Exercice PK _colle septembre 2019

Un nouveau médicament antiviral est développé dans le traitement des infections à CMV. Il est exclusivement éliminé par voie hépatique par le CYP3A4 et est fixé à 86% à l'albumine.

Les concentrations sanguines mesurées après injection de 10 mg par voie intraveineuse bolus à un volontaire sain sont les suivantes :

Temps (heures)	Concentrations (ng/mL)
0,5	216
1	115
1,5	66
2	43
3	25
5	17
8	12,5
10	10,5
12	8,5

Chez ce volontaire sain, le débit de filtration glomérulaire est de 120 mL/min et le débit sanguin hépatique de 90 L/h.

- 1) Déterminez les paramètres de l'équation des concentrations en fonction du temps
- 2) Calculez l'aire sous la courbe (AUC_{0-∞})
- 3) Calculez le volume de distribution central, la clairance totale d'élimination et la constante de vitesse d'élimination à partir du compartiment central.
- 4) Quelle est la conséquence sur la clairance de ce nouvel antiviral :
 - a. D'une association à un inhibiteur de CYP3A4
 - b. D'une hypoalbuminémie
 - c. D'une insuffisance cardiaque
- 5) Ce même médicament est développé sous forme de comprimé par voie orale. A la dose de 20 mg, l'aire sous la courbe ($AUC_{0-\infty}$) est de 485 ng.h/mL. Déterminez la biodisponibilité du comprimé.