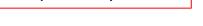


Processus d'étalonnage ⇒ Analyse quantitative

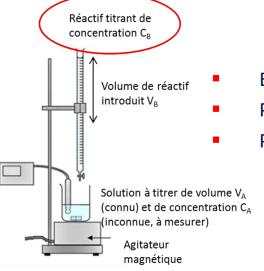
Laetitia Lê

Mars 2021

Définitions


Analyse quantitative

Processus d'étalonnage fonction de la méthode d'analyse



« Méthode absolue »

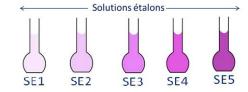
Etalon ≠ espèce chimique analysée

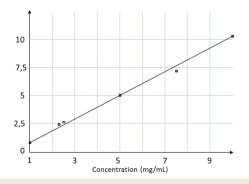
Ex. Titrage

Exactitude (

Précision +++

Peu spécifique


« Méthode relative »

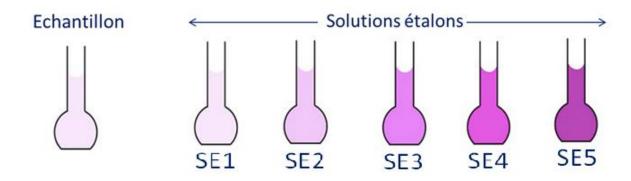

Etalon = espèce chimique analysée

€

Courbe d'étalonnage

€

Plan

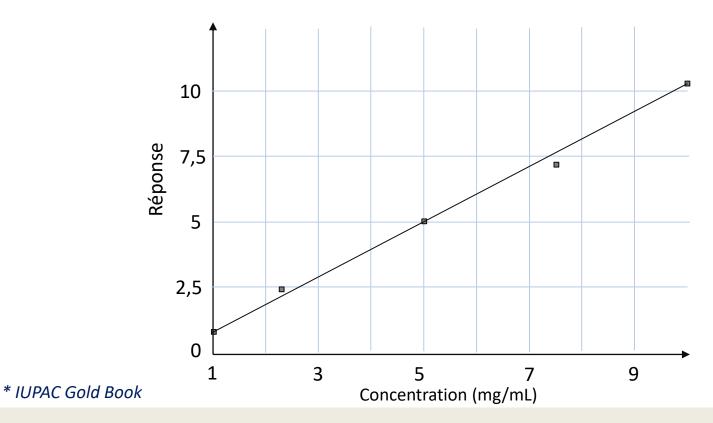

- **Procédure d'étalonnage** ⇒ Méthode de l'étalonnage externe
- Erreurs lors d'un étalonnage et stratégies de minimisation
 - Erreurs liées à l'étalon
 - **⇒** Méthode de l'étalon Erreurs liées au traitement des échantillons interne
 - Erreurs liées à l'instrumentation
 - **⇒** Analyse en matrice reconstituée Erreur liée à la matrice **⇒** Méthode des ajouts dosés

Conclusion

1) Méthode relative ⇒ Etalonnage (1/2)

Aussi appelé « étalonnage externe »

1) Préparation d'une série de solutions étalons de concentrations croissantes connues (de SE1 à SE5) séparément de l'échantillon



- 2) Mesure du signal des solutions étalons
- 3) Détermination de la fonction de réponse Signal = f (concentration)

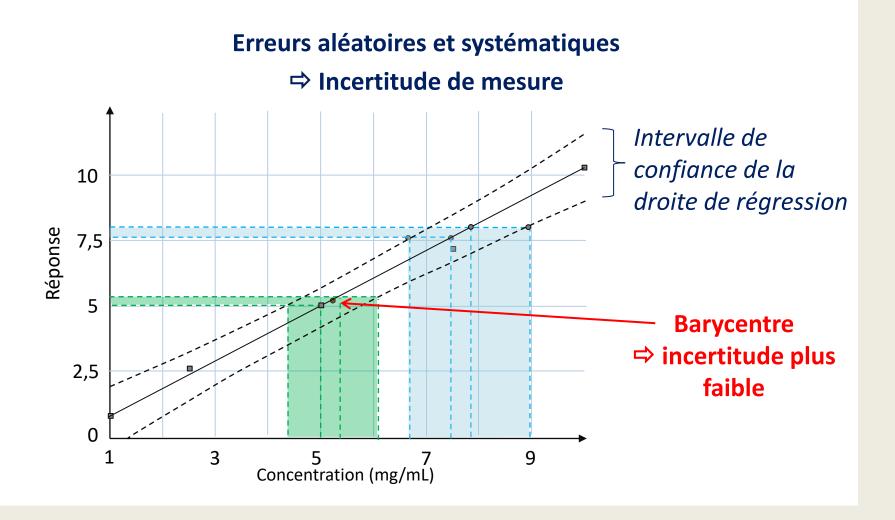
Etalonnage (2/2)

Courbe d'étalonnage *

Relation fonctionnelle reliant la valeur attendue du signal observé (variable réponse) à la quantité de substance à analyser

Définitions

Etalonnage


Erreurs

Etalon Interne

Matrice reconstituée

Ajouts dosés

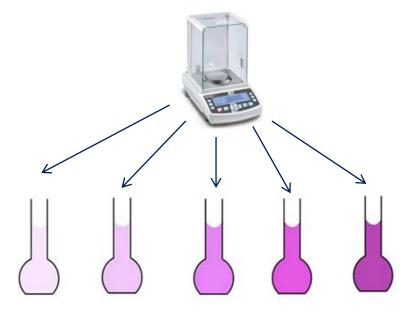
2) Erreurs lors d'un étalonnage

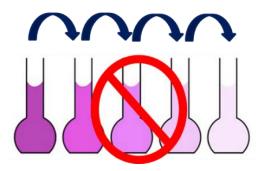
Erreurs lors d'un étalonnage

- 1) Erreurs sur les étalons
- 2) Erreurs liées à l'étape de traitement de l'échantillon
- 3) Erreurs liées à l'instrumentation
- 4) Erreurs liées au milieu de mesure (Effet de matrice)

⇒ Différentes stratégies de minimisation des erreurs

Erreurs lors d'un étalonnage


- 1) Erreurs sur les étalons
- 2) Erreurs liées à l'étape de traitement de l'échantillon
- 3) Erreurs liées à l'instrumentation
- 4) Erreurs liées au milieu de mesure (Effet de matrice)


⇒ Différentes stratégies de minimisation des erreurs

Erreur sur les étalons

Erreur de préparation des étalons, de blanc

Préparation indépendante des solutions étalons à partir de pesées séparées

Eviter les dilutions en cascade (erreur expérimentale +++)

Erreur sur les étalons

Erreur de préparation des étalons, de blanc

Préparation indépendante des solutions étalons à partir de pesées séparées

- Erreur dans la forme chimique de l'étalon
 - 🔖 Ex. : Forme cristalline, Etat d'hydratation

 KH_2PO_4 anhydre \neq KH_2PO_4 , $3H_2O$

Erreur sur les étalons

Erreur de préparation des étalons, de blanc

Préparation indépendante des solutions étalons à partir de pesées séparées

Erreur dans la forme chimique de l'étalon

🔖 Ex. : Forme cristalline, Etat d'hydratation

Variation de la concentration des étalons dans le temps

Adsorption, dégradation, évaporation, sédimentation

Erreurs lors d'un étalonnage

- 1) Erreurs sur les étalons
- 2) Erreurs liées à l'étape de traitement de l'échantillon
- 3) Erreurs liées à l'instrumentation
- 4) Erreurs liées au milieu de mesure (Effet de matrice)

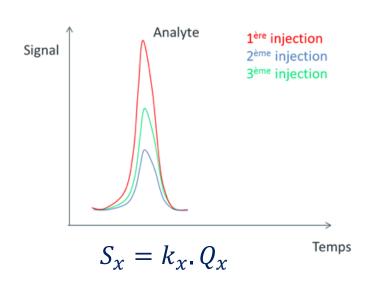
⇒ Différentes stratégies de minimisation des erreurs

Erreurs de traitement de l'éch. et d'instrumentation

Erreurs de traitement de l'échantillon

Extraction, filtration, ...

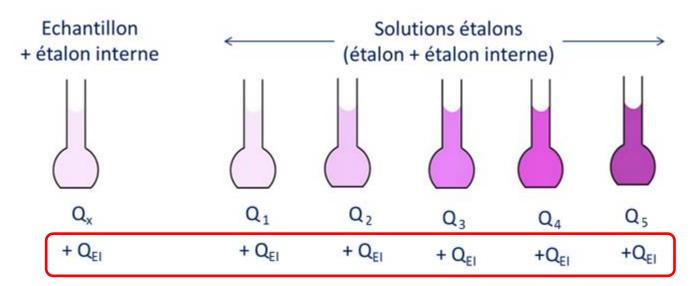
⇒ Fluctuation de la fraction extraite



Rendement d'extraction $R(\%) = \frac{Q_B}{Q_{A0}} \times 100$

Erreurs liées à l'instrumentation

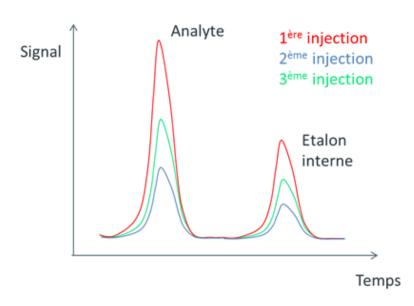
Chromatographie en phase gazeuse


⇒ Fluctuation du volume injecté

⇒ Fluctuation de la quantité d'analyte analysée

Méthode de l'étalon interne (1/4)

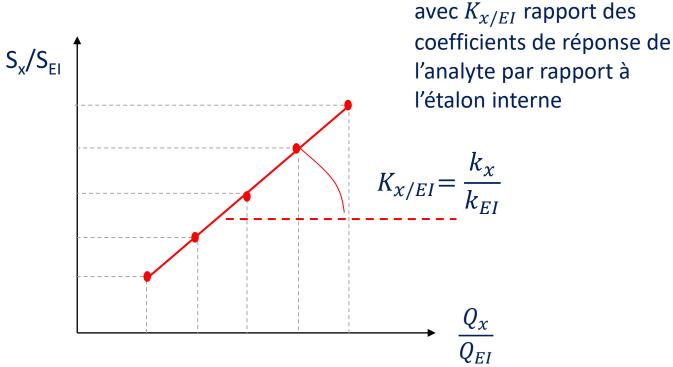
- Ajout d'une quantité connue fixe d'une substance de référence (étalon interne Q_{EI}) à tous les échantillons, étalons et blancs
- 🔖 Etalon interne est différent de l'analyte mais aussi suffisamment semblable
- Correction des fluctuations de fraction d'analyte analysée


Quantité d'El ajoutée fixe

Méthode de l'étalon interne (2/4)

Caractéristiques d'un étalon interne

- Structure chimique voisine de l'analyte
- Analysable dans les mêmes conditions
- Non présent dans l'échantillon
- Etre distinguable de l'analyte cible
- Réponse comparable à l'analyte



Méthode de l'étalon interne (3/4)

Interprétation du rapport du signal de l'analyte (x) /étalon interne (EI)

$$\begin{cases} S_x = k_x \cdot Q_x \\ S_{EI} = k_{EI} \cdot Q_{EI} \end{cases} \text{donc} \quad \frac{S_x}{S_{EI}} = \frac{k_x}{k_{EI}} \cdot \frac{Q_x}{Q_{EI}} \iff \boxed{\frac{S_x}{S_{EI}} = K_{x/EI} \cdot \frac{Q_x}{Q_{EI}}}$$

Définitions

Etalonnage

Erreurs

Etalon Interne

Matrice reconstituée

Ajouts dosés

Méthode de l'étalon interne (4/4)

Détermination de la concentration d'un échantillon inconnu C_x

Sachant
$$V_x = V_{EI}$$

$$\frac{S_x}{S_{EI}} = K_{x/EI} \cdot \frac{Q_x}{Q_{EI}}$$

$$S_x/S_{EI}$$

$$S_x/S_{EI}$$
Echantillon S_x/S_{EI}

Définitions

Etalonnage

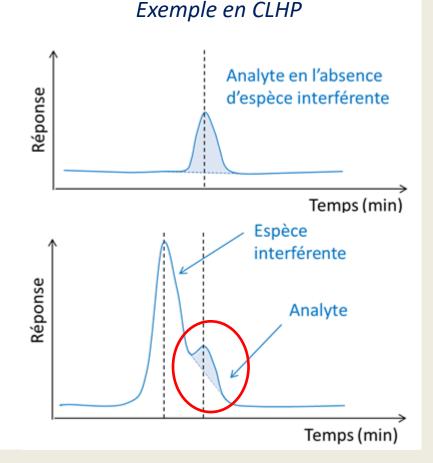
Erreurs

Etalon Interne

Matrice reconstituée

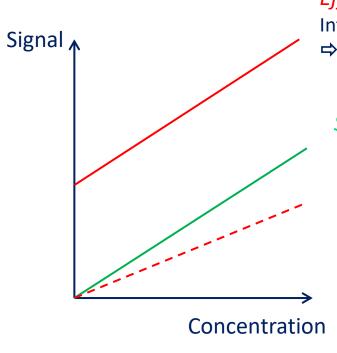
Ajouts dosés

Erreurs lors d'un étalonnage


- 1) Erreurs sur les étalons
- 2) Erreurs liées à l'étape de traitement de l'échantillon
- 3) Erreurs liées à l'instrumentation
- 4) Erreurs liées au milieu de mesure (Effet de matrice)

⇒ Différentes stratégies de minimisation des erreurs

Effets de matrice (1/2)


⇒ Erreur liée au milieu

- Matrice* : Les composants d'un échantillon autres que l'analyte
- Effet de matrice* : Effet combiné de tous les composants d'un échantillon autres que l'analyte sur la mesure de la quantité

* IUPAC Gold Book

Effets de matrice (2/2)

Effet de matrice systématique

Interférence constante quelle que soit la concentration

⇒ Correction envisageable

Sans effet matrice

Effet de matrice proportionnel

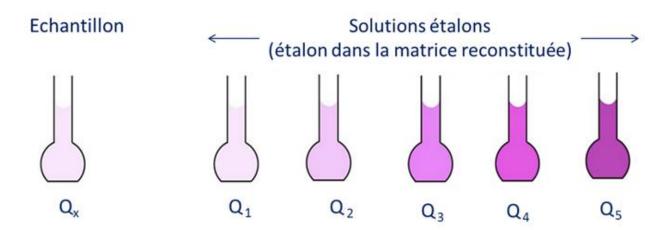
Interférence qui augmente ou diminue avec la concentration (modification de la pente)

- **⇒** Analyse en matrice reconstituée
- **⇒** Méthode des ajouts dosés

Définitions

Etalonnage

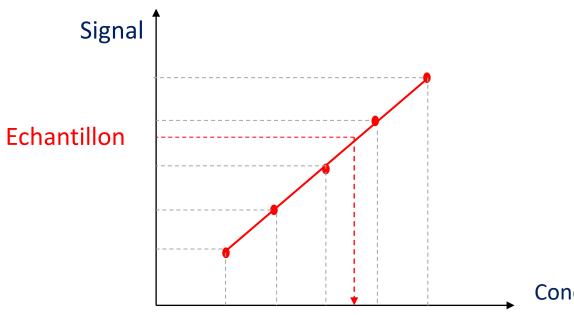
Erreurs


Etalon Interne

Matrice reconstituée

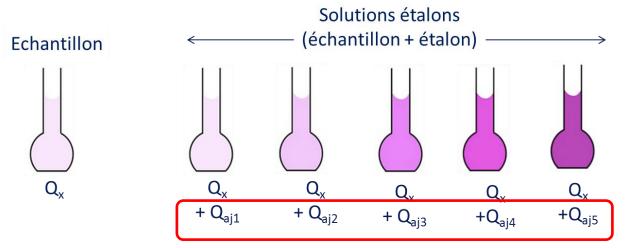
Ajouts dosés

Etalonnage dans la matrice reconstituée (1/2)

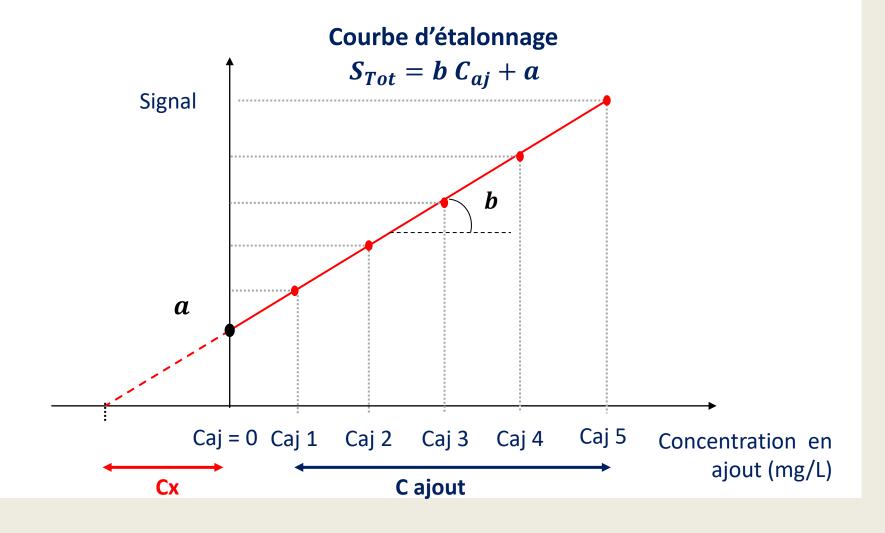

- Effet de matrice proportionnel avec pente constante
- ⇒ Analyse de la « forme reconstituée »
 - SEX. Dosage de PA en présence des excipients
- Duplication de la matrice en ajoutant les principaux constituants de la matrice aux solutions étalons et au blanc

Etalonnage dans la matrice reconstituée (2/2)

Détermination de la fonction de réponse


$$Signal = f(C)$$

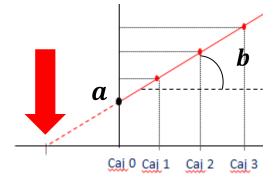
Concentration (mg/mL)


Méthode des ajouts dosés (1/3)

- Effet de matrice proportionnel avec pente variable
- ⇒ Analyse dans la matrice échantillon
 - Echantillon biologique (variabilité inter et intra-individuelle de la matrice+++)
 - Spectrométrie d'absorption atomique +++
- Ajout à l'échantillon contenant une quantité d'analyte (Q_x) à définir des quantités connues croissantes de solution étalon de l'analyte (Q_{ai})

 ΔQ = constant et du même ordre de grandeur que Qx

Méthode des ajouts dosés (2/3)


Méthode des ajouts dosés (3/3)

Détermination de la concentration d'un échantillon inconnu C_x

$$S_{Tot} = b C_{aj} + a$$

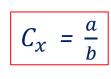
Avec
$$S_{tot} = S_x + S_{aj}$$

 $C_{tot} = C_{aj} + C_x$

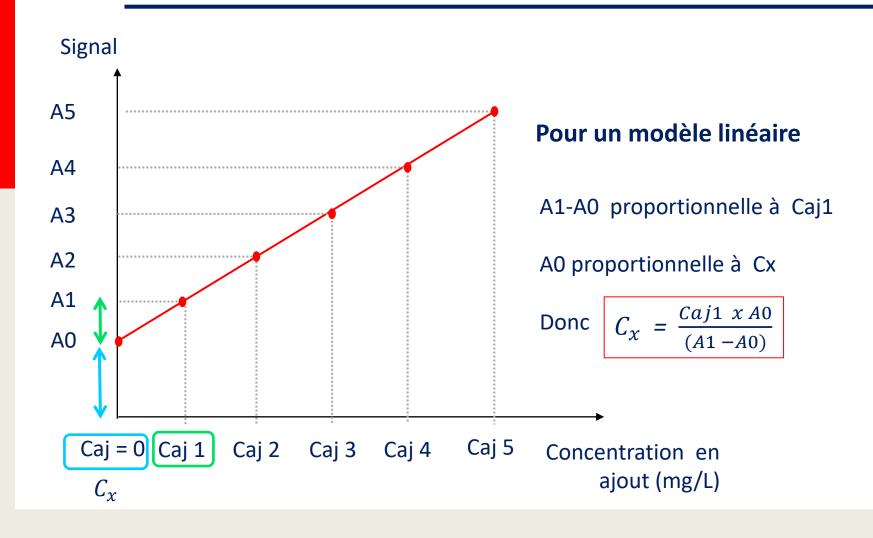
$$C_{tot} = C_{aj} + C_x$$

A l'intersection de la droite avec l'axe des abscisses :

$$C_{tot} = 0$$
,


$$C_{tot} = 0$$
, $donc \ C_{aj} + C_x = 0 \ \Rightarrow \ C_x = -C_{aj}$

$$C_x = -C_{aj}$$


$$S_{tot} = 0$$
,

 $S_{tot} = 0$, $donc \ b \ C_{aj} + a = 0 \implies C_{aj} = -\frac{a}{b}$

$$\Rightarrow C_{aj} = -\frac{a}{b}$$

Méthode des ajouts dosés (2/3)

Conclusion

- Etalonnage pour analyse quantitative (Méthode relative)
- Etalonnage externe
- Plusieurs sources d'erreurs lors de l'étalonnage
 - 🦴 Etalon, traitement des échantillons, méthode d'analyse, matrice
- Plusieurs stratégies de minimisation des erreurs
 - Utilisation d'un étalon interne
 - Analyse dans la matrice : reconstituée ou par ajouts dosés

A retenir

- Connaître les définitions
- Connaître les principales erreurs de l'étalonnage
- Connaître les principales stratégies de minimisations des erreurs
 - Etalon interne
 - Analyse dans la matrice reconstituée
 - Méthodes des ajouts dosés
- Savoir déterminer en pratique la concentration d'une solution inconnue en fonction des différents étalonnages

Pour en savoir plus

- Pour les définitions, se référer à l'International Union of Pure and Applied Chemistry (IUPAC) https://iupac.org/
- Pour en savoir plus sur les techniques, se référer aux Techniques de l'ingénieur