
L'étude cinétique d'une enzyme michaellienne E, de masse moléculaire 30 000 Da, est réalisée pour différentes concentrations en substrats [S] en présence de concentrations fixes $(2.10^{-6} \text{ mol/L})$ d'un inhibiteur compétitif (I_1) ou d'un inhibiteur non compétitif (I_2). Les mesures d'activité enzymatique spécifique sont rapportées dans le tableau suivant :

[S]	Vo (I ₁)	Vo (I ₂)	
x10-6 M	x 10 ⁻⁶ mol/min/mg	x 10 ⁻⁶ mol/min/mg	
2	6,67	5,00	
4	10,00	6,67	
5	11,11	7,14	
10	14,29	8,33	
20	16,67	9,09	

- 1) Déterminer graphiquement les valeurs des Km et Vmax apparentes en présence de l'inhibiteur I₁ et de l'inhibiteur I₂. (vous exprimerez les Vm apparentes dans la même unité que les vitesses initiales du tableau)
- 2) Donner les valeurs de Km et Vm en l'absence d'inhibiteur (justifier votre réponse)
- 3) Calculer les constantes de dissociation des complexes El pour chacun des deux inhibiteurs
- 4) Calculer la constante catalytique en l'absence d'inhibiteur
- 5) Comment évolue cette valeur en présence de l'inhibiteur compétitif (I₁).

Représentation graphique la plus simple est celle des doubles inverses (LB) :
1/Vo = f(1/[S]) (14 points si complète)

[S] x10 ⁻⁶ M	1/*[S]	Vo (I ₁)	1/Vo (I1)	Vo (I2)	1/Vo (I2)
		x 10 ⁻⁶ mol/min/mg		x 10 ⁻⁶ mol/min/mg	
2,00	0,50	6,67	0,15	5,00	0,20
4,00	0,25	10,00	0,10	6,67	0,15
5,00	0,20	11,11	0,09	7,14	0,14
10,00	0,10	14,29	0,07	8,33	0,12
20,00	0,05	16,67	0,06	9,09	0,11

(mettre les légendes des axes et des points remarquables (1/Vm et -1/Km) 5 points par courbe et 4 points pour le titre et les légendes (axes, points remarquables...)

- 2) (6 points, décomposés par formule, résultat numérique, unité)
 - a. Pour I1 (inhibiteur compétitif) on obtient :

Vm app = $1/0.05 = 20.10^{-6}$ mol/min/mg (1.5 point)

Km app = $-1/0.25 = 4 \mu mol/L (1.5 point)$

b. Pour I2 (inhibiteur non compétitif), on obtient :

Vm app = $1/0.1 = 10.10^{-6}$ mol/min/mg (1.5 point)

Km app = -1/0. 5 = 2 μ mol/L(1.5 point)

3) (4 points, décomposés par formule, résultat numérique, unité) En présence d'un inhibiteur compétitif seule la fixation du substrat est affecté, la vitesse maximale n'est pas affectée : Vmax = 20.10⁻⁶ mol/min/mg (2 points)

En présence d'un inhibiteur non compétitif, la fixation du substrat et de l'inhibiteur sont indépendantes, le Km n'est pas affecté Km= 2 µmol/L. (2 points)

4) (6 points, décomposés par formule, résultat numérique, unité)

- Pour I1, inhibiteur compétitif, Km app = Km x(1+[I]/Ki) 4 = 2(1+2/Ki) \Rightarrow Ki = 2 μ mol/L (3 points) Pour I2 inhibiteur non compétitif Vm app = Vm/(1+[I]/Ki) 10 = 20 (1+2/Ki) \Rightarrow Ki = 2 μ mol/L (3 points)

$5) \quad (6 + 4 \text{ points})$

Vmax = Kcat . [Etot] (1 point). On connait Vmax pour 1mg d'enzyme (20. 10^{-6} mol/min/mg) et on connait la masse moléculaire de l'enzyme 30 kDa Kcat = $20.10^{-6}/(1.10^{-3}/30\ 000) = 600\ min^{-1}$ (5 points)

Kcat ne change pas en présence d'un inhibiteur compétitif puisque la Vmax n'est pas affectée, seule la liaison du substrat est affectée (% d'inhibition = I/(I+Ki). (4 points)