

Module 2.2 - LCA: principles and methodology

Tuesday 23rd , January 2024

Pierre **TARDIVEAU**

DDRS Project Manager at Polytech Resp. Master Physics, Environment, Processes Paris-Saclay University, Orsay

pierre.tardiveau@universite-paris-saclay.fr 01 69 15 72 50

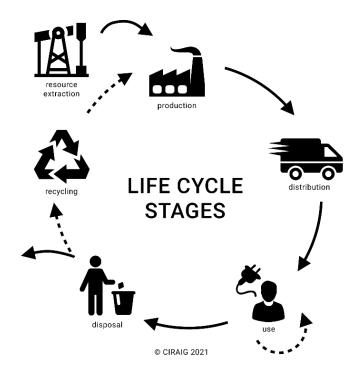
Contents

- 1 General information on Life Cycle Assessment
- 2 Definition of objectives and system
- 3 Inventory of emissions and extractions
- 4 Environmental impact analysis
- 5 Interpretation

Life-Cycle Assessment

Contents

- 1 General information on Life Cycle Assessment
- 2 Definition of objectives and system
- 3 Inventory of emissions and extractions
- 4 Environmental impact analysis
- 5 Interpretation



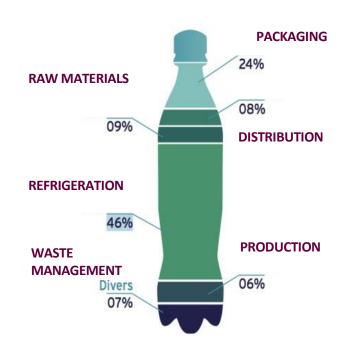
Objective 1: Environmental assessment throughout the life cycle

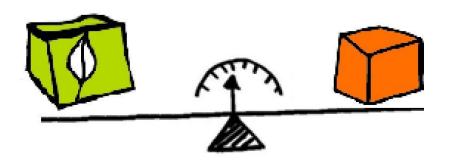
The life cycle of a system is its entire value chain.

This is known as the "cradle to grave" or "cradle to gate" analysis.



• Account for material and energy flows in and out of the system's life cycle, then characterization of the impacts.





Objective 2: Distribute the impacts and prioritize actions contributing to impact reduction. Identify false good actions.


Comparing the impact of different systems (benchmarking)

Objective 3: Identify pollution displacements and impact transfers.

Zero emissions?

To avoid displacing environmental problems

Emissions "elsewhere"!

- From one stage of the life cycle to another
- From one geographic region to another
- From one environment to another
- From one generation to the next

The specific features and advantages of LCA are:

- Produce quantified assessments of a very large number of pollutants and resources: mass balances, multi-media models, etc.
- Performs assessments over the entire cycle: multi-stage method, applicable at a global (regional) spatial
 and temporal level.
- Relates environmental impact to system function (unique method in this respect)
- Encompasses the main environmental problems known to date: **multi-criteria approach** (resource extraction, impact of toxic substances, land use, etc.).
- Focuses on environmental impact: must be combined with other analyses (cost, social impact, technical feasibility, economic performance)

The limitations and drawbacks of LCA are:

- May be biased: well identify assumptions and simplifications made during the LCA and define consistency criteria.
- May lack impartiality: carry out a critical review by a third party.
- Can lead to misinterpretation (by external parts): recall the objectives defined at the outset and clearly state the methodological limits.
- **Does not allow modeling of all decision-support criteria**: flow and environmental impact indicators, but not design and/or management indicators.

Life Cycle Assessment (LCA) is a scientifically-recognized, internationally-regulated (SETAC & UNEP) and ISO-standardized method.

ISO 14040 (2006)

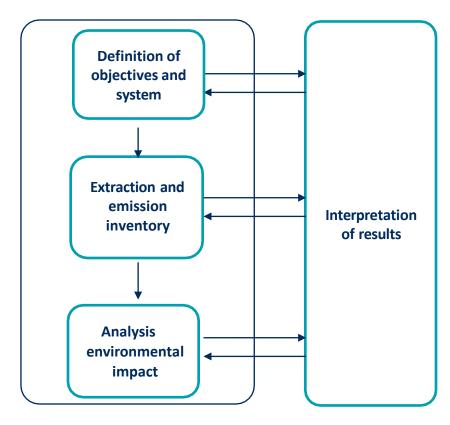
Life cycle assessment
Principles and frameworks

ISO 14044 (2006)

Life cycle assessment
Requirements and guidelines

Extract from ISO 14040: "Life cycle assessment takes into consideration the entire life cycle of a product, from raw material extraction and acquisition, through energy and material production and manufacturing, to use and end-of-life treatment and final waste disposal. Through this comprehensive and systematic approach, the shifting of burdens between different life-cycle stages or between particular processes can be identified and avoided."

Life Cycle Assessment (LCA) is a scientifically-recognized, internationally-regulated (SETAC & UNEP) and ISO-standardized method.

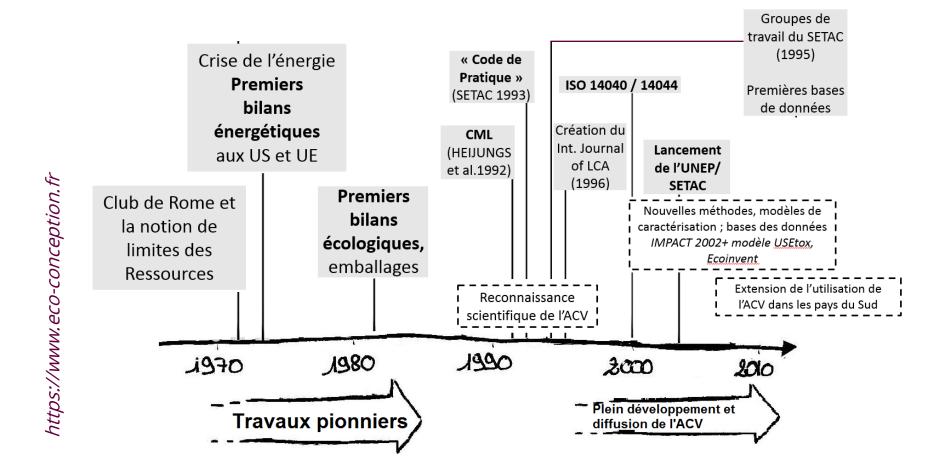

The ISO standard defines the methodology for carrying out an LCA:

4 distinct stages

- Definition of objectives and system
- Inventory: data availability and reliability, allocation issues
- Analysis: different types of characterization, final damage assessment
- Interpretation: sensitivity study and uncertainty analysis

Iterative approach

- Rapid preliminary assessment (screening)
- Detailed analysis: focus on points with the greatest impact



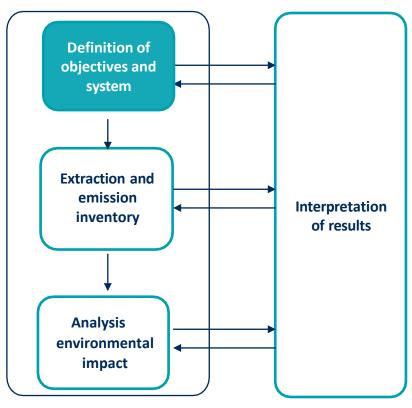
Life Cycle Assessment (LCA) is a scientifically-recognized, internationally-regulated (SETAC & UNEP) and ISO-standardized method.

Life Cycle Assessment (LCA) is a tool that can be used in a variety of contexts:

- Decision support and corporate strategy
- Research and knowledge contribution
- Eco-design of products (choice of materials, technologies, packaging, end-of-life, etc.)
- Benchmarking (choosing solutions with the least impact)
- Awareness-raising and communication (ecolabels, etc.)

Contents

- 1 General information on Life Cycle Assessment
- 2 Definition of objectives and system
- 3 Inventory of emissions and extractions
- 4 Environmental impact analysis
- 5 Interpretation


The 1^{rst} step in an LCA is to define the objectives and scope of the study (system).

Objectives

- Type of application (regulatory, info., R&D, etc.)
- Reasons for the study
- Target audience (consumer, business, policy makers, etc.)
- Stakeholders (agent, executor, auditor, etc.)

Scope of study

- Product system
- Function, functional unit and reference flow
- Description, flow chart and scenarios
- Boundary and cut-off rules
- Allocation rules, database used, characterization method and types of impact, requirements, assumptions, choice of values, type of critical review

The 1^{rst} step in an LCA is to define the objectives and scope of the study (system).

Function of the system studied

- Appropriate choice of main function
- Consideration of possible secondary functions
- The same main function is essential for comparing different systems (if secondary functions are not too different)
- Choice of function for an entire system if LCA is done on part of the system

Functional unit

- Quantity quantifying the system function = provided service
- Measurable and quantifiable quantity, with a well-defined unit
- The same functional unit is essential for comparing different systems
- Quantity to which all flows and impacts will be reported

Reference flow

- Quantity of products required to perform the function according to the chosen functional unit
- Specific to each scenario considered for the same system
- Determines extraction and emission inventories
- Is linked to the functional unit by one or more key environmental performance parameters (service life, efficiency, number of uses, etc.)

System	Functional unit	Reference flow	Key parameters	
Shoe	1 pair of shoes in good condition for 1 year	<i>1 pair of shoes in good condition for 1 year</i>	Quality and durability	
Snoe		<i>2 pairs of <mark>low-quality</mark> shoes for 6 months</i>		
Daint 100 m ² of painted		<i>30 kg <mark>long-lasting</mark> paint</i> (over 20 years)	<i>Quantity</i> applied per m ²	
Paint	wall for 20 years	2 * 25 kg short-term paint (over 2*10 years)	and service life	

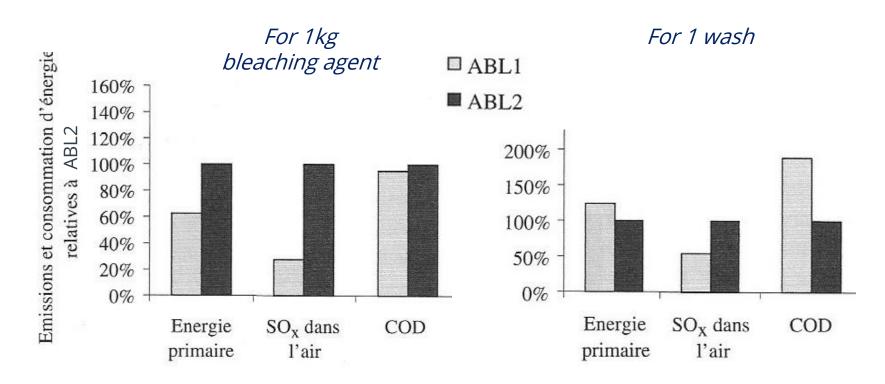
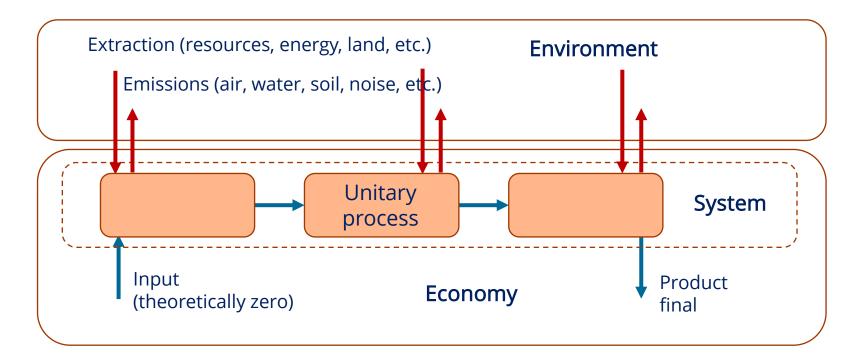


Illustration of the importance of choosing the right functional unit

Comparison of environmental burdens related to two laundry bleach additives for two different functional units: 1 kg of agent or 1 wash.

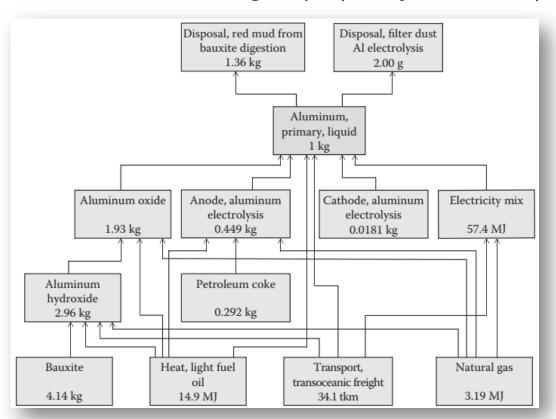
Bretz 1994; O. Jolliet et al 2010



System description

- Lifecycle modeling (systems approach)
- Definition of unit processes (flow chart), elementary flows and intermediate flows between processes
- Description of scenarios envisaged, choice of system limits (cut-off rules)

- → Incoming or outcoming intermediate flows
- Incoming or outgoing elementary flows

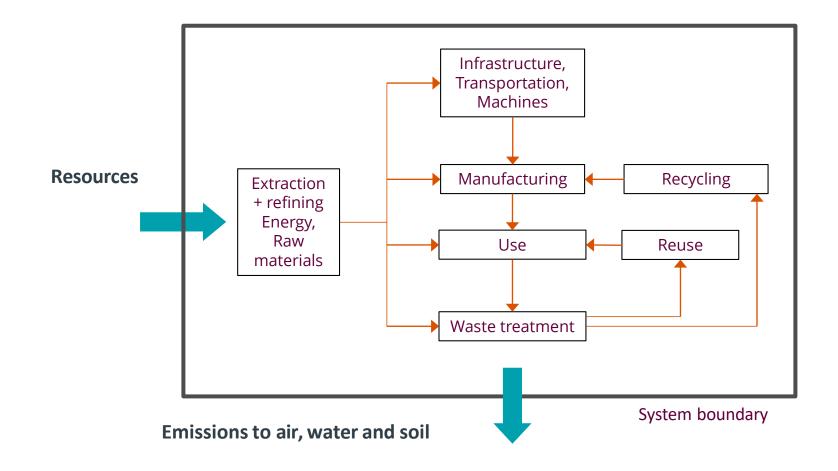


System description – Flow chart

- The flow chart describes the system's unit processes and the flows linking them.
- System diagram for a clear overview.

Flow chart of the manufacturing of liquid primary aluminium at plant (from Ecoinvent 2.2)

- Total intermediate outflows are shown for each process.
- The chart is built from the reference flow associated with the functional unit (e.g. 1kg of liquid aluminum).
- The extent to which the system can be described in terms of several processes depends on the purpose of the study and the existing characterization of certain processes in databases (e.g. electricity mix).



System description - System limits

- We also talk about perimeter or boundary
- The boundary is the set of criteria specifying which elementary processes are part of the system to ensure functional unity.

System description - System limits

- It is technically impossible to take all processes into account, and exclusion choices are necessary.
- Inclusion and exclusion criteria are grouped together in cut-off rules defined by the ISO standard.

ISO 14044 cut-off criteria:

"specification of the quantity of material or energy flows or level of environmental significance associated with elementary processes to be excluded from a study."

System exclusion for processes contributing less than:

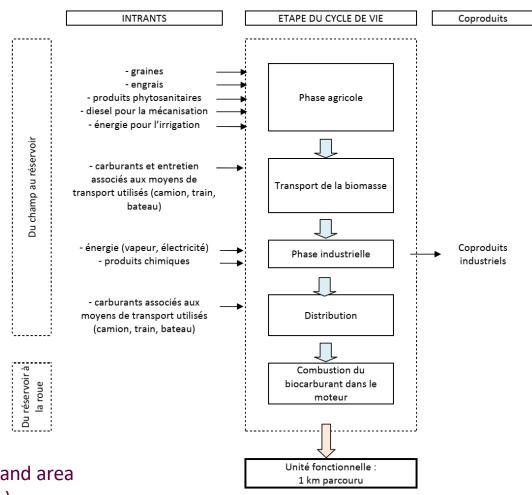
- 1. x % of input mass (mass share)
- 2. x % of energy consumed (energy or economic share)
- 3. x % of pollutant emissions (contribution to environmental impact)

This choice requires a prior idea of the orders of magnitude of the various contributions (role of screening). The value of x depends on the number of processes (1 to 5%).

- Unprecedented expertise at national level to update and deepen energy and GHG assessments already carried out
- Decision-making support for the implementation of public policies development of alternative energies
- Produced by Bio Intelligence Service on behalf of the French government (MEEDDM, MAAP), ADEME and FranceAgriMer
- Support from a technical committee: manufacturers, institutes, research centers, environmental associations
- Carried out on various biofuels consumed in France:

- bioethanol from wheat, beet, corn and sugar cane / ETBE
- ✓ biodiesel from rapeseed, sunflower, palm and soybean oils (EMHV), used edible oils (EMHAU) and animal fats (EMGA), pure vegetable oils (HVP)

Comparative LCA with conventional fossil fuels: SP95 petrol and diesel (2009 specifications)



Function: to move a vehicle

Functional unit: travel 1 km

- The study is of the "well-to-wheel" type and takes into account fuel combustion in engines.
- Results presented per MJ of fuel consumed (by dividing UF by average consumption)
- 5 stages described in **the flow chart**: agricultural production transport, industrial transformation, distribution, combustion
- 5 impact indicators monitored: fossil energy consumption,
 GHG, eutrophication, photochemical pollution, human toxicity
- Data sources: Technical institutes, farm networks, production sites (annual data, average statistics, surveys, bibliographical data)

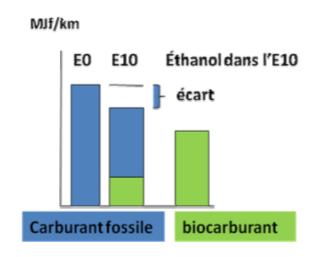
Perimeter enlarged during the sensitivity study to take into account the land area required to maintain the level of food demand (effect of land use change).

The study highlights a number of methodological choices and limitations to LCA, concerning:

- Modeling N₂O emissions and fertilizer inputs
- Taking account of direct or indirect land-use change (CAS), more or less pessimistic

Par ha de biocarburant considéré	Ethanol de Canne à Sucre kg CO₂/ha/an	Ester d'Huile de Palme kg CO ₂ /ha/an	Ester de Soja brésilien kg CO₂/ha/an
Ordre de grandeur maximal	27 000	23 000	32 000
Ordre de grandeur scénarii intermédiaires	10 000	7 000	12 000
Ordre de grandeur scénarii modérés	3 000	1 500	5 000
Scénarii optimistes	-6 000 à -2 000	-10 000 à -2 000	0
	(valeur utilisée pour le calcul : -4 000)	(valeur utilisée pour le calcul : -6 000)	

CO₂ emissions for direct CAS (import channels)



The study highlights a number of methodological choices and limitations to LCA, concerning:

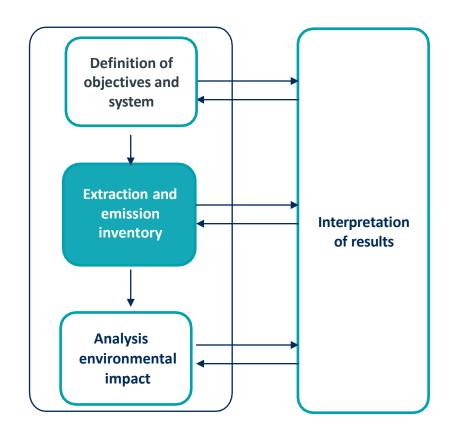
- **Emissions inventories** (https://www.georisques.gouv.fr/risques/registre-des-emissions-polluantes)
- The **characterization model** used for eutrophication, photochemical pollution and human toxicity impacts

Modeling the combustion/vehicle stage

- Complex stage to model, often oversimplified
- ✓ At low levels of biofuel incorporation, a discrepancy in this stage can have a strong impact on the overall balance.
- Choice of engine operating cycle (NEDC...)
- Choice of engine emission levels (IFP study on fossil fuels, etc.)
- ✓ Choice of emission management for mixtures

Contents

- 1 General information on Life Cycle Assessment
- 2 Definition of objectives and system
- 3 Inventory of emissions and extractions
- 4 Environmental impact analysis
- 5 Interpretation

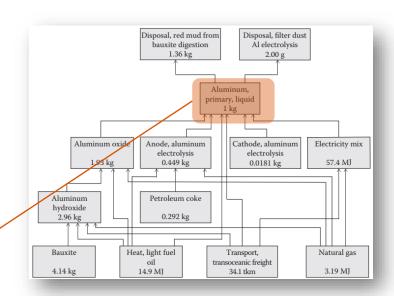

The 2nd step in an LCA is the quantification of the various flows passing through the system by means of an inventory.

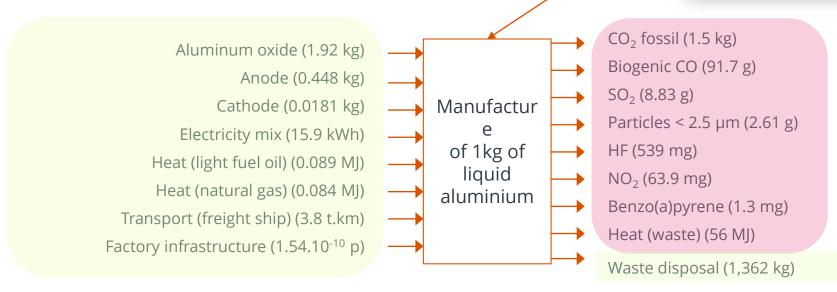
Inventory

- Elementary flows (incoming and outgoing) between the system and the environment
- Based on the intermediate flows associated with each process
- Uses emission and extraction factors

Methodology

- 2 possible approaches: by process or input-output (I/O)
- Uses inventory data collected in databases
- Uses aggregation and allocation principles

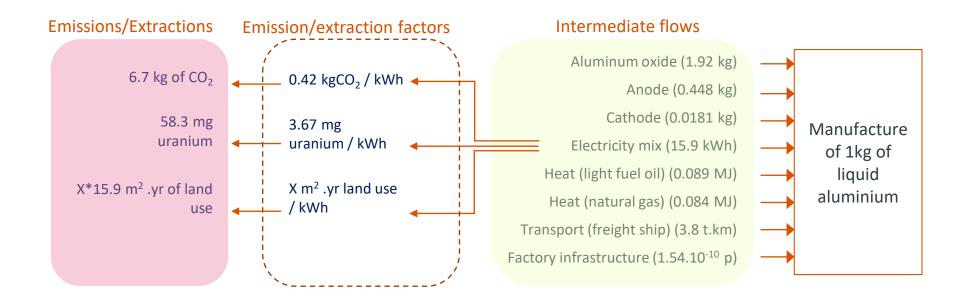




The inventory of emissions and extractions can be carried out using a **process-based approach**.

For each unit process:

- Identify direct emissions and extractions per unit of outgoing intermediate flow.
- Characterize incoming and outgoing intermediate flows, whose emissions and indirect extractions will then be calculated and added up.

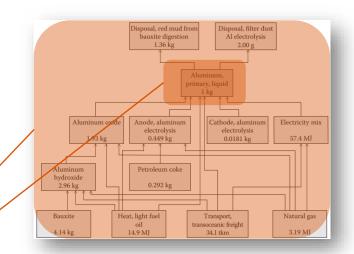


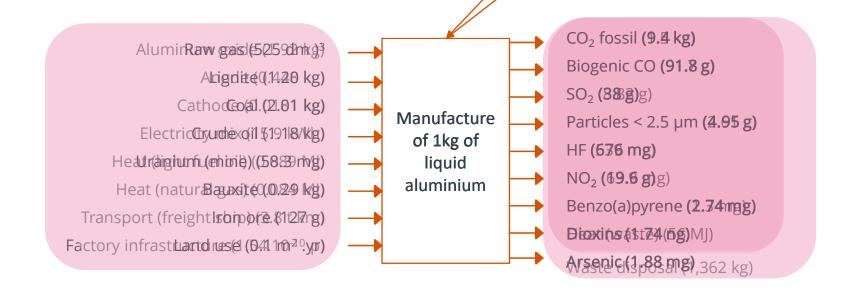
Indirect emissions and extractions

- Are calculated on the basis of previously identified intermediate flows.
- Emissions/extractions are calculated by multiplying intermediate flows with emission factors expressed per unit of flow.
- Emission factors are part of **inventory data**, accessible in several ways: database, technological sector (company, trade union,....), in-situ, scientific publications.

Non-renewable primary energy demand and CO₂ emission factors (extracted from Ecoinvent database)

RWh electricity (mix) - France market for electricity, low voltage - FR 12 78 79 79 79 79 79 79 79		Nomenclature Ecoinvent	Primary ENR (MJ/unit) Cumulative Energy Demand	CO2 emitted (g/unit) IPCC 2013	CO2/ENR ratio (gCO2/MJ)
RWh electricity (mix) - France market for electricity, low voltage - FR 12 78 79 79 79 79 79 79 79	Energy				
LKWh electricity (mix) - Poland market for electricity, low voltage - PL 12,3 972 79 12,4 12,4 12,3 12,3 12,3 12,4 12,	1 kWh electricity (mix) - Europe	market group for electricity, low voltage - RER	8,8	360	41
Rewin electricity (mix) - China	1 kWh electricity (mix) - France	market for electricity, low voltage - FR	12	78	7
le kith of photovoltaic electricity - China electricity production, photovoltaic, 580 kWp ground installation, multi-5i - CN-SC 1 68 kWh of wood heating - World heating - Furope heat production, hardwood chips from forest, at furnace 1000kW - RoW 0,4 27 306 68 kWh of gent look leasting - Europe heat production, light fuel (i), at boiler 100kW condensing modulating - Europe 4,5 306 68 kWh gas heating - Europe heat production, natural gas, at boiler condensing modulating > 100kW - Europe 4,5 220 43	1 kWh electricity (mix) - Poland	market for electricity, low voltage - PL	12,3	972	79
kkh of wood heating - World heat production, hardwood chips from forest, at furnoce 1000kW - RoW 0,4 27 306 68 1 kWh of light oil heating - Europe heat production, light fuel oil, at boiler 100kW condensing, non modulating - Europe 4,5 306 68 1 200 49 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 kWh electricity (mix) - China	market for electricity, low voltage - CN-CSG	7,5	600	80
kkwh of light oil heating - Europe heat production, light fuel oil, at boile 100kW condensing, non modulating - Europe 4,5 220 49 Transport Lickmy by truck > 321 Euro 6	1 kWh of photovoltaic electricity - China	electricity production, photovoltaic, 580 kWp ground installation, multi-Si - CN-SC	1	68	68
Transport It. km by truck > 321 Euro 6	1 kWh of wood heating - World	heat production, hardwood chips from forest, at furnace 1000kW - RoW	0,4	27	68
Transport Lt.km by truck > 32 t Euro 6	1 kWh of light oil heating - Europe	heat production, light fuel oil, at boiler 100kW condensing, non modulating - Europe	4,5	306	68
It km by truck > 32 t Euro 6	1 kWh gas heating - Europe	heat production, natural gas, at boiler condensing modulating > 100kW - Europe	4,5	220	49
transport, passenger train, high-speed - FR 1,1 16 15 15 15 15 15 15 15 15 15 15 15 15 15	Transport				
Legisters by plane (intercontinental flight) transport, passenger, aircraft, intercontinental - RER 4,8 320 67 Material Legiow-alloy steel - Europe steel production, converter, low-alloyed - RER 23 1860 81 Legiomary aluminum ingot - Europe aluminium production, primary, ingot - IAI area, EU27 & EFTA 114 6190 54 Legiomary copper - Europe aluminium production, primary - RER 22 1400 64 Legiomary copper - Europe aluminium and aluminium production, primary - RER 22 1400 64 Legiomary copper - Europe aluminium and aluminium production, high density, granulate - RER 36 1840 51 Legiomary copper - Europe aluminium and aluminium production, high density, granulate - RER 36 1560 21 Legiomary copper - World market for concrete, 20MPa - GLO 1663 230 700 139 Land 3 demineralized water - Europe water production, deionised - RER 6 360 60 End of life Ledio fligomary copper - Europe aluminium, sanitary landfill - Europe without Switzerland 0,156 5 32 Legion faluminium sent to landfill - World treatment of waste aluminium, sanitary landfill - ROW 0,59 35 59	1 t.km by truck > 32 t Euro 6	transport, freight, lorry > 32 metric ton, EURO6 - RER	1,5	84	56
Material It kg low-alloy steel - Europe It kg primary aluminum ingot - Europe It kg fiberglass - Europe It kg fiberglass - Europe It kg bleached pulp - Europe I	1 pers.km by high-speed train - France	transport, passenger train, high-speed - FR	1,1	16	15
Material Likg low-alloy steel - Europe	1 pers.km by plane (intercontinental flight)	transport, passenger, aircraft, intercontinental - RER	1,6	106	66
It kg low-alloy steel - Europe Steel production, converter, low-alloyed - RER 23 1860 81 Lkg primary aluminum ingot - Europe aluminium production, primary, ingot - IAI area, EU27 & EFTA 114 6190 54 Lkg primary copper - Europe copper production, primary - RER 22 1400 64 Lkg fiberglass - Europe glass fibre production - RER 36 1840 51 Lkg HDPE polyethylene - Europe production, high density, granulate - RER 76 1560 21 Lkg bleached pulp - Europe sulfate pulp production, from hardwood, bleached - RER 4,5 266 59 Lm 3 of concrete - World market for concrete, 20MPa - GLO 1663 230700 139 Lm 3 demineralized water - Europe water production, deionised - RER 6 360 60 End of life Land filling 1kg of scrap - Europe treatment of scrap steel, inert material landfill - Europe without Switzerland 0,156 5 32 Lkg of aluminium sent to landfill - World treatment of waste aluminium, sanitary landfill - ROW 0,59 35 59	1 km in a Euro 5 city gasoline car	transport, passenger car, medium size, petrol, EURO 5 - RER	4,8	320	67
Lkg primary aluminum ingot - Europe aluminium production, primary, ingot - IAI area, EU27 & EFTA 114 6190 54 Lkg primary copper - Europe Copper production, primary - RER 22 1400 64 Lkg fiberglass - Europe glass fibre production - RER 36 1840 51 Lkg HDPE polyethylene - Europe polyethylene - Europe polyethylene production, high density, granulate - RER 76 1560 21 Lkg bleached pulp - Europe sulfate pulp production, from hardwood, bleached - RER 4,5 266 59 Lm3 of concrete - World market for concrete, 20MPa - GLO 1663 230 700 139 Lm3 demineralized water - Europe water production, deionised - RER 6 360 60 End of life Landfilling 1kg of scrap - Europe treatment of scrap steel, inert material landfill - Europe without Switzerland 0,156 5 32 Lkg of aluminium sent to landfill - World treatment of waste aluminium, sanitary landfill - ROW 0,59 35 59	Material				
Lkg primary copper - Europe copper production, primary - RER 22 1400 64 Lkg fiberglass - Europe 36 1840 51 Lkg HDPE polyethylene - Europe polyethylene production, high density, granulate - RER 76 1560 21 Lkg bleached pulp - Europe sulfate pulp production, from hardwood, bleached - RER 4,5 266 59 Lm3 of concrete - World market for concrete, 20MPa - GLO 1663 230 700 139 Lm3 demineralized water - Europe water production, deionised - RER 6 36 36 60 End of life Landfilling 1kg of scrap - Europe treatment of scrap steel, inert material landfill - Europe without Switzerland treatment of waste aluminium, sanitary landfill - ROW 0,59 35 59	1 kg low-alloy steel - Europe	steel production, converter, low-alloyed - RER	23	1 860	81
Ikg fiberglass - Europe glass fibre production - RER 36 1840 51 Ikg HDPE polyethylene - Europe polyethylene production, high density, granulate - RER 76 1560 21 Ikg bleached pulp - Europe sulfate pulp production, from hardwood, bleached - RER 4,5 266 59 Ikm 3 of concrete - World market for concrete, 20MPa - GLO 1663 230 700 139 Ikm 3 demineralized water - Europe water production, deionised - RER 6 360 60 End of life Landfilling 1kg of scrap - Europe treatment of scrap steel, inert material landfill - Europe without Switzerland 0,156 5 32 Ikg of aluminium sent to landfill - World treatment of waste aluminium, sanitary landfill - ROW 0,59 35 59	1 kg primary aluminum ingot - Europe	aluminium production, primary, ingot - IAI area, EU27 & EFTA	114	6 190	54
Likg HDPE polyethylene - Europe polyethylene - Furope polyethylene production, high density, granulate - RER 76 1560 21 Likg bleached pulp - Europe sulfate pulp production, from hardwood, bleached - RER 4,5 266 59 Lim3 of concrete - World market for concrete, 20MPa - GLO 1663 230 700 139 Lim3 demineralized water - Europe water production, deionised - RER 6 360 60 End of life Landfilling 1kg of scrap - Europe treatment of scrap steel, inert material landfill - Europe without Switzerland 0,156 5 32 Likg of aluminium sent to landfill - World treatment of waste aluminium, sanitary landfill - ROW 0,59 35 59	1 kg primary copper - Europe	copper production, primary - RER	22	1 400	64
Lag bleached pulp - Europe sulfate pulp production, from hardwood, bleached - RER 4,5 266 59 Land of concrete - World market for concrete, 20MPa - GLO 1 663 230 700 139 Land demineralized water - Europe water production, deionised - RER 6 360 60 End of life Land filling 1 kg of scrap - Europe treatment of scrap steel, inert material land fill - Europe without Switzerland 0,156 5 32 Lkg of aluminium sent to landfill - World treatment of waste aluminium, sanitary land fill - ROW 0,59 35 59	1kg fiberglass - Europe	glass fibre production - RER	36	1 840	51
In m3 of concrete - World market for concrete, 20MPa - GLO 1663 230 700 139 market for concrete, 20MPa - GLO 6 360 60 End of life Land filling 1 kg of scrap - Europe treatment of scrap steel, inert material land fill - Europe without Switzerland 0,156 5 32 kg of aluminium sent to land fill - World treatment of waste aluminium, sanitary land fill - ROW 0,59 35 59	1 kg HDPE polyethylene - Europe	polyethylene production, high density, granulate - RER	76	1 560	21
I m3 demineralized water - Europe water production, deionised - RER 6 360 60 End of life Landfilling 1kg of scrap - Europe treatment of scrap steel, inert material landfill - Europe without Switzerland 0,156 5 32 Lkg of aluminium sent to landfill - World treatment of waste aluminium, sanitary landfill - ROW 0,59 35 59	1 kg bleached pulp - Europe	sulfate pulp production, from hardwood, bleached - RER	4,5	266	59
End of life Anatomiling 1kg of scrap - Europe treatment of scrap steel, inert material landfill - Europe without Switzerland 0,156 5 32 Lkg of aluminium sent to landfill - World treatment of waste aluminium, sanitary landfill - RoW 0,59 35 59	1 m3 of concrete - World	market for concrete, 20MPa - GLO	1 663	230 700	139
Landfilling 1kg of scrap - Europe treatment of scrap steel, inert material landfill - Europe without Switzerland 0,156 5 32 Lkg of aluminium sent to landfill - World treatment of waste aluminium, sanitary landfill - RoW 0,59 35 59	1 m3 demineralized water - Europe	water production, deionised - RER	6	360	60
Lkg of aluminium sent to landfill - World treatment of waste aluminium, sanitary landfill - RoW 0,59 35 59	End of life				
	Landfilling 1kg of scrap - Europe	treatment of scrap steel, inert material landfill - Europe without Switzerland	0,156	5	32
ncineration of 1kg of polypropylene - World treatment of waste polypropylene, municipal incineration - RoW 0,27 2550 9444	1kg of aluminium sent to landfill - World	treatment of waste aluminium, sanitary landfill - RoW	0,59	35	59
	Incineration of 1kg of polypropylene - World	treatment of waste polypropylene, municipal incineration - RoW	0,27	2550	9444





The inventory of emissions and extractions can be carried out using a **process-based approach**.

- All emissions/extractions are calculated for the various unit processes.
- Emissions/extractions of the same substance are added up over the whole system. This is called aggregation.
- The different modes, locations and times of emission of the same substance are not considered in this inventory phase.

Inventory databases

- Facilitate the painstaking task of retrieving inventory data (reliability, clarity, updating, etc.)
- Ensure data quality, availability and harmonization.
- List processes linked to energy, materials, chemicals, waste treatment, transport, industrial and agricultural activities, food, etc.
- Characterized by geographical and/or sectoral specificities.
- Paid or free access

Inventory data

- The data inventoried have a spatial, temporal and technological scope/representativeness.
 They can be specific or averaged.
- The data is aggregated to varying degrees, with more or less information on unit processes.
- Data are characterized by their source (scientific publication, production site, etc.).
- The types and classification of incoming and outgoing elementary flows may differ from one base to another.
- These may include the quality of the data, any shortcomings from which they may suffer, and any controls they may be subject to.
- Data quality covers probability, reliability, completeness, geographical, temporal and technological correlations.
- General information on the data can be accessed via online platforms:

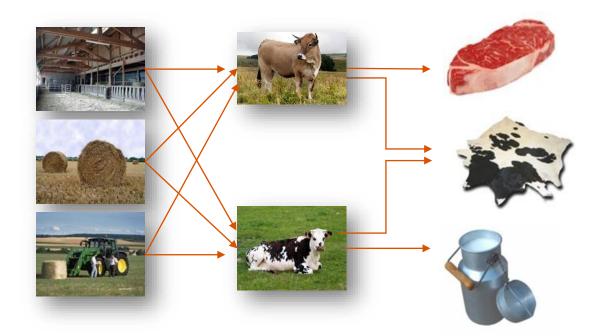
Example of inventory data from the GaBi database (Sphera) **Bioethanol from sugar beet, at filling station**

able of Contents: Proces	s information - Modelling and validation - Administrative information - Inputs and Outputs		
Process information			
Key Data Set Informat	ion		
Location	EU-28		
Geographical representativeness description	The data set represents the national / regional production mix including domestic production. Imports are not considered.		
Reference year	2020		
Name	Base name; Treatment, standards, routes; Mix and location types; Quantitative product or process properties		
	Bioethanol from sugar beet, at filling station; from sugar beet; production mix, at filling station; 0.79 g/cm3, 46.07 g/mol		
Use advice for data set	The data set can be used for all LCA studies where the specific product is needed. Combination with individual unit processes using this commodity enables the generation of user-specific (product) LCAs.		
Technical purpose of product or process	Supply of 1 kg bioethanol at filling station for road transportation and other consumers.		
Classification	Class name / Hierarchy level Energy carriers and technologies / Renewable fuels		
General comment on data set	The data set covers all relevant process steps and technologies over the supply chain of the represented cradle to gate inventory. This includes the cultivation of the crop, the transportation from the field to the ethanol production plant, the ethanol production, the transportation and distribution to the depot and to the filling station. The inventory is based on literature data.		
	Copyright? Yes Owner of data set (contact data set) Sphera Solutions GmbH		
Quantitative reference			
Reference flow(s)	Ethanol from sugar beet - 1.0 kg (Mass)		
Time representativene	ess de la companya d		
Data set valid until:	2023		
Time representativeness description	annual average		
Geographical represe	ntativeness		
Technological represe	entativeness		

Allocation principles when modeling a multi-product system.

- Necessary when a system is multi-product and the study concerns only one of the products.
- Involves distributing environmental burdens and the use of raw materials between the product under study and secondary products.
- There are different types of secondary products depending on their economic value:

Туре	Relations	Examples	Problem
Co-products	Not involved in the function studied / Used outside the system	Straw / wheat grains Milk / meat Co-transport Multi-use	Which economic activity is responsible for which environmental problem?
Waste (for disposal)	Are managed with waste from other systems	Incineration of various types of waste	How do you distribute the emissions for each type of waste?
Recycled or low- value waste	Open-loop recycling	Slurry - Manure Paper	What is the value of waste before and after recycling?

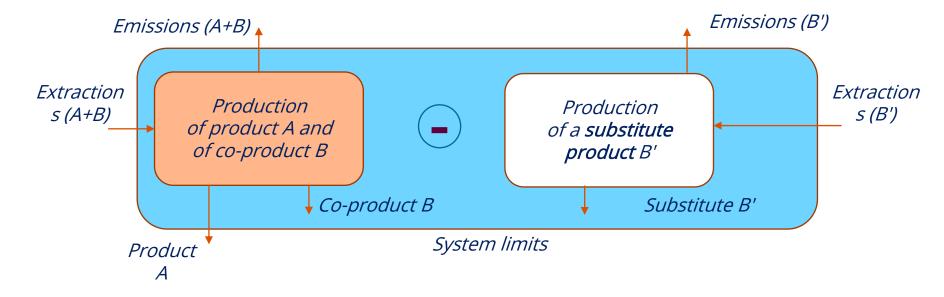


Allocation principles when modeling a multi-product system.

- Necessary when a system is multi-product and the study concerns only one of the products.
- Involves distributing environmental burdens and the use of raw materials between the product under study and secondary products.
- There are different types of secondary products depending on their economic value:

Example of co-products:

For a yogourt LCA, what emissions and extractions associated with raising a cow should be allocated to milk?



Allocation principles when modeling a multi-product system.

1^{rst} method (priority): System extension and substitution of co-products

2nd method: Physical allocation (according to physical property or marginal variation)

Mass is commonly used, although it is not very representative of a cause-and-effect relationship.

3rd method: Economic allocation (based on market value of co-products)

- Sources of emission/extraction factors: ECOINVENT, IFP, REP, BIO
- Life Cycle Inventories (LCI): fertilizers, seeds, drying, transport, etc.
- Biofuel chains generate valuable co-products:
 - Fertilizers
 - ✓ Animal feed
 - ✓ Industry
 - ✓ Energy

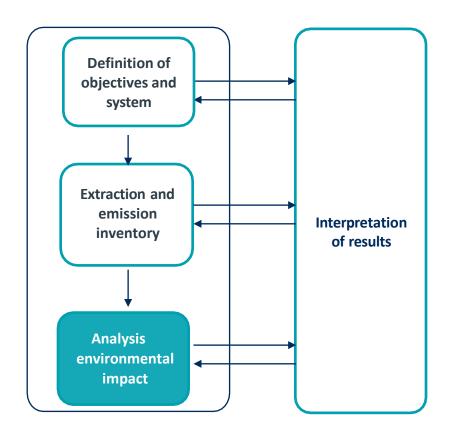
Les coproduits sont	La méthode recommandée est
épandus	la substitution
utilisés en alimentation animale	le prorata énergétique entre
utilisés dans l'industrie	coproduits d'une étape
utilisés à des fins énergétiques	la substitution

Example for the wheat bioethanol sector: (sensitivity analysis)

co-produced wheat grains can be considered as substitutes for soybean meal.

Contents

- 1 General information on Life Cycle Assessment
- 2 Definition of objectives and system
- 3 Inventory of emissions and extractions
- 4 Environmental impact analysis
- 5 Interpretation

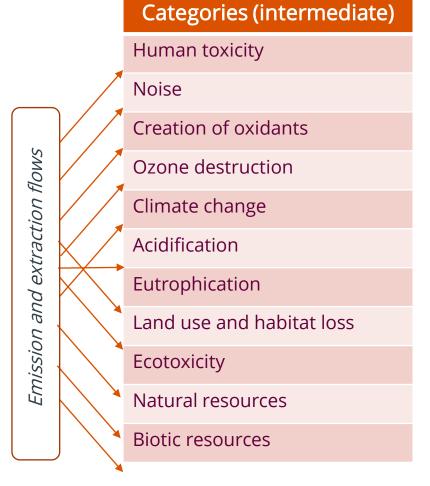

The 3rd step in an LCA is the characterization of the impacts associated with the emissions/extractions in the inventory.

Methodology

- Classification of inventory flows by impact (intermediate) categories.
- Midpoint characterization of impacts according to characterization factors and impact scores.
- Endpoint characterization based on characterization factors and damage scores
- Scores normalized to reference values, then weighted between normalized scores.

Tools

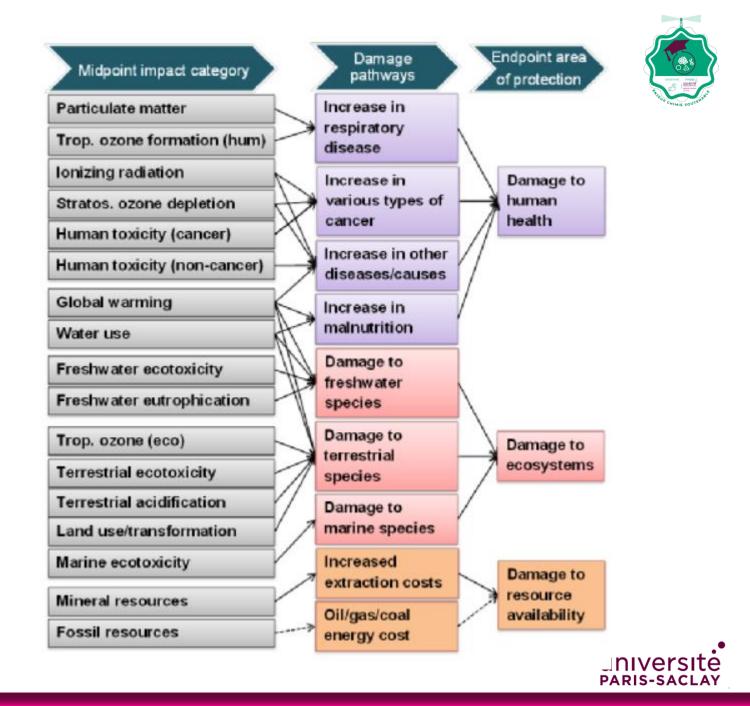
Various characterization methods (impact analysis).



The **classification of** inventory data involves grouping emissions and extractions into different **impact categories**.

 It allows emissions/extractions to be grouped together on the basis of their capacity to affect the environment.

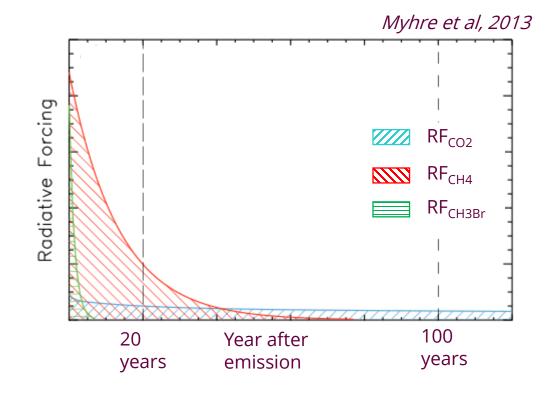
- The categories correspond to the types of environmental impact.
- The list of categories is generally determined by the choice of analysis method, but can be adjusted.



Classification can be based on **midpoint** or **endpoint impact** categories.

- Damage categories consist of a grouping of different types of impact
- The same impact may belong to different damage categories
- Damage represents the ultimate impact on the three areas to be protected:
 - Human health
 - Ecosystem quality
 - Resource availability

Within the same impact/damage category, the significance of the effects of each emission and/or extraction is determined by **characterization factors**.


• Factors are the results of scientific modeling quantifying the effects of a substance (usually in relation to a reference substance).

Example of the climate change impact characterization factor

$$GWP = \frac{\int_{0}^{TH} RF(t)dt}{\int_{0}^{TH} RF_{r}(t)dt} = \frac{\int_{0}^{TH} a. [C(t)] dt}{\int_{0}^{TH} a_{r}. [C_{r}(t)] dt}$$

 $\int_0^{TH} RF(t)dt$ is the average radiative forcing (W.m⁻² .yr.kg)⁻¹

a is the radiative efficiency of the gasC(t) is the quantity of gas in the atmosphere

Within the same impact/damage category, the significance of the effects of each emission and/or extraction is determined by **characterization factors**.

- Factors are the results of scientific modeling quantifying the effects of a substance (usually in relation to a reference substance).
- Factors may need to take into account the characteristics of the receiving environment, transformation and/or transport processes, etc.

Example of the soil/water acidification impact characterization factor

$$PA = \frac{nb \ mole \ H^{+}/M_{molaire}}{nb \ mole \ H^{+}_{ref}/M_{molaire_{ref}}}$$

nb mole H^+ corresponds to the number of H^+ ions available after the formation of acid compounds such as H_2 SO_4 , HNO_3

compound	reaction equation
SO ₂	$SO_2 + H_2O + O_3 \rightarrow 2H^+ + SO_4^{2-} + O_2$
NO	$NO + O_3 + \frac{1}{2}H_2O \rightarrow H^+ + NO_3^- + \frac{3}{2}O_3$
NO ₂	$NO_2 + \frac{1}{2}H_2O + \frac{1}{4}O_2 \rightarrow H^+ + NO_3^-$
NO,	at gradin dover may be destrante to even neo
NH ₃	$NH_3 + 2O_2 \rightarrow H^+ + NO_3^- + H_2O$
HCI	HCl → H ⁺ + Cl ⁻
HF	$HF \rightarrow H^+ + F^-$

For each intermediate impact category, the effects of the various emissions and/or extractions are added together to determine an **intermediate impact score**.

Inv	ventory	Climate change IPCC 2013 100a	Acidification CML 2001
1000g	CO ₂	× 1 = 1000	
10g	CH _{4b}	x 28 = 280	
1g	NO ₂	x 265 = 265	
10g	SO ₂		$\times 1 = 10$
2g	NH ₃	M_s $FI_{s,i}$ ———	× 1,88 = 3,76
5g	NO		× 0,7 = 3,5
		$SI_i = \sum_{S} FI_{S,i}.M_S$	

Intermediate categories are grouped into **damage** categories using damage characterization factors

- Damage categories qualify the damage caused to different "subjects" to be protected (human health, ecosystems, resources, etc.).
- An impact analysis can be limited to intermediate impact categories, or can focus directly on damage categories.
- The contribution of each impact category is weighted by a damage characterization factor (FD).i.d
- The sum of the contributions from each intermediate impact category gives the SD damage characterization score.d

$$SD_d = \sum_i FD_{i,d}.SI_i$$

 Normalization consists of relating intermediate impact scores or damage scores to reference values (normalization values).

$$N_i = \frac{SI_i}{VN_i} = \sum_{S} \frac{FI_{S,i}}{VN_i} \cdot M_S = \sum_{S} FI_{S,i}^N \cdot M_S$$

VN_i: normalization value for impact category (i)

 $FI_{s,i}^{N}$: standardized impact characterization factor

• The reference value quantifies a **contribution to the global impact** (global, national, regional, etc.).

Example: the normalization value for climate change (IMPACT 2002+ method) = 9950 kgeq CO_2 / European / year.

 Normalization consists of relating intermediate impact scores or damage scores to reference values (normalization values).

lnv	ventory	Climate change IPCC 2013 100a	Acidification CML 2001
1000g	CO ₂	x = 1000	
10g	CH ₄	x 28 = 280	
1g	N_2O	x 265 = 265	
10g	SO ₂		x 1 = 10
2g	NH ₃		x 1,88 = 3,76
5g	NO_x		x 0,7 = 3,5
Imp	act score	1545g eqCO ₂	17.26g eqSO ₂
	dardized score	1.55.10 ⁻⁴ europ.an	5.3.10 ⁻⁴ europ.an

 Weighting involves defining the relative importance of standardized damage characterization scores using weighting factors.

$$IP = \sum_{d} FP_d. N_d$$

- Aggregating the various damage scores by weighting enables us to define a single total weighted environmental impact score IP.
- The FP weighting factors_d are determined according to a judgment of social, political and ethical values:

"How do you assess the value of a lost year of life compared to that of an extinct species?"

- Methods for determining weighting factors can be based on :
 - ✓ **Monetarization**, where we estimate what we are willing to pay to avoid damage (willingness to pay).
 - ✓ **Surveys** of experts or the general public to determine the perception of the relative importance of damage
 - ✓ **Distance** to a target value (political, administrative or environmental)
- Damage weighting remains a debated issue in LCA (industrial applications).

There are many **impact analysis methods** defining impact and damage categories and grouping together characterization factors:

- CML 92 (Heijungs, 1992) => CML 2016 => **Dutch LCA Guide** (Guinée 2001, 2002)
- Eco Indicator 95 => Eco-indicator 99 (*Goedkoop, 1999*)
- CML 2016 + Eco-indicator 99 => **ReCiPe 2016** (*Goedkoop, 2009*)
- Impact 2002+ (*Jolliet, 2003*)
- EDIP97 => EDIP 2003 (Hauschild, 2004)
- Impact 2002+ + EDIP => Impact World+.
- **ILCD LCIA** (Hauschild, 2010, 2011, 2013)
- USEtox (*UNEP-SETAC*)
- IPCC 2021 , LIME , TRACI

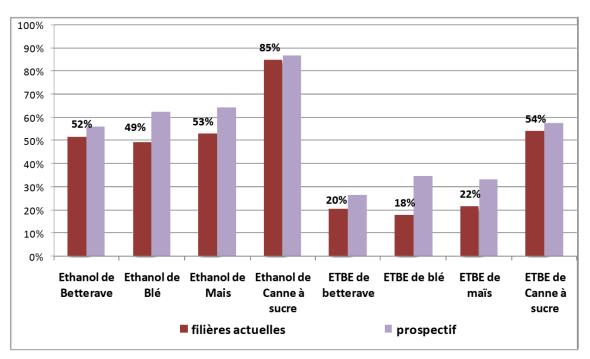
The methods are distinguished by the different impact categories covered, different characterization models for a given impact category, different flows, different geographical representativeness, etc.

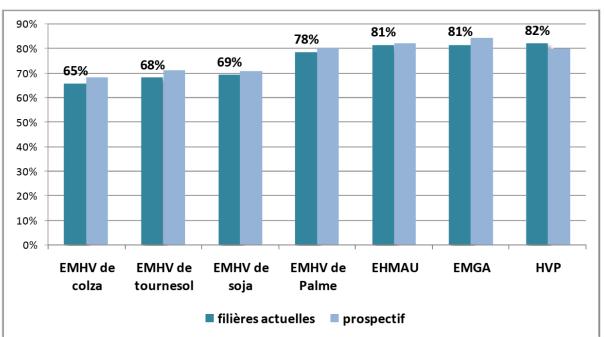
Tip: use several analysis methods in an LCA and compare results.

Intermediate impact category	Characterization factor and Environmental impact	Unit	Analysis method concerned
Climate change	GWP (global warming potential)		
	Capacity of greenhouse gases (CO ₂ , CH ₄ , N ₂ O,) to increase the Earth system's radiation balance over a 100-year horizon.	kg CO eq₂	Dutch Guide, Impact 2002+, ReCiPe 2008, ILCD LCIA, IPCC 2013
Acidification water/soil	AP (acidification potential)		
	Capacity of emitted gases (SO ₂ , NH ₃ ,) to acidify the atmosphere, water and soil (as a result of acid rain).	kg SO eq₂	Dutch Guide, Impact 2002+, ReCiPe 2008, ILCD LCIA,
Photochemical oxidation	POP (photochemical oxidation potential)		
	Capacity of gases (VOC, NOx, etc.) to contribute in the formation of tropospheric ozone (smog).	kg C H eq ₂₄	Dutch Guide, Impact 2002+, ReCiPe 2008, ILCD LCIA,

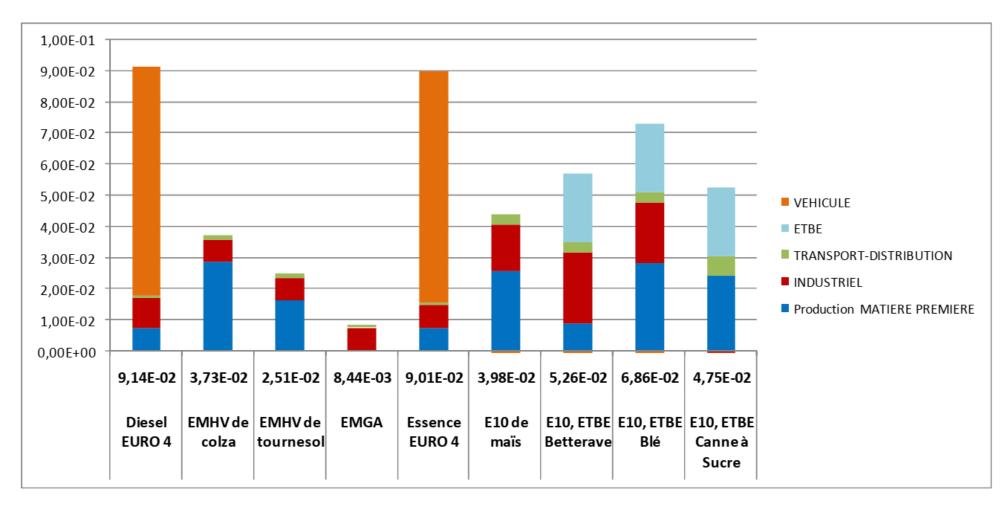
Intermediate impact category	Characterization factor and Environmental impact	Unit	Analysis method concerned
Destruction of the ozone layer	ODP (ozone depletion potential)		
	Capacity of emitted gases to contribute the destruction of the stratospheric ozone layer.	kg CFC-11 eq	Dutch Guide, Impact 2002+, ReCiPe 2008, ILCD LCIA,
Eutrophication water	EP (eutrophication potential)		
	Capacity of substances emitted to contribute excess nutrients (N, P, etc.) to water and soil, suffocating living organisms.	kg PO eq4 ³⁻ kg P eq kg N eq	Dutch Guide, Impact 2002+, ReCiPe 2008, ILCD LCIA,
Ecotoxicity water / soil	ETP (ecotoxicity potential)		
	Capacity of substances to pollute water and soil directly (heavy metals, pesticides, herbicides, etc.).	kg 1.4 DB eq kg TEG CTUe (PAF.m³ .day)	Dutch Guide, Impact 2002+, ReCiPe 2008, ILCD LCIA,

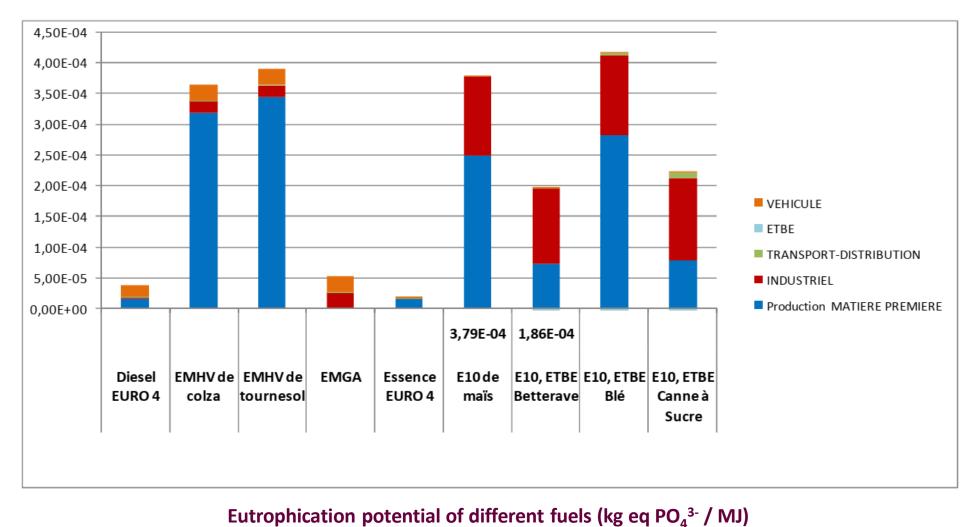
Intermediate impact category	Characterization factor and Environmental impact	Unit	Analysis method concerned
Human toxicity	HTP (human toxicity potential)		
	Characterizes the danger of a substance to human health, taking into account its toxicity and the potential dose received.	kg 1.4 DB eq kg C H ₂₃ Cl eq CTUh	Dutch Guide, Impact 2002+, ReCiPe 2008, ILCD LCIA,
Resource depletion	DP (depletion potential)		
	Characterizes resource scarcity, taking into account reserves, extraction rates and costs	MJ / kg oil eq kgCu eq / kgSb eq m³	Dutch Guide, Impact 2002+, ReCiPe 2008, ILCD LCIA,
Land use	LOP / LTP (land use potential / land transformation)		
	Characterizes areas used for ongoing human activities or areas whose use has changed	m² .year m² (land) eq kg C deficit	Dutch Guide, Impact 2002+, ReCiPe 2008, ILCD LCIA,

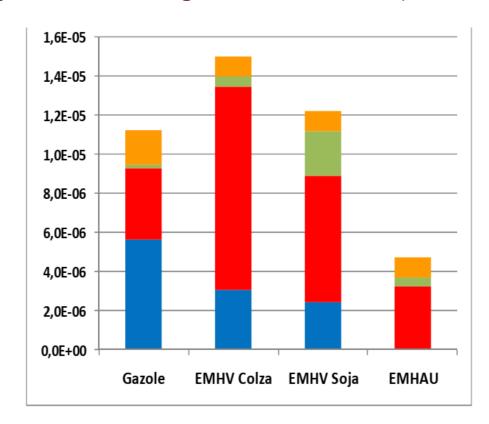

Damage category	Impacts taken into account	Unit	Analysis method concerned
Human health	HDF (human damage factor)		
	Characterizes impacts on human health, including carcinogenic and non-carcinogenic effects, respiratory effects, ionizing radiation, formation of photo-oxidants and destruction of the stratospheric ozone layer.	DALYs	Impact 2002+, ReCiPe 2008, ILCD LCIA,
Natural environment	EDF (Ecotoxicological Damage Factor)		
	Characterizes the loss of ecosystem quality due to aquatic and terrestrial ecotoxicity, terrestrial and aquatic acidification and eutrophication, and land use.	PDF.m² .an	Impact 2002+, ReCiPe 2008, ILCD LCIA,
Natural resources			
	Refers to the additional energy required to continue mining or exploiting fossil fuels.	MJ	Impact 2002+, ReCiPe 2008, ILCD LCIA,

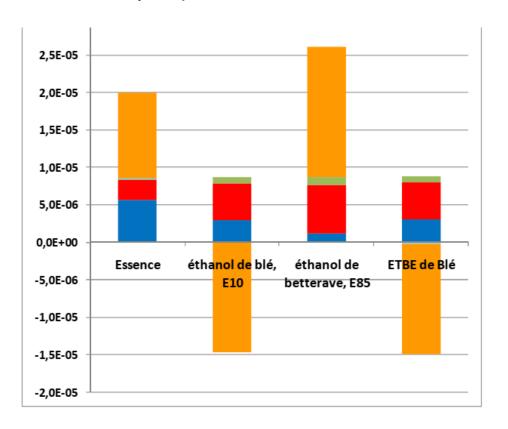


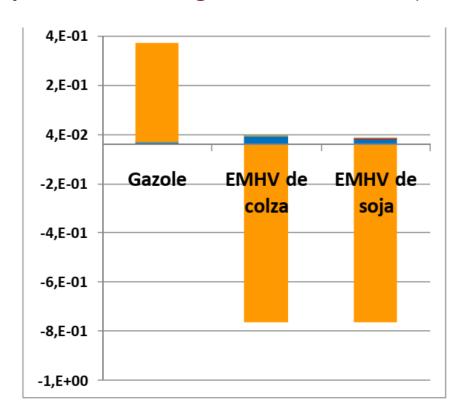
- Intermediate impact characterization (no final damage characterization)
- Fossil energy consumption deducted from energy content of inputs (PCI/kg)
- GHG emissions deduced from IPCC global warming potentials (GWP) (AR3)
- **CML** method used for eutrophication, photochemical pollution and human toxicity impacts

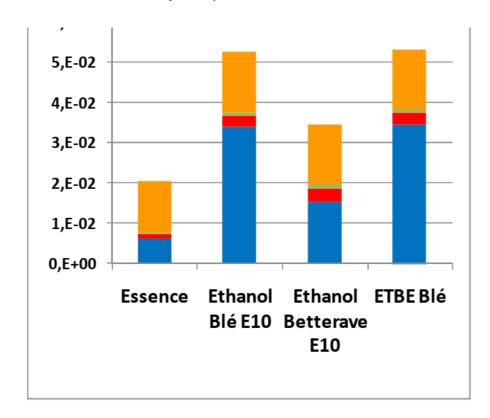






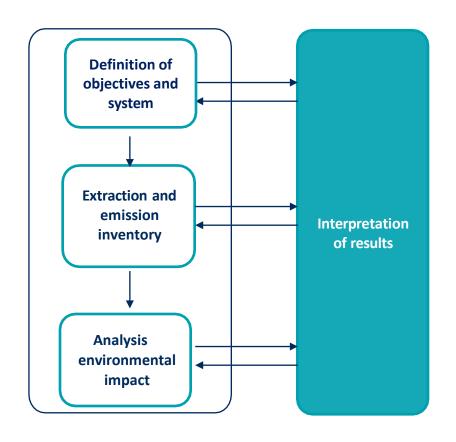






Contents

- 1 General information on Life Cycle Assessment
- 2 Definition of objectives and system
- 3 Inventory of emissions and extractions
- 4 Environmental impact analysis
- 5 Interpretation


The 4th step in an LCA is the **interpretation of the results**.

Critical analysis of results

- Identification of high-impact hotspots.
- Critical review of the study's limitations and methodological choices.
- Conclusions and proposed actions to reduce impacts (decision support).

Analysis quality and robustness

- Quality control and consistency of results (error correction).
- Sensitivity analysis
- Uncertainty analysis

Major impacts can be **identified by** comparing the various stages of the life cycle, the different components of the system under study, or each of the substances emitted or extracted.

IMPORTANT: Impact scores (not standardized) are expressed in their own units and cannot be directly compared with each other. Results should be expressed as **percentages** for a common reading scale.

Interpreting the results requires a **critical review of the previous phases**:

system limits and choices made, emissions inventory and extractions, characterization and choice of methods.

To avoid pitfalls and highlight delicate points, the following questions can be asked:

- ✓ Has each LCA step been interpreted: inventory, characterization, overall impact assessment?
- ✓ Are the differences between scenarios significant (uncertainty analysis)?
- ✓ Do the main conclusions vary depending on the characterization method chosen?
- ✓ What is the quality of the data and the level of certainty of the conclusions reached?
- What are the key parameters from an environmental point of view (sensitivity study)?

The **critical review** verifies that an LCA meets the methodology, data, interpretation and communication requirements defined by the standard (ISO 14040). It guarantees:

- Methodology (consistency with the standard, allocations, recycling, scientific and technical validity)
- Data used (consistency with objectives, homogeneity)
- Calculations (orders of magnitude, etc.)
- Interpretations (consistency with objectives and limits, unjustified extrapolations, insufficient sensitivity analyses)
- Transparency and overall consistency of the report

There are **2 types of critical review** (mandatory if the LCA is comparative):

- (1) critical review by an independent expert
- (2) critical review by a committee of at least three experts (mandatory if LCA results are to be made available to the general public)

LCA quality control requires a number of checks on the data, assumptions and choices made.

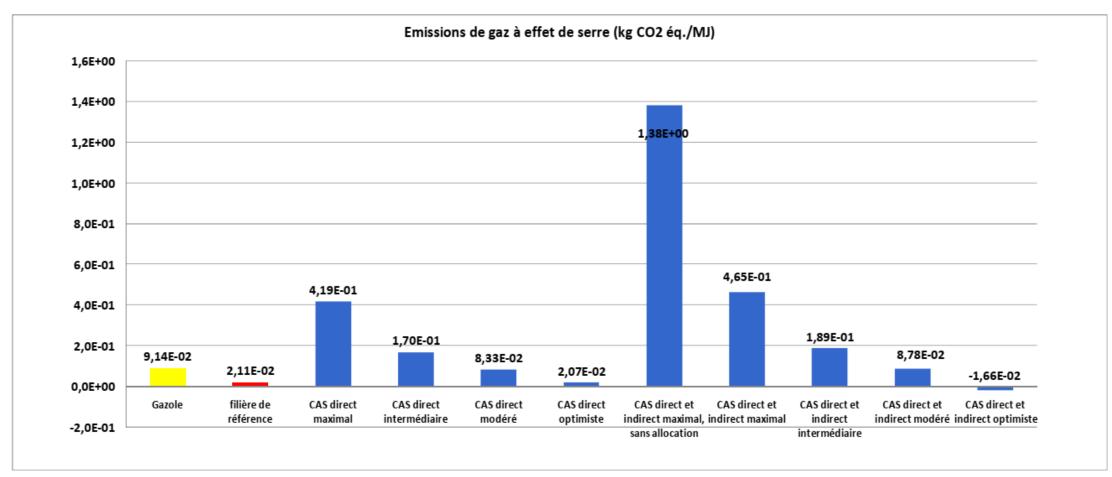
- Clarity and transparency of system modeling: flow chart identifying each process and scenario in a precise and structured way.
- ✓ Consistency of **units**: g/kg/t; MJ/GJ/kWh; t.km/pers.km/km...
- ✓ Validity of mass balances: carbon, nitrogen, phosphorus, heavy metals....
- Comparison of inventory results with other studies.
- ✓ Consistency of **energy consumption and CO₂** emissions: reference flow, electricity mix, materials considered, end-of-life, etc. The ratio gCO₂ /MJ consumed is a good indicator of quality.

The sensitivity study tests the robustness of the results and their sensitivity to the data, assumptions and models used. It is generally based on:

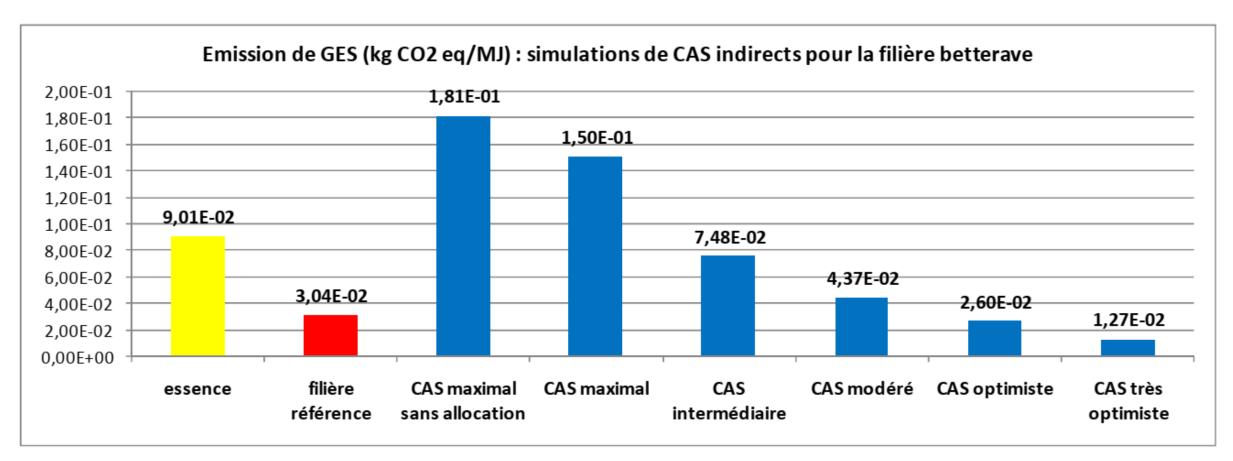
- The **percentage variation in** various model input parameters and its effect on the variation in model results (recycling rate, loading rate, element content, process yield, etc.).
- The variation of certain parameters between minimum and maximum values and the achievement of maximum deviations on results.
- Modification of certain assumptions and their effect on results (allocation methods and substitution choices, characterization methods, type of materials, choice of geographical origin for certain inputs, etc.).

Sensitivity analysis is a <u>mandatory</u> step for an LCA that must comply with standards 14040 and 14044.

The analysis of uncertainties and their propagation makes it possible to specify the confidence with which results are obtained, and to say at what value a variation on a result can be significant. Uncertainties come into play at several levels of LCA:


- Uncertainties linked to assumptions and choices made: functional unit, allocation method, etc.
- Uncertainties in inventory data: the impact of these uncertainties on results can be assessed using a Monte-Carlo method.
- Uncertainties about the model and impact analysis methods: characterization factors, pollutant transport models, linearity assumptions, threshold effects, etc.
- Data variability: spatial, temporal and technological

Uncertainty analysis is not a mandatory step in standards 14040 and 14044.



Sensitivity analysis: Impact on GHG emissions of taking indirect or direct CAS into account for the sojabean sector

Sensitivity analysis: Impact on GHG emissions of taking indirect CAS into account for the beet sector

References

- 1 General information
- 2 LCA tools
- 3 Databases
- 4 Characterization methods

General information on Life Cycle Assessment

- Analyse de Cycle de Vie, comprendre et réaliser un écobilan
 Olivier Jolliet, Myriam Saadé and Pierre Crettaz, Presses Polytechniques et Universitaires Romandes, 2005
- The Life Cycle Assessment of a product or service, applications and practical implementation Laurent Grisel and Philippe Osset, AFNOR, 2008
- Life Cycle Assessment (LCA) A guide to best practice Walter Klöpffer and Birgit Grahl, Wiley-VCH, 2014
- Life cycle impact assessment: striving towards best practice
 Helias A. Udo de Haes, Göran Finnveden, Mark Goedkoop and Michael Hauschild, SETAC Press, 2002
- Handbook on Life Cycle Assessment Operational guide to the ISO Standards Jeroen Guinée et al, Kluwer Academic Publishers, 2004
- Progress in Life Cycle Assessment 2019 Stephan Albrecht et al, Springer, 2021
- The International Journal of Life Cycle Assessment (https://link.springer.com/journal/11367)

LCA tools

- SIMAPRO Pre Sustainability
 Commercial reference software https://simapro.com/
- GABI Sphera Solutions
 Widely used in the manufacturing and industrial sectors https://sphera.com/
- EIME Bureau Veritas / CODDE
 Developed for the electronics, telecom and transport industries https://codde.fr/
- ELODIE CSTB / CYPE
 Developed to analyze the environmental impact of construction projects https://info.cype.com
- OPENLCA Green Delta
 Open Source and performance equivalent to commercial tools https://www.openlca.org/greendelta/
- Product balance ADEME
 Simplified awareness-raising tool for non-specialists https://base-empreinte.ademe.fr/

Databases (listed on OpenLCA Nexus - https://nexus.openlca.org/databases)

- **Ecoinvent** http://www.ecoinvent.ch
- European Life Cycle Database (ELCD) https://eplca.jrc.ec.europa.eu/ELCD3/
- Agribalyse https://agribalyse.ademe.fr/
- Agri-footprint https://blonksustainability.nl/tag/Databases
- LCA Commons https://www.lcacommons.gov/
- Carbons Minds https://www.carbon-minds.com/
- Environmental Footprints (EF) https://green-business.ec.europa.eu/environmental-footprint-methods_en
- **NEEDS** https://www.epa.gov/power-sector-modeling/national-electric-energy-data-system-needs
- •

Impact characterization methods

- CML 2016 Dutch LCA Guide (Guinea, 2002)
 https://link.springer.com/book/10.1007/0-306-48055-7
- **Eco-indicator 99** (Goedkoop, 2001) https://pre-sustainability.com/files/2013/10/EI99_methodology_v3.pdf
- **ReCiPe 2016** (Goedkoop, 2009) https://pre-sustainability.com/legacy/download/Report_ReCiPe_2017.pdf
- Impact 2002⁺ (Jolliet, 2003) https://quantis.com/pdf/IMPACT2002_UserGuide_for_vQ2.21.pdf
- **EDIP 2003** (Hauschild, 2004) https://lca-center.dk/wp-content/uploads/2015/08/Spatial-differentiation-in-life-cycle-impact-assessment-the-EDIP2003-methodology.pdf
- Impact World+ (Bulle, 2019) https://www.impactworldplus.org/version-2-0/
- ILCD LCIA (Hauschild, 2010, 2011, 2013) https://eplca.jrc.ec.europa.eu/ilcd.html
- **USEtox** (UNEP-SETAC) https://usetox.org/sites/default/files/assets/USEtox_Documentation.pdf
- IPCC 2021 AR6 https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_SPM_final.pdf

