect—induced circular birefringence

Important difference with optical activity: it is the magnetic field direction
and NOT the propagation direction which determines the rotation
direction (for a given V)

V = Verdet “constant” : same sign in English and French

In this case V>0

3=VBd
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Comparison of the Faraday effect and optical
Fixed * aCtiVity

Magnetically-induced Optical activity
circular birefringence
B 4

—
-
— .

k / kL~ L
Propagation < ’ f
direction axes
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Reciprocity

Compare the polarization rotation for propagation in the +z and —z directions

Rotation angle . o

measurement Optical activitya Faraday effect 3

With respect to

absolute (x,y,z)

coordinates

With respect to the

propagation

direction k

Polarization

eigenmodes

Reciprocal effect Non-reciprocal effect

(symmetry broken by B
field)

356

178



Recall: Lorentz model

Atomic resonances at frequences Gy,

I

Incident wave o | hw
Frequency w 0

y

(@), wf,(wjz—wz)
& (wg-w) +or
0. e"(w) _ wyed
& (wp-w) +wr?

K(wo fw)

If |w—w,| < wy:n® =1+

(w—wo)z +F2/4
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Zeeman effect

The ground level is degenerate. Light is propagating in the z direction

B=0 B.#0
J=0 —a
MO
J=1 —X—
2
n —1 a1
0 0. <
n —1
4 2. 0 2 4. 4 2. 0 2.
w — Wo w — W
T T

358

179



Zeeman effect and the Faraday effect
The ground level is degenerate for B=0. Light is propagating in the z direction

With an applied field:

n,=n.

ni—l l

0. Circular birefringence

n —1 l

Rotation of linear polarization
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Application: optical isolator

Forward  poanzer o
Faraday crystal o° polarizer
polarizer - | LAV Faraday crystal
45°
Reflected
. light
4 € Backward

Pass

No reflected light!

http://www.chinacablesbuy.com/what-is-fiber-
optic-isolator.html 360
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Polarization-independent optical isolator

— Forward Mode
Light Polarization - Reverse Mode
Isolator
Housing (| ] ‘
T | =
Output
= Fiber
Collimating
Input [ ] 4 Lens
Fiber | ] '
Co|ll|_matlng Faraday Half-Wave
ans f Rotator .| Plate
Birefringent Birefringent
Beam Displacer | | Beam Displacer
Light Polarization

Use circular and linear birefringent
materials together!
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Polarization-independent optical 1solator

X L
z 1] Next: use Faraday rotator to

rotate polarization by 45°

Isolator
Housing

Fiber L
Collimating
Lens

/

Birefringent
Beam Displacer | |

Ioptic axis

)
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Polarization-independent optical isolator

X y | )_' Next: use Faraday rotator to
| rotate polarization by 45°

X
’ 1] 1 (1
u = _
¢ 0 Mu, =— 6 — VBd
Isolator \/E 1
Housing ]
Choose V, B, d so
that 3= ™
inpat 1 4
Fiber L ~
Collli.g:;jng Faraday M =R (Oé) _ CoOS Sin «
Rotator < sina  cosa
Birefringent _
Bean:r[tlaisprullg.?e‘r L Mu, :L[ 1] M— R[a :1] :L 1 -1
Va1 4) 211
Light Polarization ' y ]
0 X
u, = 1
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Polarization-independent optical 1solator

X [ y
Next: use half wave plate to

X rotate another 45° so that

‘ 0_] y
Isolator —

Housing X

polarization is perpendicular
to the result after the beam
displacer. How should the

half wave plate be oriented?

i I } ‘ . y /’J
t \[Z
Fber L] =

Ry i1
Cullll_matmg Faraday Half-Wave /
ens Rotator | | | | Plate /
>
d
Birefringent
Beam Displacer =
I optic axis y
yL \ |
X

0 X
uo - [ ]
1 364
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Polarization-independent optical isolator

L

y Y|i y'
X X %

z [1] “Top” ray is now the
u, = 1 (1 ordinary ray!
0 Mu,=—
Isolator ¢ 2 1
Housing =] =i ‘
=] Output
L] Fiber
— Collimating
Input il Lens
Fiber 2 Illglh
ollimaling Faraday Half-Wave
Lens Rotator |_| || Plate
d
Birefringent 1 (-1 Birefringent
Beam Displacer || Mu, = ﬁ | .| Beam Displacer
I optic axis “Bottom” ray is now

the extraordinary ray!
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Conclusion and
summary

Jean-Baptiste Biot
(1774-1862)
here with Gay-Lussac

Louis Pasteur
(1822-1895)

Francois Arago
(1786-1853) Circular birefringence:
» Linear polarization remains linear but is rotated!

» May be intrinsic to the material or may be induced
» Optical activity:
» Found in non-centrosymmetric materials
» May be due to the arrangement of symmetric molecules or due the

asymmetry of the molecules themselves
» Characteristic of many biological molecules

» Reciprocal effect

» Faraday effect:
» Induced by a magnetic field

» Non reciprocal
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