16.0 Release



## Workshop 3A: Contact Stiffness Study

**Fluid Dynamics** 

**Structural Mechanics** 

Electromagnetics

Systems and Multiphysics

ANSYS Mechanical Introduction to Structural Nonlinearities

#### Goal:

Perform a convergence study on contact stiffness



#### **Steps to Follow:**

**ANSYS**<sup>®</sup>

Restore Archive... browse for file "SNL W3a-stiffness.wbpz"



#### Save as

- File name: ""W3a-stiffness"
- Save as type: Workbench Project Files (\*.wbpj)

| Save as <u>t</u> ype: | Workbench Project Files (*.wbpj) |
|-----------------------|----------------------------------|
| Aide Folders          | Save Cancel                      |
|                       |                                  |

The project Schematic should look like the picture to the right.

**ANSYS**<sup>®</sup>

- From this Schematic, you can see that Engineering (material) Data and Geometry have already been defined (green check marks).
- It remains to set up and run the FE model in Mechanical
- Open the Engineering Data Cell (double click on it OR Right Mouse Button (RMB)=>Edit) to verify the linear material properties.
- You might have to activate important dialog boxes from Utility Menu > View >...
  - Properties
  - Outline
- Verify that the units are in Metric (Tonne,mm,...) system. If not, fix this by clicking on...
  - Utility Menu >Units >Metric(Tonne, mm,...)

#### Project Schematic



Contact Stiffness Study (ANSYS)

| Properti | Properties of Outline Row 3: Structural Steel 🗾 👻 🛨 |           |             |  |  |  |  |  |  |
|----------|-----------------------------------------------------|-----------|-------------|--|--|--|--|--|--|
| •        | А                                                   | В         | С           |  |  |  |  |  |  |
| 1        | Property                                            | Value     | Unit        |  |  |  |  |  |  |
| 2        | 🔁 Density                                           | 7.85E-09  | tonne mm^-3 |  |  |  |  |  |  |
| 3        | 🖃 🛛 🔀 Coefficient of Thermal Expansion              |           |             |  |  |  |  |  |  |
| 4        | Coefficient of Thermal<br>Expansion                 | 1.2E-05   | C^-1        |  |  |  |  |  |  |
| 5        | 🔀 Reference Temperature                             | 22        | С           |  |  |  |  |  |  |
| 6        | Isotropic clasticity                                |           |             |  |  |  |  |  |  |
| 7        | Young's Modulus                                     | 2E+05     | MPa         |  |  |  |  |  |  |
| 8        | Poisson's Ratio                                     | 0.3       |             |  |  |  |  |  |  |
| 9        | Alternating Stress Mean Stress                      | 💷 Tabular |             |  |  |  |  |  |  |
| 10       | Scala                                               | 1         |             |  |  |  |  |  |  |



• Close Engineering Data...



 Double click on the Model Cell to open the FE Model (Mechanical Session) (or RMB=>Edit...)

| <b>∧</b> ws: | 2a-sprin    | g - Wol   | rkbench    |           |      |                        |                 |          |        |               |            |       |
|--------------|-------------|-----------|------------|-----------|------|------------------------|-----------------|----------|--------|---------------|------------|-------|
| File         | View        | Tools     | Units      | Help      |      |                        |                 |          |        |               |            |       |
| 🎦 Ne         | ew 💕 C      | pen       | 房 Save     | 🔣 Save As | lá   | <sup>≩</sup> φ Reconne | ct 🛛 🤁 Refresl  | h Projec | st 💡   | 🕖 Update Proj | ject 👔 Imp | ort ( |
| Toolbo:      | <           |           |            | _ ×       | Proj | ect Schema             | tic             |          |        |               |            |       |
| 🖂 Ana        | alysis Sys  | tems      |            |           |      |                        |                 |          |        |               |            |       |
| 🧐 E          | lectric (Al | ISYS)     |            |           |      |                        |                 |          |        |               |            |       |
| Б. Е         | xplicit Dyr | namics (a | ANSYS)     |           |      | <b></b>                | Static Structu  | ural (AN | SYS)   |               |            |       |
| 🔁 н          | armonic F   | espons    | e (ANSYS)  |           |      | 0                      | Engineering D   | Data     |        | × .           |            |       |
| ∑ Li         | near Bucl   | ding (AN  | ISYS)      |           |      | m                      | Geometry        |          |        |               |            |       |
| 🔘 м          | lagnetost   | atic (AN  | SYS)       |           |      |                        | Model           |          |        |               |            |       |
| 🕎 М          | lodal (AN:  | 5YS)      |            |           |      | <b>*</b>               |                 |          | Ē<br>M | Edit          |            |       |
| 🕎 М          | lodal (San  | ncef)     |            |           |      |                        | Setup           |          | -      | Luitin        |            |       |
| R 🔤          | andom Vil   | bration ( | (ANSYS)    |           |      | <b>S</b>               | Solution        |          | Ð      | Duplicate     |            |       |
| R R          | esponse :   | 5pectrur  | m (ANSYS)  |           |      | 1                      | Results         |          |        | Transfer Dat  | a To New   | +     |
| S S          | hape Opt    | imizatior | n (ANSYS)  |           |      | Small De               | eflection-Linea | r Mat'l  | -      |               |            |       |
| 🥣 S          | tatic Stru  | tural (A  | BAQUS)     |           |      | 5111011 51             |                 |          | 7      | Update        |            |       |
| 🥣 S          | tatic Stru  | tural (A  | NSYS)      |           |      |                        |                 |          | 8      | Refresh       |            |       |
| 🥣 S          | tatic Stru  | tural (S  | iamcef)    |           |      |                        |                 |          |        | Clear Genera  | ated Data  |       |
| U S          | teady-Sta   | ate Ther  | mal (ANSY  | S)        |      |                        |                 |          |        | Reset         |            |       |
| e T          | hermal-El   | ectric (A | NSYS)      |           |      |                        |                 |          | Ala    | Dopomo        |            |       |
| <u>7</u> T   | ransient S  | Structura | al (ANSYS) |           |      |                        |                 | !        | ala.   | Rename        |            |       |
| т 📷          | ransient S  | Structura | al (MBD)   |           |      |                        |                 |          |        | Properties    |            |       |
| Ц, Т         | ransient 1  | Thermal   | (ANSYS)    |           |      |                        |                 |          |        | Ouick Help    |            |       |
| ⊕ Cor        | mponent     | 5ystems   |            |           |      |                        |                 | L        |        | F             |            |       |
| ⊞ Cu:        | stom Syst   | ems       |            |           |      |                        |                 |          |        |               |            |       |
| De:          | sian Explo  | ration    |            |           |      |                        |                 |          |        |               |            |       |

Geometry is 2D Axisymmetric. Lower plate is rigidly constrained. Upper plate is a flexible body with a crowned contour along bottom face. The upper plate is under a 5MPa pressure load acting downward.

Material: Both plates are default linear elastic structural steel.



**NNSYS**°

Open the folders beneath the model branch to become familiar with the model set-up.

Highlight "Geometry" and refer to the details window to verify that this is a 2D axisymmetric model.

**ANSYS**<sup>®</sup>



Inspect the Analysis Settings. Autotime stepping = ON Initial substeps = 10 Max substeps = 100 Large deflection = ON

|    | Static Structural (A5)         |                    |  |  |  |  |  |  |  |
|----|--------------------------------|--------------------|--|--|--|--|--|--|--|
| De | Details of "Analysis Settings" |                    |  |  |  |  |  |  |  |
|    | Step Controls                  |                    |  |  |  |  |  |  |  |
|    | Number Of Steps                | 1.                 |  |  |  |  |  |  |  |
|    | Current Step Number            | 1.                 |  |  |  |  |  |  |  |
|    | Step End Time                  | 1. s               |  |  |  |  |  |  |  |
|    | Auto Time Stepping             | On                 |  |  |  |  |  |  |  |
|    | Define By                      | Substeps           |  |  |  |  |  |  |  |
|    | Initial Substeps               | 10.                |  |  |  |  |  |  |  |
|    | Minimum Substeps               | 5.                 |  |  |  |  |  |  |  |
|    | Maximum Substeps               | 100.               |  |  |  |  |  |  |  |
|    | Solver Controls                |                    |  |  |  |  |  |  |  |
|    | Solver Type                    | Program Controlled |  |  |  |  |  |  |  |
|    | Weak Springs                   | Off                |  |  |  |  |  |  |  |
|    | Large Deflection               | On                 |  |  |  |  |  |  |  |
|    | Inertia Relief                 | Off                |  |  |  |  |  |  |  |
|    |                                |                    |  |  |  |  |  |  |  |

Review the Frictionless contact set up and specifications. A single contact pair has already been set up with the following specifications:

|   | Connections                                                                                            | onless - Surface Body To Surface Body                        |      |                                                                                       |
|---|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|------|---------------------------------------------------------------------------------------|
|   | etails of "Frictionless - Surface E<br>Scopie<br>Scoping Method<br>Contact<br>Target<br>Contact Rodion | Geometry Selection 1 Edge Surface Body                       | 9    | The default "Program Controlled"<br>settings will result in:<br>• One Asymmetric Pair |
| E | Target Bodies Shell Thickness Effect Definition                                                        | Surface Body Surface Body No                                 |      | <ul><li>Augmented Lagrange Formulation</li><li>Gauss point detection</li></ul>        |
|   | Type<br>Scope Mode<br>Behavior<br>Trim Contact                                                         | Frictionless Automatic Program Controlled Program Controlled |      |                                                                                       |
| E | Trim Tolerance<br>Suppressed<br>Advanced                                                               | 0.15315 mm<br>No                                             |      |                                                                                       |
|   | Formulation<br>Detection Method<br>Penetration Tolerance                                               | Program Controlled Program Controlled Program Controlled     |      |                                                                                       |
|   | Normal Stiffness<br>Normal Stiffness Factor<br>Update Stiffness                                        | Manual<br>1.e-002<br>Never                                   |      | 0.000                                                                                 |
|   | Stabilization Damping Factor                                                                           | 0.<br>Program Controlled                                     | Geor | metry / Print Preview / Report Preview /                                              |

This workshop will focus on a study of the contact stiffness and its influence on results (surface pressure and penetration).

Highlight the contact region and set the following:

Normal Stiffness ="Manual"

Normal Stiffness Factor = 1e-002.

**Update Stiffness = Never** 

#### **Execute the Solve**

| - | Advanced                     |                        |          |  |  |  |  |
|---|------------------------------|------------------------|----------|--|--|--|--|
|   | Formulation                  | Program Controlled     |          |  |  |  |  |
|   | Detection Method             | Program Controlled     |          |  |  |  |  |
|   | Interface Treatment          | Add Offset, No Ramping |          |  |  |  |  |
|   | Offset                       | 0. mm                  |          |  |  |  |  |
|   | Normal Stiffness             | Manual                 |          |  |  |  |  |
|   | Normal Stiffness Factor      | 1.e-002                |          |  |  |  |  |
|   | Update Stiffness             | Never                  |          |  |  |  |  |
|   | Stabilization Damping Factor | 0.                     |          |  |  |  |  |
|   | Pinball Region               | Program Cor            | ntrolled |  |  |  |  |
|   | Time Step Controls           | None                   |          |  |  |  |  |



#### **ANSYS**°

## ... Workshop 3A – Contact Stiffness Study

Highlight the Solution Information Branch and scroll up the Solver Output to find the contact specifications.

 Confirm the auto-asymmetric behavior, Augmented Lagrange formulation, gauss point detection and the user defined Normal Stiffness (FKN) value with no mention of automatic stiffness updating.

| *** NOTE *** CH                                                       | P = 3.338 TIME= 11:57:18     |  |  |  |  |  |
|-----------------------------------------------------------------------|------------------------------|--|--|--|--|--|
| Symmetric Deformable- deformable contact p                            | pair identified by real      |  |  |  |  |  |
| constant set 3 and contact element type 3                             | has been set up. The         |  |  |  |  |  |
| companion pair has real constant set ID 4.                            | . Both pairs should have the |  |  |  |  |  |
| same behavior.                                                        |                              |  |  |  |  |  |
| ANSYS will keep the current pair and deact                            | tivate its companion pair,   |  |  |  |  |  |
| resulting in asymmetric contact.                                      |                              |  |  |  |  |  |
| Contact algorithm: Augmented Lagrange meth                            | nod                          |  |  |  |  |  |
| Contact detection at: Gauss integration po                            | pint                         |  |  |  |  |  |
| Contact stiffness factor FKN                                          | 0.10000E-01                  |  |  |  |  |  |
| The resulting contact stiffness                                       | 2666.7                       |  |  |  |  |  |
| Default penetration tolerance factor FTOLM                            | 1 0.10000                    |  |  |  |  |  |
| The resulting penetration tolerance                                   | 0.84371E-01                  |  |  |  |  |  |
| Frictionless contact pair is defined                                  |                              |  |  |  |  |  |
| Average contact surface length                                        | 0.80694                      |  |  |  |  |  |
| Average contact pair depth                                            | 0.84371                      |  |  |  |  |  |
| User defined pinball region PINB                                      | 0.15315                      |  |  |  |  |  |
| *WARNING*: Initial penetration is included.                           |                              |  |  |  |  |  |
| *** NOTE *** CF                                                       | P = 3.338 TIME= 11:57:18     |  |  |  |  |  |
| Max. Initial penetration 4.974007539E-02 was detected between contact |                              |  |  |  |  |  |
| element 1584 and target element 1647.                                 |                              |  |  |  |  |  |
| You may move entire target surface by : x=                            | = 1.278077453E-04, y=        |  |  |  |  |  |
| -4.973991119E-02, z= 0.to reduce initial penetration.                 |                              |  |  |  |  |  |
| *******                                                               |                              |  |  |  |  |  |
|                                                                       |                              |  |  |  |  |  |

#### Post process the Deformation:



- Post process the contact results: •
  - **Contact Pressure** \_\_\_
  - **Contact Penetration** \_



#### **NSYS**<sup>®</sup>

## ... Workshop 3A – Contact Stiffness Study

- Record the results in Table below.
  - Note: You can cut-paste electronically from results cell.
- Repeat analysis with Normal Stiffness factors, FKN= 0.1, 1.0, 10.0, 100.0
- For further comparison, change the contact formulation to Normal Lagrange.

| Contact<br>Formulation | FKN   | Total Deform | Contact Pressure | Penetration | # of<br>iterations |
|------------------------|-------|--------------|------------------|-------------|--------------------|
| Aug Lagrange           | 0.01  |              |                  |             |                    |
| Aug Lagrange           | 0.1   |              |                  |             |                    |
| Aug Lagrange           | 1     |              |                  |             |                    |
| Aug Lagrange           | 10    |              |                  |             |                    |
| Aug Lagrange           | 100.0 |              |                  |             |                    |
| Norm Lagrange          | N/A   |              |                  |             |                    |

- Experiment also with Update Stiffness between iterations @ FKN=100 for comparison.
- Which combination offers the best results (in terms of accuracy and # of iterations)?

#### • Conclusions

Notice that, in general, as stiffness increases, contact penetration decreases while maximum contact pressure increases. Notice also the general trend toward more iterations and longer run times leading eventually to convergence troubles at FKN=100.

Note the benefit of using the automatic stiffness updating tool to overcome convergence trouble at FKN=100.

Note also that regardless of which stiffness value is used, the overall total displacement of the assembly changes very little. This underscores the need to know your engineering objectives. If localized contact related results are unimportant, then the program controlled defaults might be acceptable.

Specifying the right contact stiffness is highly problem dependent. The "correct" answer depends on the engineering objectives and is always a balance between quality (accuracy) and cost (run time).