Corrigé examen final: 19/12/2023

Exercice 1. Soit la fonction $f: \mathbb{R} \to [0, +\infty]$ définie par $f(x) = \frac{1}{\sqrt{|\sin x|}}$.

- 1. Quel est le plus grand ensemble sur lequel f est continue?
- 2. Montrer que la fonction f est intégrable sur $[0, \pi]$.
- 3. Montrer que l'intégrale de f sur tout intervalle $[k\pi, (k+1)\pi]$, k entier relatif, existe et vaut celle sur $[0, \pi]$.
- 4. Démontrer que pour tout entier $n \ge 2$, $\int_{[0,\pi]} \frac{1}{\sqrt{|\sin nx|}} d\lambda(x) = \int_{[0,\pi]} \frac{1}{\sqrt{|\sin x|}} d\lambda(x)$. (Remarque: on pourra utiliser le changement de variable $x \mapsto nx$.)
- 5. Soit $(a_n)_{n\geq 1}$ une suite de réels positifs tels que $S=\sum_{n\geq 1}a_n<+\infty.$
 - a) Trouver un ensemble dénombrable infini de valeurs de $x \in [0, \pi]$ sur lequel on peut affirmer que la série $\sum_{n \geq 1} \frac{a_n}{\sqrt{|\sin nx|}}$ diverge.
 - b) Montrer que, cependant, la série $\sum_{n\geq 1} \frac{a_n}{\sqrt{|\sin nx|}}$ converge pour presque tout $x\in [0,\pi]$.

Exercice 1. Solution

- 1) Par composition des fonctions sin, valeur absolue et racine carrée, la fonction $x \mapsto \sqrt{|\sin x|}$ est continue sur \mathbb{R} , à valeurs dans [0,1]. Elle est aussi périodique de période π . Elle s'annule en tous les multiples de π et est strictement positive sinon. La fonction f est donc continue sur \mathbb{R} privé des multiples de π . Elle prend les valeurs $+\infty$ en les multiples de π . (Elle donc mesurable et positive sur \mathbb{R} .)
- 2) La continuité sur $]0,\pi[$ entraı̂ne que f est mesurable et, comme f est aussi positive, il suffit de regarder les équivalents en 0 et en π . Comme $\sin x \sim x$ au voisinage de 0, on a que $f(x) \sim |x|^{-1/2}$ au voisinage de 0 donc f est intégrable sur $[0,\pi/2]$. Par périodicité, $f(x) \sim |x-\pi|^{-1/2}$ au voisinage de π , qui est intégrable sur $[\pi/2,\pi]$. L'intégrabilité de f (positive) sur $[0,\pi]$ est établie.
- 3) On fait le changement de variable $\varphi: y \mapsto y + k\pi = x$, C^1 difféomorphisme de]0,1[sur]k,k+1[, de jacobien 1. L'intégrale sur les points du bord ne comptent pas donc,

$$\int_{[k\pi,(k+1)\pi]} f(x) \, d\lambda(x) = \int_{[0,\pi]} f \circ \varphi(y) \cdot 1 \, d\lambda(y) = \int_{[0,\pi]} f(y+k\pi) \, d\lambda(y) = \int_{[0,\pi]} f(y) \, d\lambda(y)$$

 $\operatorname{car} f(y + k\pi) = f(y).$

4) La fonction $\varphi: x \mapsto nx$ étant linéaire et non nulle, c'est un C^1 difféomorphisme de $]0, \pi[$ sur $]0, n\pi[$ et son jacobien est n. L'intégrale sur les intervalles ouverts ou fermés est la même. On a $f(nx) = \frac{1}{n}f \circ \varphi(x)|\varphi'(x)|$ donc

$$\int_{[0,\pi]} \frac{1}{\sqrt{|\sin nx|}} \, d\lambda(x) = \int_{[0,\pi]} f(nx) \, d\lambda(x) = \frac{1}{n} \int_{[0,n\pi]} \frac{1}{\sqrt{|\sin x|}} \, d\lambda(x).$$

On décompose l'intégrale sur $[0,n\pi]$ en la somme des intégrales sur $[k\pi,(k+1)\pi]$ pour $k=0,1,\ldots,n-1$. Par la question précédente, on a donc $\int_{[0,n\pi]} f(x) \, d\lambda(x) = n \int_{[0,\pi]} \frac{1}{\sqrt{|\sin x|}} \, d\lambda(x)$ et on a le résultat en combinant les deux égalités..

- 5a) Il faut rajouter dans l'hypothèse de la question que $a_n \neq 0$ pour une infinitié dénombrable de n (On a compté juste si l'argument suivant était présenté). Là où $\sin(nx)$ s'annule, et si a_n est différent de 0, le nième terme de la série vaut $+\infty$. Donc la série vaut $+\infty$ au moins en tous les points π/n , $n \geq 1$ avec $a_n \neq 0$. Avec l'hypothèse de plus, cela constitue un ensemble dénombrable infini.
- 5b) Comme les fonctions $f_n:[0,\pi]\to[0,+\infty], f_n(x)=\frac{a_n}{\sqrt{|\sin nx|}}$, sont mesurables et positives, on peut échanger intégrale et sommation,

$$\int_{[0,\pi]} \sum_{n>1} f_n \, d\lambda = \sum_{n>1} \int_{[0,\pi]} f_n \, d\lambda = \sum_{n>1} a_n \int_{[0,\pi]} f(nx) \, d\lambda(x) = \sum_{n>1} a_n \int_{[0,\pi]} f(x) \, d\lambda(x) < +\infty.$$

Donc la série de fonctions positives $\sum_{n\geq 1} f_n$ est intégrable sur $[0,\pi]$ et donc prend des valeurs finies presque partout, c'est-à-dire que $\sum_{n>1} \frac{1}{\sqrt{|\sin nx|}}$ converge pour presque tout $x\in[0,\pi]$.

Exercice 2. Pour n entier, $n \geq 1$, on pose $g_n : [0, +\infty[\to \mathbb{R} \text{ donn\'ee par } g_n(t) = \frac{1}{(1+t^2)^n}$. On souhaite calculer $I_n = \int_{[0, +\infty[} g_n(t) \, d\lambda(t)$. Il sera indispensable de raisonner en posant les propriétés de récurrence que vous démontrerez sur la copie, une fois que vous aurez trouvé les expressions sur votre brouillon. On définit $f(x,t) = \frac{1}{x+t^2}$ pour x > 0 et $t \geq 0$, et on pose $F(x) = \int_{[0,+\infty[} f(x,t) \, d\lambda(t)$.

- 1. Justifier que l'intégrale définissant F(x) existe et vérifier que $F(x) = \frac{\pi}{2\sqrt{x}}$.
- 2. Donner l'expression de la dérivée nième de f par rapport à x, qu'on notera $\partial_x^n f(x,t)$.
- 3. Sans tenir compte du calcul de F, montrer que l'intégrale à paramètre définissant F se dérive sous l'intégrale à tout ordre n entier supérieur ou égal à 1 pour tout x > 0.
- 4. En déduire l'expression de I_n à l'aide la dérivée n-1 ième de F, puis donner sa formule en fonction de n.

Exercice 2. solution

1) Pour x>0 fixé, la fonction $t\mapsto f(x,t)$ est continue sur $[0,+\infty[$, positive et majorée par t^{-2} qui est intégrable à l'infini (fonction de réference). Donc cette fonction est intégrable et l'intégrale existe. Si on pose $t=s\sqrt{x}=\varphi(s)$ alors $\varphi:]0,+\infty[\to]0,+\infty[$ est un C^1 difféomorphisme dont le jacobien vaut \sqrt{x} . On a donc

$$F(x) = \int_{]0,+\infty[} \frac{1}{x + xs^2} \sqrt{x} \, d\lambda(s) = \frac{1}{\sqrt{x}} \int_{]0,+\infty[} \frac{1}{1 + s^2} \, d\lambda(s)$$

et cette intégrale se calcule grâce à la primitive $\arctan(s)$ de $\frac{1}{1+s^2}$, s dont la limite en $+\infty$ est $\pi/2$.

- 2) On rappelle que la dérivée de u^{α} est $\alpha u^{\alpha-1}$ pour tout α réel et u>0. Par récurrence sur $n\geq 0$, vérifions la propriété: pour tout $t\geq 0$, la fonction $x\mapsto f(x,t)$ est n fois dérivable par rapport à x>0 et $\partial_x^n f(x,t)=\frac{(-1)^n n!}{(x+t^2)^{n+1}}$. Pour n=0, c'est la définition. Si la propriéte de récurrence est vraie à l'ordre n, alors pour $t\geq 0$ fixé, $x\mapsto \partial_x^n f(x,t)$ est dérivable pour x>0 (car $u=x+t^2>0$) et $\partial_x^{n+1} f(x,t)=\frac{(-1)^n n!(-n-1)}{(x+t^2)^{n+2}}=\frac{(-1)^{n+1} (n+1)!}{(x+t^2)^{n+2}}$.
- 3) Fixons a>0, la propriété de récurrence pour $n\geq 0$ est: pour tout $x\in]a,+\infty[$, $t\mapsto \partial_x^n f(x,t)$ est intégrable sur $[0,+\infty[$ et $F^{(n)}(x)=\int_{[0,+\infty[}\partial_x^n f(x,t)\,d\lambda(t).$ Si cela est vérifié, alors cette formule sera vraie en tout point de l'intervalle $]a,+\infty[$. Si x>0, alors on prend 0< a< x et on conclut donc qu'elle est vraie sur $]0,+\infty[$.

La propriété de récurrence est déjà vérifiée à l'ordre n=0 par la question 1). Supposons là vérifiée à l'ordre n. On vérifie alors l'application du théorème de dérivation sous l'intégrale à $\partial_x^n f(x,t)$. Il y a 3 hypothèses.

- Pour x > a, la fonction $t \mapsto \partial_x^n f(x,t)$ est intégrable sur $[0,+\infty[$: c'est dans l'hypothèse de récurrence.
- Pour t > 0, la fonction $x \mapsto \partial_x^n f(x,t)$ est dérivable pour x > a: c'est la question 2). (domination): $|\partial_x^{n+1} f(x,t)| = \frac{(n+2)!}{(x+t^2)^{n+2}} \le \frac{(n+2)!}{(a+t^2)^{n+2}} := g(t)$ pour tout x > a et $t \ge 0$. Cette fonction est continue (positive) sur $[0, +\infty[$, et majorée par (n+2)! $t^{-2(n+2)}$ qui est intégrable à l'infini car 2(n+2) > 1.

La conclusion du théorème est la conclusion de la propriété de récurrence à l'ordre n+1.

4) On connaît l'expression de F (question 1)) et une récurrence à nouveau donne

$$F^{(n-1)}(x) = \frac{\pi(-1/2)\cdots(-(n-3/2)/2)}{2x^{n-1/2}} = \frac{\pi(-1)^{n-1}1\times 3\times \cdots \times (2n-3)}{2^nx^{n-1/2}} = \frac{\pi(-1)^{n-1}(2n-2)!}{2^{2n-1}(n-1)!x^{n-1/2}}.$$

Or on voit que

$$(-1)^{n-1}(n-1)! I_n = \int_{[0,+\infty)} \partial_x^{n-1} f(1,t) d\lambda(t) = F^{(n-1)}(1).$$

Donc
$$I_n = \frac{\pi}{2} \frac{(2n-2)!}{(2^{n-1}(n-1)!)^2}.$$

Exercice 3. Soit
$$f(x,y) = \frac{1}{x+y}$$
,

- 1. Montrer par un calcul explicite justifié que f est intégrable sur $[0,1] \times [0,1]$ et donner la valeur de son intégrale.
- 2. Montrer que f n'est pas intégrable sur $[-1,0] \times [0,1]$.

Exercice 3. Solution

1) Sur $[0,1] \times [0,1]$, la fonction est à valeurs dans $[0,+\infty]$ et elle est continue sauf au point (0,0)(Donc elle est mesurable). On peut calculer son intégrale I par le théorème de Fubini-Tonelli et par le théorème fondamental de l'analyse. On a

$$\begin{split} I &= \int_{[0,1]} \left(\int_{[0,1]} \frac{1}{x+y} \, d\lambda(y) \right) d\lambda(x) \\ &= \int_{[0,1]} \ln(x+y)|_{y=0}^{y=1} \, d\lambda(x) \\ &= [(x+1)\ln(x+1) - (x+1) - (x\ln x - x)]_{x=0+}^{x=1} \\ &= 2\ln 2 - 1 + 1 = 2\ln 2 \end{split}$$

où $x=0^+$ veut dire qu'on a pris la limite lorsque $x\to 0^+$. La valeur étant finie, f est intégrable sur $[0,1] \times [0,1].$

2) Sur $[0,1] \times [-1,0]$, la fonction f est continue sauf là où x+y=0, c'est à dire le segment S joignant (0,0) à (-1,1). Comme ce segment est une partie négligeable, la fonction f est donc mesurable. En revanche, elle change de signe en traversant S. Il faut prendre sa valeur absolue. En utilisant Fubini-Tonelli à nouveau,

$$I = \int_{[0,1]\times[-1,0]} \frac{1}{|x+y|} \, d\lambda(x,y) = \int_{[0,1]\times[-1,0]\backslash S} \frac{1}{|x+y|} \, d\lambda(x,y) = \int_{[0,1]} \left(\int_{[-1,0]\backslash\{-x\}} \frac{1}{|x+y|} \, d\lambda(y) \right) d\lambda(x).$$

Or pour x fixé,

$$\int_{[-1,0]\backslash\{-x\}} \frac{1}{|x+y|} \, d\lambda(y) \geq \int_{]-x,0]} \frac{1}{|x+y|} \, d\lambda(y) = \int_{]0,x]} \frac{1}{t} \, d\lambda(t) = +\infty$$

car 1/t n'est pas intégrable en 0. Donc $I = +\infty$ et donc f n'est pas intégrable sur $[0,1] \times [-1,0]$.

Exercice 4. On pose $I_n = \int_{[0,n]} \ln x \left(1 - \frac{x}{n}\right)^n d\lambda(x)$ pour n entier supérieur ou égal à 1.

- 1. Tracer l'allure de $u\mapsto \ln(1-u)$ sur [0,1[et montrer que $\ln(1-u)\le -u$ pour $0\le u<1$.
- 2. Posons $g_n(x) = \left(1 \frac{x}{n}\right)^n 1_{[0,n]}(x)$. Quelle est la limite simple de la suite $(g_n)_{n \ge 1}$ sur $[0, +\infty[$?
- 3. Montrer I_n converge vers $I = \int_{[0,+\infty]} \ln x \ e^{-x} \ d\lambda(x)$.
- 4. Vérifier que pour tout entier $k \ge 1$, les fonctions $f_k :]0, +\infty[\to \mathbb{R}$ définies par la formule $f_k(x) = \frac{x^k}{k!} (\ln x 1 1/2 \dots 1/k)$, sont les primitives successives de $f_0(x) = \ln x$ sur $]0, +\infty[$, c'est à dire $f'_k = f_{k-1}$.
- 5. Calculer I_n pour tout $n \geq 1$.
- 6. On suppose connue la constante d'Euler $\gamma = \lim_{n \to +\infty} 1 + 1/2 + \cdots + 1/n \ln n$. Déduire des questions précédentes que $I = -\gamma$.

Exercice 4. Solution

- 1) $\ln(1-u)$ décroît de zéro vers $-\infty$ avec une pente -1 en 0 et une asymptote en u=1. Elle est concave. On a que $(\ln(1-u)+u)'=\frac{-1}{1-u}+1=\frac{-u}{1-u}\leq 0$. Donc elle décroissante. Comme elle est nulle en 0, on a $\ln(1-u)+u\leq 0$. [On peut aussi utiliser la concavité et dire que la tangente en 0 est au-dessus de la courbe.]
- 2) Si $x \ge 0$, et n > x, on a $g_n(x) = e^{n \ln(1 \frac{x}{n})}$. Or $\ln(1 u) \sim -u$ au voisinage de 0. Donc $n \ln(1 \frac{x}{n}) \to -x$ si $n \to +\infty$ et donc $g_n(x) \to e^{-x}$ par continuité de l'exponentielle.
- 3) On applique le théorème de convergence dominée. Il suffit de travailler sur $]0, +\infty[$ puisque $\{0\}$ est négligeable. Pour x > 0, on a $\ln x$ $g_n(x) \to \ln x$ e^{-x} si $n \to +\infty$ d'après 2). Pour la domination, soit x > 0 et $n \ge 1$.
 - si $x \in [0, n[$, $0 \le g_n(x) = e^{n \ln(1 \frac{x}{n})} \le e^{-x}$ en utilisant 1).
 - si $x \ge n$, $g_n(x) = 0 \le e^{-x}$.

Donc $|\ln x \, g_n(x)| \le |\ln x \, e^{-x}|$ pour tout x > 0 et tout $n \ge 1$. Cette fonction est intégrable sur $]0, +\infty[$. En effet, on a $|\ln x \, e^{-x}| \le |\ln x|$ qui est intégrable en 0, et $|\ln x \, e^{-x}| \le Cxe^{-x}$ qui est intégrable en $+\infty$.

- 4) Puisque la formule est donnée, il suffit de vérifier $f'_k = f_{k-1}$ pour tout $k \ge 1$. Or $f'_k(x) = \frac{x^{k-1}}{(k-1)!}(\ln x 1 1/2 \dots 1/k) + \frac{x^{k-1}}{k!}$ et le dernier terme venant de la parenthèse s'élimine avec le terme suivant
 - 5) On a $I_n = \int_{[0,n]} f_0(x) \left(1 \frac{x}{n}\right)^n d\lambda(x)$. Par parties, on a

$$\int_{[0,n]} f_0(x) \left(1 - \frac{x}{n}\right)^n d\lambda(x) = \left[f_1(x) \left(1 - \frac{x}{n}\right)^n\right]_0^n + \frac{n}{n} \int_{[0,n]} f_1(x) \left(1 - \frac{x}{n}\right)^{n-1} d\lambda(x)$$

et le terme tout intégré s'annule car $\lim_{x\to 0} f_1(x) = 0$ par croissance comparée et $g_n(n) = 0$. Par récurrence sur $k = 1, \ldots, n$, et $\lim_{x\to 0} f_k(x) = 0$, on voit que

$$I_n = \frac{n(n-1)\cdots(n-k+1)}{n^{n-k}} \int_{[0,n]} f_k(x) \left(1 - \frac{x}{n}\right)^{n-k} d\lambda(x).$$

Donc pour k = n,

$$I_n = \frac{n!}{n^n} \int_{[0,n]} f_n(x) \, d\lambda(x) = \frac{n!}{n^n} [f_{n+1}]_0^n = \frac{n!}{n^n} f_{n+1}(n) = \frac{n}{n+1} (\ln(n+1) - 1 - 1/2 - \dots - 1/(n+1)).$$

6) La parenthèse tend vers $-\gamma$ et $\frac{n}{n+1} \to 1$.