

- Maxwell's equations and Poynting's theorem: energy conservation of EM fields in matter
- Plane waves
- Fresnel equations for reflection and refraction

If you wake up a physicist in the middle of the night and say "Maxwell" they are sure to say "electromagnetic field". Rudolf Peierls (1962)

https://en.wikipedia.org/wiki/Rudolf_Peierls

Maxwell's equations in vacuum In the presence of charges and currents $\nabla \times E =$ (1) $\varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t}$ (2) $\nabla \times \mathbf{B} =$ $\nabla \cdot \mathbf{B} =$ (3) (4) $\nabla \cdot \mathbf{E} =$ \mathbf{j} = current per unit area perpendicular to flow ρ = charge per unit volume ε_0 = vacuum permittivity 1 c = μ_0 = vacuum permeability $\sqrt{\mu_0 \varepsilon_0}$

Poynting's theorem: conservation of energy
for electromagnetic fields in matter
$$\frac{dW_{mech}}{dt} = \int_{vol} \vec{E} \cdot \vec{j_f} dV \qquad \nabla \times \mathbf{H} = \mathbf{j}_{free} + \frac{\partial \mathbf{D}}{\partial t} \quad (2.2) \qquad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \quad (2.1)$$
$$\nabla \cdot (\mathbf{E} \times \mathbf{H}) = \mathbf{H} \cdot (\nabla \times \mathbf{E}) - \mathbf{E} \cdot (\nabla \times \mathbf{H})$$
$$\int_{vol} \mathbf{E} \cdot \mathbf{j}_f dV = \int_{vol} \left[\mathbf{H} \cdot \left(-\frac{\partial \mathbf{B}}{\partial t} \right) - \nabla \cdot (\mathbf{E} \times \mathbf{H}) - \mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} \right] dV$$

Poynting's theorem: conservation of energy for electromagnetic fields in matter

$$\int_{vol} \left[\mathbf{E} \cdot \frac{\partial \mathbf{D}}{\partial t} + \mathbf{H} \cdot \frac{\partial \mathbf{B}}{\partial t} \right] dV = -\int_{vol} \mathbf{E} \cdot \mathbf{j}_f dV - \int_{vol} \nabla \cdot (\mathbf{E} \times \mathbf{H}) dV$$

17

Unit analysis: $\frac{\langle \mathbf{S} \rangle}{\langle u_{\rm EM} \rangle}$

Speed of energy propagation Find $\langle \mathbf{S} \rangle = [\mathcal{E} e^{i\phi} + \mathcal{E}^* e^{-i\phi}] \times [\mathcal{H} e^{i\phi} + \mathcal{H}^* e^{-i\phi}] \phi = \vec{k} \cdot \vec{r} - \omega t$ Recall: $\langle e^{i2\phi} \rangle = 0$ Eliminate \mathcal{H}^* from $\mathcal{E} \times \mathcal{H}^*$ Recall: $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = \mathbf{B} (\mathbf{A} \cdot \mathbf{C}) - \mathbf{C} (\mathbf{A} \cdot \mathbf{B})$ $\Longrightarrow \mathcal{E} \times (\mathbf{k} \times \mathcal{E}^*) =$

In search of the eikonal equation

Plan of attack: substitute (1.1), (1.2) into Maxwell's equations in order to find and expression for $S(\mathbf{r})$

$$\begin{cases} \mathbf{E}(\mathbf{r},t) = \boldsymbol{\mathcal{E}}(\mathbf{r}) \exp[ik_0 \mathcal{S}(\mathbf{r}) - i\omega t] \\ \mathbf{B}(\mathbf{r},t) = \boldsymbol{\mathcal{B}}(\mathbf{r}) \exp[ik_0 \mathcal{S}(\mathbf{r}) - i\omega t] \end{cases} \quad (1.1, 1.2) \quad \text{in} \quad \nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \quad (1.5) \\ \text{Recall:} \quad \nabla \times (f\mathbf{A}) = f \nabla \times \mathbf{A} + \nabla f \times \mathbf{A} \qquad \frac{\omega}{k_0} = c \\ \nabla \times \boldsymbol{\mathcal{E}} + ik_0 \nabla \mathcal{S} \times \boldsymbol{\mathcal{E}} = i\omega \boldsymbol{\mathcal{B}} \\ \frac{\nabla \times \boldsymbol{\mathcal{E}}}{k_0} + i\nabla \mathcal{S} \times \boldsymbol{\mathcal{E}} = \frac{i\omega \boldsymbol{\mathcal{B}}}{k_0} = ic \boldsymbol{\mathcal{B}} \end{cases}$$

In search of the eikonal equationUse the approximation of geometrical optics!Method 1: consider $\lambda \ll$ all other dimensions, i.e., $\lambda_0 \rightarrow 0, k_0 \rightarrow \infty$ $\frac{\nabla \times \mathcal{E}}{k_0} + i\nabla S \times \mathcal{E} = ic\mathcal{B}$ \Longrightarrow $ik_0\nabla S \times \mathcal{E} = i\omega\mathcal{B}$ (1.11)Method 2: consider only situations where the
amplitudes and e_r vary slowly with distance as
compared to the phase $ik_0\nabla S \times \mathcal{E} = i\omega\mathcal{B}$ (1.11) $\nabla \times \mathcal{E} + ik_0\nabla S \times \mathcal{E} = i\omega\mathcal{B}$ $ik_0\nabla S \times \mathcal{E} = i\omega\mathcal{B}$ (1.11)

٥л

$k_0 \nabla S \times \mathcal{E} = i \omega \mathcal{B}$	(1.11)	$\nabla S \cdot B = 0$	(1.13)
$k_0 \nabla S \times \mathcal{B} = -i\omega \varepsilon_0 \varepsilon_r \mu_0 \mathcal{E}$	(1.12)	$\boldsymbol{\nabla} \boldsymbol{\mathcal{S}} \cdot \boldsymbol{\mathcal{E}} = \boldsymbol{0}$	(1.14)
Next, eliminate ${\cal B}$ from 1.12			
		Recall: $\mathbf{A} imes (\mathbf{B} imes \mathbf{C})$ =	$= \mathbf{B}(\mathbf{A} \cdot \mathbf{C}) - \mathbf{C}(\mathbf{A} \cdot \mathbf{B})$

Properties of the real and imaginary contributions

 $\rightarrow \sigma(t) = \sigma^*(t)$

Recall: $\sigma(t)$ is real

From the definition of the Fourier transform:

$$\sigma(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\sigma'(\omega) + i\sigma''(\omega) \right] e^{-i\omega t} d\omega = \sigma^*(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \left[\sigma'(\omega) - i\sigma''(\omega) \right] e^{+i\omega t} d\omega$$

Change ω to $-\omega$ in the second integral and conclude!

116

$$\begin{aligned} & \mathbf{F}^{2} E(\mathbf{r},t) - \frac{1}{c^{2}} \frac{\partial^{2} E(\mathbf{r},t)}{\partial t^{2}} = 0 \quad (3.1) \\ & \mathbf{F}^{2} E(\mathbf{r},t) - \frac{1}{c^{2}} \frac{\partial^{2} E(\mathbf{r},t)}{\partial t^{2}} = 0 \quad (3.1) \\ & \mathbf{F}(\mathbf{r},t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega E(\mathbf{r}, \boldsymbol{\omega}) e^{-i\omega t} \quad (3.3) \\ & E(\mathbf{r},t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega E(\mathbf{r}, \boldsymbol{\omega}) e^{-i\omega t} \quad (3.3) \\ & \text{Plug (3.3) into (3.1)} \end{aligned}$$

Towards a propagating wave as a sum of
plane waves
$$\begin{bmatrix} \frac{\partial^2}{\partial z^2} E(k_x, k_y, z, \omega) + \left(\frac{\omega^2}{c^2} - k_x^2 - k_y^2\right) E(k_x, k_y, z, \omega) \end{bmatrix} = 0 \quad (3.6)$$
$$k_z = \begin{cases} \sqrt{\frac{\omega^2}{c^2} - k_x^2 - k_y^2} & \text{if } \frac{\omega^2}{c^2} > k_x^2 + k_y^2 \\ i\sqrt{k_x^2 + k_y^2 - \frac{\omega^2}{c^2}} & \text{otherwise} \end{cases}$$

Towards a propagating wave as a sum of plane waves $E(k_x, k_y, 0, \omega) = A(k_x, k_y, \omega) \quad (3.7b) \text{ for } z = 0$ Recall: $E(k_x, k_y, z, \omega) = A(k_x, k_y, \omega)e^{ik_z z} \quad (3.7b)$ Recall: $E(x, y, z, \omega) = \left(\frac{1}{2\pi}\right)^2 \iint dk_x dk_y E(k_x, k_y, z, \omega)e^{i(k_x x + k_y y)} \quad (3.5)$ $E(x, y, z, \omega) = \frac{1}{(2\pi)^2} \iint dk_x dk_y E(k_x, k_y, z = 0, \omega)e^{i(k_x x + k_y y + k_z z)} (3.11)$ $k_x^2 + k_y^2 + k_z^2 = \frac{\omega^2}{c^2} \quad (\text{dispersion relation}) \quad (3.12)$

161

Exact solution to our problem:

Knowing the distribution of the electric field on a plane at z=0, can we find an expression for the field at a distance z>0?

$$E(x, y, z, \omega) = \frac{1}{(2\pi)^2} \iint dk_x dk_y E(k_x, k_y, z = 0, \omega) e^{i(k_x x + k_y y + k_z z)}$$

$$E(k_x, k_y, z=0, \omega) = \iint dx dy E(x, y, z=0, \omega) e^{-i(k_x x + k_y y)}$$

...but still a bit complicated to calculate!

175

Free methods: starting with the Huygens-Fresnel principle of secondary wavelets using the stationary phase approximation

176

Arbitrary field as a sum of spherical
waves: Rayleigh-Sommerfeld expressionRecall: Field as a sum of plane waves:
$$E(x, y, z, \omega) = \frac{1}{(2\pi)^2} \iint dk_x dk_y E(k_x, k_y, z = 0, \omega) e^{ik_z z} e^{i(k_x + k_y y)}$$
"The Fourier transform of a product is equal to the convolution of the separate Fourier transforms".

Fresnel approximation: summary

 $E(x, y, z, \omega) = -\frac{ie^{ikz}}{\lambda z} \iint dx' dy' E(x', y', z = 0, \omega) \exp\left\{i\frac{k}{2z}\left[\left(x - x'\right)^2 + \left(y - y'\right)^2\right]\right\}$

207

Link between Fresnel diffraction and the plane wave expansion

Fresnel Difraction:

$$E(x, y, z, \omega) = -\frac{ie^{ikz}}{\lambda z} \iint dx' dy' E(x', y', z = 0, \omega) \exp\left\{i\frac{k}{2z} \left[\left(x - x'\right)^2 + \left(y - y'\right)^2\right]\right\}$$

Fresnel Diffraction = convolution of the field at z = 0 with the transfer function

$$h_{\text{Fresnel}}(x, y, z, \omega) = -\frac{ie^{ikz}}{\lambda z} \exp\left[i\frac{k}{2z}(x^2 + y^2)\right]$$

The FT of this transfer function is:

$$h_{\text{Fresnel}}\left(k_{x},k_{y},z,\omega\right) = e^{ikz} \exp\left[-i\frac{z}{2k}\left(k_{x}^{2}+k_{y}^{2}\right)\right]$$

$$F(t) = \exp\left(-\frac{t^{2}}{2\sigma^{2}}\right) \longleftrightarrow F(\omega) = \sqrt{2\pi\sigma} \exp\left(-\frac{\omega^{2}\sigma^{2}}{2}\right)$$

$$E\left(k_{x},k_{y},z,\omega\right) = E\left(k_{x},k_{y},z=0,\omega\right) \cdot h_{\text{Fresnel}}\left(k_{x},k_{y},z,\omega\right)$$
209

Link between Fresnel diffraction and the plane wave expansion Fresnel: $E(k_x, k_y, z, \omega) = E(k_x, k_y, z = 0, \omega) \cdot h_{pressel}(k_x, k_y, z, \omega) = h_{mount}(k_x, k_y, z, \omega) = e^{ik_z} \exp\left[-i\frac{z}{2k}(k_x^2 + k_y^2)\right]$ Plane wave expansion: $E(k_x, k_y, z, \omega) = E(k_x, k_y, z = 0, \omega) e^{ik_z z}$ Plane wave expansion = product of field at z = 0 and transfer function $h_{plane,waves}(k_x, k_y, z, \omega) = \begin{cases} \exp\left[ikz\sqrt{1-\frac{k_x^2}{k^2}-\frac{k_y^2}{k^2}}\right] \text{ if } k_x^2 + k_x^2 < k^2 \\ 0 \text{ otherwise for } z \gg \lambda \text{ (evanescent waves)} \end{cases}$ $h_{plane,waves}(k_x, k_y, z, \omega) = e^{ikz} \exp\left[-i\frac{z}{2}\left(\frac{k_x^2}{k}+\frac{k_y^2}{k}\right)\right] = h_{\text{Fressel}}(k_x, k_y, z, \omega)$ Thus the Fresnel approximation is valid for $k_x, k_y < < k_y$ i.e., for small diffraction angles => PARAXIAL APPROXIMATION

Nobel in Physics 2009 : Charles K. Kao

"for groundbreaking achievements concerning the transmission of light in fibers for optical communication"

http://nobelprize.org/nobel_prizes/physics/laureates/2009/index.html

227

For a given wave normal of direction **u**, what is the resulting phase velocity?

In other words, what is the index of refraction for this direction?

Let $\mathbf{u} = \frac{\mathbf{k}}{k}$ i.e., a unit vector in the direction of the wavevector $\mathbf{k} = n \frac{\omega}{c} \mathbf{u}$ where *n* is the index of refraction for the direction \mathbf{u}

 $v_{\varphi}(\mathbf{u}) = \frac{\omega}{k} = \frac{c}{n}$

Desired phase velocity:

245

- $\Delta n \equiv n_e n_o$
- If $\Delta n < \Omega$ the material is considered "negative" (e.g., calcite)
- If $\Delta n > 0$ the material is considered "positive" (e.g., quartz)

TABLE 8.1Refractive Indices of SomeUniaxial Birefringent Crystals ($\lambda_0 = 589.3 \text{ nm}$)

Crystal	n _o	n_e
Tourmaline	1.669	1.638
Calcite	1.6584	1.4864
Quartz	1.5443	1.5534
Sodium nitrate	1.5854	1.3369
Ice	1.309	1.313
Rutile (TiO ₂)	2.616	2.903

Hecht, Optics

Snell's (Descartes'?) laws for anisotropic media

According to Dijksterhuis,^[12] "In *De natura lucis et proprietate* (1662) <u>Isaac Vossius</u> said that *Descartes had seen Snell's paper and concocted his own proof.* <u>We now know this charge to be undeserved</u> but it has been adopted many times since." *Both Fermat and Huygens repeated this accusation that Descartes had copied Snell.* In <u>French</u>, Snell's Law is called "la loi de Descartes" or "loi de Snell-Descartes."

Wikipedia (italics and underlining mine)

Rotation direction				
$\alpha = \rho d$	The two enantiomorphs (or asymmetrical arrangements) give rise to a different sign for the parameter ρ			
dextrorotatory	clockwise for incoming light			
levorotatory	counter-clockwise for incoming light			
	340			

Fresnel's phenomenological hypothesis

$$\mathbf{E}_{R} = \frac{E_{0}}{2} \left[\cos(\omega t - \mathbf{k}_{R}z) \hat{\mathbf{i}} - \sin(\omega t - \mathbf{k}_{R}z) \hat{\mathbf{j}} \right] \qquad \mathbf{E}_{L} = \frac{E_{0}}{2} \left[\cos(\omega t - \mathbf{k}_{L}z) \hat{\mathbf{i}} + \sin(\omega t - \mathbf{k}_{L}z) \hat{\mathbf{j}} \right] \\ \mathbf{k}_{R} = \frac{2\pi}{\lambda} n_{R} \qquad \mathbf{k}_{L} = \frac{2\pi}{\lambda} n_{L}$$

In the material, the initial linear polarization becomes:

$$\mathbf{E} = \frac{E_0}{2} \Big[\cos\left(\omega t - \mathbf{k}_R z\right) \hat{\mathbf{i}} - \sin\left(\omega t - \mathbf{k}_R z\right) \hat{\mathbf{j}} \Big] + \frac{E_0}{2} \Big[\cos\left(\omega t - k_L z\right) \hat{\mathbf{i}} + \sin\left(\omega t - k_L z\right) \hat{\mathbf{j}} \Big]$$

 $\mathbf{E} = \mathbf{E}_{R} + \mathbf{E}_{I}$

Using trigometric identities: $\cos a + \cos b = 2\cos\left(\frac{a-b}{2}\right)\cos\left(\frac{a+b}{2}\right)$

$$\mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R + k_L}{2}\right)z\right) \begin{bmatrix}\cos\left(\frac{k_R - k_L}{2}\right)cs\left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{i}} + \sin\left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\end{bmatrix}$$

$$\mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R + k_L}{2}\right)z\right) \begin{bmatrix}\cos\left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{i}} + \sin\left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\end{bmatrix}$$

$$\mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R + k_L}{2}\right)z\right) \begin{bmatrix}\cos\left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\end{bmatrix}$$

$$\mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R + k_L}{2}\right)z\right) \begin{bmatrix}\cos\left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\end{bmatrix}$$

$$\mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R + k_L}{2}\right)z\mathbf{\hat{j}}\right) = \mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\right)$$

$$\mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\right) = \mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\right)$$

$$\mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\right) = \mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\right)$$

$$\mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\right) = \mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\right)$$

$$\mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\right) = \mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\right)$$

$$\mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\right) = \mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\right)$$

$$\mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\right) = \mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\right)$$

$$\mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\right) = \mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\right)$$

$$\mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\right) = \mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\right)$$

$$\mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\right) = \mathbf{E} = E_0 \cos\left(\omega t - \left(\frac{k_R - k_L}{2}\right)z\mathbf{\hat{j}}\right)$$

Specific rotation Recall: $\alpha = \rho d$				
Specific rotatio	on: $\left[\alpha\right]_{\lambda}^{T} = \frac{\alpha}{\gamma d}$	T: temperature in λ: wavelength α: measured rota	°C E	
D=>sodium line 58	39.3 nm	γ: solution conce	ntration in g/l	
Compound	$[\alpha]_D [^{\circ}/(dm g/L)]$	Compound	$[\alpha]_{D}$ [°/(dm g/L)]	
Benzene	0.00	Cholesterol	-31.50	
α-D-glucose	+112.00	Morphine	-132.00	
β-D-glucose	+18.70	Penicillin V	+223.00	
Camphor	+44.26	Sucrose	+66.47	
	+: dextror	otatory		347

Compare the polariz	Reciprocity ation rotation for propagation	7 on in the +z and $-z$ directions
Rotation angle measurement	Optical activity α	Faraday effect β
With respect to absolute (x,y,z) coordinates		
With respect to the propagation direction k		
Polarization eigenmodes		
	Reciprocal effect	Non-reciprocal effect (symmetry broken by B field)

