

- 5 cours Michel Andrieux
- 5 cours Vincent Ji
 (03/02 à 13h30, 07/02 à 10h30, 10/02 à 13h30, 14/02 à 10h30, 17/02 à 13h30)
 - Contrôle en écrit le 22/02 14h + Oral mécanique le 21/02 à 8h30

Residual stresses analysis:

RS generation dues to process
 RS influence on properties
 RS determination and relaxation
 Surface mechanical traitments
 Industrial applications

Residual stresses analysis: Generation, influence (1)

outline

- Bibliographic References
- Residual Stress: definition, 3 orders of RS
- RS origins
- RS and materials process (plastic deformation, rolling, heat treatment, welding, surface treatment and surface coating, machining)

Residual Stress

- References:

- 1) Residual Stress Measurement by Diffraction and Interpretation, Noyan, I. C., Cohen, J.B. Springer Verlag (1987)
- 2) Handbook of measurement of residual stresses,
- ed J. Lu, SEM Inc. The Fairmont Press (1996)
- Handbook of Residual Stress and Deformation of Steel, eds G. Totten, M. Howes and T. Inoue, ASM Inter., Materials Park, (2002)

Residual Stress

Definition: Residual stresses or locked-in stresses can be defined as those stresses existing within a body in the absence of external loading or thermal gradients. In other words residual stresses in a structural material or component are those stresses which exsist in the object without the application of any service or other external loads.

Residual Stress

Role of residual stresses

<u>Residual stresses</u> have the same role in a structure's strength as common mechanical stresses.

<u>Residual stresses</u> can play a significant role in explaining or preventing failure of a component at times.

Tensile residual stresses may reduce the performance or cause failure of manufactured products.

Compressive residual stresses are beneficial. It must be kept in mind that the internal stresses are balanced in a component.

Tensile residual stresses are counter balanced by compressive residual stresses. Residual stresses are three-dimensional.

Multiscale material study (1)

1 cm

X sharp multi-pass welding joint

Carbon steel, structure in strip

2.5 mm

Dislocations cells

1 µm

Multiscale material study (2)

Phases (\approx few tens µm)

Metallurgy scale

Grain (few µm)

Crystallographic scale

chemical composition massive/surface fabrication process

chemical composition

crystalline structure

interphase joint

proportion

size morphology orientation grain boundry

size distorsion dislocations

crystalline planes point defects

substitution

Crystalline lattice (few Å) **TEM** scale

interstitie

Multiscale material study (3)

Average stress in observed zone

 $\text{Ordre II}\,(\sigma^{II})$

Average stress in a grain or in a phase

Ordre III (σ^{III})

stress in a grain

- Mechanical
- Thermal
- Chemical (microstructural)

Material forming – plastic deformation (1)

Residual stress introduction by plastic deformation

Material forming – plastic deformation (2)

Residual stress generation in case of material forming by plastic bending

Stress profile in section in case of elasto-plastic bending (a) Applied stress (b) Residual stress

Material forming – rolling (1)

Example: rolling

Residual stress distribution and associated geometrical modification (blisters, edge longs, bucklings ...)

Residual stress gradient in depth of rolled sheet

stress profile (in long direction σ_L and in transverse direction σ_T) after quench in cold water for Aluminium alloy 7075 – thickness of sheet: 70 mm

Heat treatment (quench 2)

Residual stress distribution for quench specimen with phase change (a) high speed (b) low speed

Schematic representation of residual stress generation during welding without phase change

Surface treatment

1 initial state

3 shot-peening plastification

2 shot-peening

residual stress

4. continuity of strain

Case of shot-peening

- -Utilisation under extreme loading conditons (corrossive atmosphrres, vaccum, high temperature...)
- -High hardness (TiN, TiC, TiCN)

-Aims:

- increasing corrosion resistance,
- decreasing wear dommage
- modification of tribological properties for tools and mechanical

Techniques for coatings elaboration :

- CVD

```
high T° C (600° C to 1050° C) and corrosive atmosphere
```

- PVD

Evaporation under vacuum / Cathodique Pulverisation / Ionique deposition relatively low T $^\circ\,$ C (100 $^\circ\,$ C to 500 $^\circ\,$ C)

- Thermal Projection (at high temperature, plasma)
- Electrolytic deposition

CVD coating -thermal origin of RS -(difference of thermal dilatation coefficient between Substrat and coating) - RS level and nature depend on substrat (hard metal or steel)

PVD coating
origin of RS is thermal and microstructural (defects of growth)
RS are generally in compression

Processing of material remove induce:

- great plastic deformations on surface layer
- generation of heats
- metallurgical transformations
- → Source of residual stress apparition
 → Influence on utilisation properties of components (fatigue, stress corrosion cracking, fissuration ...)

crack on specimen surface prepared by turning on 316L steel

Machining (2)

Main maching processing

Machining (grinding 1)

generation mechanism of RS in case of grinding

Simultaneous 3 actions :

- 1) Heterogeneous plastic deformation in surface layer due to cutting force
- 2) Thermal dilatation of surface layer engendered by surface heating due to the friction bewteen tool/ piece and the associated thermal gradient
- 3) Volume change because of metallurgical transformations (phase change)

1) Residual stress gererated by plastic plastique without thermal grdient

2) Residual stress gererated by exceeding of elastic limit of material because of presence of a thermal gradient

3) Residual stress generated by volume change after a metallurgical change

Machining (grinding 5)

Study example: Influence of grinding conditions on residual stress distribution on a steel 42CD4

process	mechanical	thermal	metallurgical
Cold rolling	+++		
Hot rolling	+++	+++	
Forging	+++	+++	
Wire drawing	+++		
Quenching	+++	+++	+++
Welding	+++	+++	+++
Coating CVD-PVD	++	+++	++
Shot-peening	+++		++
Machining	+++	+++	++
Press-forming	+++	++	
Additive fabrication	++	+++	++

Residual stress generation for different process

Residual stresses analysis: generation, influence (2)

outline

Influences of residual stresses on materials properties

- Physical properties
- Geometrical deformation
- Static mechcanical properties
- Contact and erosion
- Stress corrosion cracking
- Fatigue properties
- Cracking characteristics
- Microstructure modification

Physical Properties (1)

Acoustical effect :

speed of ultrasonic wave propagation V varies in function of stress level in material

Example : Measurement of propagation speed on a specimen in Al based alloy AU4G under monotonic tensile loading

Physical Properties (2)

Magnetic effect:

coercitif field of Barkhausen effect is modified in function of stress in material

> Example : Evaluation of Barkhausen effect Hm on Nickel specimen under monotonic tensile loading

Geometrical deformation (1)

Cutting :

Geometrical deformation (2)

Example: rolling

Residual stress distribution and associated geometrical modification (blisters, edge longs, bucklings ...)

Static mechcanical properties (1)

 $\frac{\Delta H}{H} %$

Static mechcanical properties (2)

Example 1 : decease of elastic limits of steel wire by drawing in function of stress level under tensile test

Elastic limits

Maximum stress level (MPa)

Static mechcanical properties (3)

Table 2. Characteristics of the TiN coatings					
Substrate No.	Thickness µm	-σ MPa	Lc N	Deposition	H2:N2
1	3,9	6775	18	CVD	1:1
1	3,3	6686	14	CVD	4:1
2	4,6	3040	27	CVD	1:1
2	4,2	2815	26	CVD	4:1
3	4,3	2740	33	CVD	1:1
3	3,5	2655	27	CVD	4:1
4	4,4	1970	26	CVD	1:1
4	4,6	1122 .	41	CVD	4:1
1	13,8	3475	24	CVD	1:1
1	13,8	3140	21	CVD	1:1
2	17,1	776	61	CVD	1:1
2	17,1	756	57	CVD	1:1
3	15,3	870	57	CVD	1:1
3	15,3	882	55	CVD	1:1
4	14,4	700	57	CVD	1:1
4	14,4	692	52	CVD	1:1
1	3	11825	14	PVD	-
2	3	7392	20	PVD	-
3	3,2	8912	17	PVD	-

TiN coating on cutting tools

Contact and erosion (1)

TABLE 1 Levels of residual macrostresses in specimens of steel XBF

Batch No.	After thermal treatment		After additional DC pulse treatment	
	(σ ₁ + σ ₂) (MPa)	σφ (MPa)	$(\sigma_1 + \sigma_2)$ (MPa)	σφ (MPa)
 1	471	333	not treated	
2	520	392	not treated	
3	490	275	3	1
4	559	353	7	2

 TABLE 2

 Wear stability parameters of hardened steel XBF

Batch number	Load kgf	Specimen wear mm ³	f
 1	24	0.041	0.0969
2	54	0.116	0.0898
3	24	0.027	0.0813
4	54	0.045	0.0755

Wear :

piece wear of treated steel will increase if residual stress in surface will be in tension

Contact and erosion (2)

Erosion:

Surface Residual Stress in the initial state and after a short cavitation time

SCC is the conjoint action of stress and a corrosive environment leading to the formation of brittle cracks

Typical SCC failures are seen in

- pressure vessels,
- pipework,
- highly stressed components
- an excursion from normal operating conditions or the environment occurs.

The required tensile stresses may be in the form of applied stresses or residual stresses.

The environment is

- either the permanent service environment i.e. sea water
- or a temporary one caused by operations such as cleaning of the system which can leave a residue,
- or if the stress is applied during the operation initiate cracking.

SCC is a corrosion mechanism that requires the pairing of a material with a very particular environment and the application of a tensile stress above a critical value.

Stress corrosion cracking (4)

Example 2 : Influence of level and sign of residual stress on critical cracking stress of a stainless steel

Stress corrosion cracking (5)

Example 3 : residual stress influence on stress corrosion cracking of an austenitic stainless steel under MgCl₂ environment (a) after milling (b) after rolling

Fatigue properties (1)

fatigue is the progressive and localized structural damage that occurs when a material is subjected to cyclic loading;

It is a progressive localized damage due to fluctuating stresses and strains on the material. Metal fatigue cracks initiate and propagate in regions where the strain is most severe.

Fatigue properties (2)

The most commonly used stress ratio is R, the ratio of the minimum stress to the maximum stress ($\sigma min/\sigma max$).

Log Cycles to Failure

SC85-31262

Evolution of fatigue limits according surface residual stress

<u>Example 3 :</u> Influence of machining modes on residual stress distribution and on fatigue resistance with rotative bending tests for rolled TA6Vspecimens

Applied Stress

Fatigue properties (5)

Example 4 : Effect of shot-peening on fatigue resistance of 50CV4 steel (spring steel)

Cracking characteristics (1)

Crack Growth Rate, da/dN

Cracking characteristics (2)

•The driving force for crack growth is the **range** in the stress intensity factor during cycling.

$$\Delta K = f(a/W) \Delta \sigma \sqrt{\pi a}$$
$$\Delta \sigma = \sigma_{max} - \sigma_{min} \text{ for } R \ge 0$$
$$\Delta \sigma = \sigma_{max} \text{ for } R < 0$$

Cracking characteristics (4)

Speed of crack propagation is influenced by the presence of residual stress in materials

Example 1 : reducing of crack propagation

spped da/dN due to the compressive residual stress

Microstructure modification (1)

Example 1 : martensite formation on a austenitic stainless steel 304L under monotonic tensile test

Microstructure modification (2)

property	RS influence
Acoustic	RS level \rightarrow V change of ultrasonic wave propagation
Magnetic	RS \rightarrow modification of coercitif field of Barkhausen effect
Geometric	RS redistribution or/and relaxation \rightarrow geometric change
Hardness	$(+RS) \rightarrow$ Hv decrease, $(-RS) \rightarrow$ Hv increase
Elastic limit	$(+RS) \rightarrow \sigma e$ decrease, $(-RS) \rightarrow \sigma e$ increase
Erosion and contact	$(+RS) \rightarrow$ mass loss increase, $(-RS) \rightarrow$ mass loss decrease
Stress corrosion cracking	 (+ RS) → cracking speed up or resistance decrease, (- RS) → cracking delayed or resistance increase
Fatigue	 (+ RS) → loading cycle decrease or resistance decrease, (- RS) → loading cycle increase or loading amplitude increase
Cracking	 (+ RS) → crack propagation speed increase, (- RS) → crack propagation speed decrease,
Microstructure	RS level → phase change

Residual stress and properties

Residual stresses analysis: determination and relaxation (3)

Classification of methods (1)

Residual stress Determination

Strain measurement

Mechanical Methods

Measurement of strains associated to stress relaxation (by material remove)

 Hole-drilling Method, Ring core method
 Layer remove method - Sachs
 Layer remove method deflexion method
 Sectioning method

Physical Method

Direct measurement of strains comparing to a reference or to a standard specimen

- X-ray diffraction
 Neutron diffraction
 Ultrasonic method
 Magnetic method Barkhausen noise method
- □ Raman effect method

Hole-drilling and Ring core (2)

Advantages / Disadvantages

Hole-drilling method

□ diam : 1 to 4 mm
□ depth ≈ diam.
□ sensibility to errors on diameter and on excentricity

Ring core method

□ diam : 15 to 150 mm
□ depth ≈ 25 à 150% diam.
□ insensibility to errors on diameter and on excentricity
□ step by step working

semi-destructif method
sensitive to heating

stress relaxaion
gage damage

plate bottom of hole
straight edge of hole

Simplified theoritical consideration

$$\varepsilon = (\sigma_{\max} + \sigma_{\min})\overline{A} + (\sigma_{\max} - \sigma_{\min})\overline{B}\cos(2\beta)$$

A and B : calibration constant obtained by experimentation or by theoritical calculation, A and B = fonction (rosette, E, υ , r_a , ψ_1 , ψ_2 ...) β : the angle from the axis to σ_{max}

Hole-drilling and Ring core (5)

Incremental method

X-ray diffraction method î 1 day Automated incremental hole drilling î 2 hours

Hole-drilling and Ring core (6)

Case of rail for railway

Instrumentation

After drilling

Principal and applications of the method

Layer remove method – Sachs (2)

Theoritical aspects of the method

- $\Delta = \lambda + \mu \theta$ $\Lambda = \theta + \mu \lambda$
- λ : longitudinal strain θ : circumferential strain μ : Poisson's coefficient

$$\sigma_L = \frac{E}{1 - \mu^2} \left[(S_e - S) \frac{d\Delta}{dS} - \Delta \right]$$

$$\sigma_t = \frac{E}{1 - \mu^2} \left[(S_e - S) \frac{d\Lambda}{dS} - \frac{S + S_e}{2S} \Delta \right]$$

$$\sigma_R = -\frac{E}{1 - \mu^2} \Lambda \frac{S_e - S}{2S}$$

Layer remove method – Sachs (3)

î Advantages □ deep depth □ rapid method

î Disadvantages
□ limited geometry
□ destructif

Surface in compression

Layer remove method – deflexion (1)

- Frequently used to determine the stresses within coatings and layers.
- Deposition of a layer can induce stresses which cause substrate to curve
- Curvatures can be measured using **contact methods** (profilometry, strain gauges) or **without direct contact** methods (video, **laser scanning**,
- grids, double crystal diffraction topology)
- Curvature is related to the **residual stress** using **Stoney's equation**

Layer remove method – deflexion (2)

Stoney's Equation

$$\sigma = (E_s / (1 - v_s)) * (t_s^2 / t_1) * [1/R_2 - 1/R_1)$$

Where, $E_s/(1 - v_s)$ is the substrate biaxial modulus, t_s and t_l are substrate and film thickness, R_1 and R_2 are radia of curvature of substrate before and after deposition respectively. It is assumed that $t_l << t_s$

Layer remove method – deflexion (3)

î <u>Hypothesis</u>

- □ samples with great length comparing to it's width
- $\Box \sigma_{33}$: negligible
- $\Box \sigma_{11}$: principal axis
- material removing should not introduce additional stress

Layer remove method – deflexion (4)

$$\sigma_{e} = -4\frac{E_{e}^{2}}{3l^{2}}\frac{df_{e}}{de} + \frac{8E_{e}}{l^{2}}(f_{H} - f_{e}) + \frac{8E}{3l^{2}}\int_{H}^{e} edf$$

î same conditions than surface shot-peening

□ 3 samples with differents thickness

Layer remove method – deflexion (5)

Preparation for tested specimens

Layer remove method – deflexion (6)

Used method for speciment preparation from induction treated component

POLYTECH°

Sectioning method (2)

Location of observing points and procedure of cutting Most probable values of longitudinal inherent strains

universite

PARIS-SACL

Comparaison of methods

Methods for RS determination by stress and strain field modification

	Modification of stress field due to material removing			
Method	Hole-drilling	Ring core	Deflexion	Sachs
Hypothesis on material	Plate stress	Plate stress	Plate stress length >> width >> e	Cylindric piece Homegeneous field on surface
Analysisvolume	$2 \text{ mm}^2 \text{ x } 2 \text{ mm}$	100mm ² x 200mm	$10 \text{ cm}^2 \text{ x } 0.1 \text{ mm}$	$1 \text{ cm}^2 \text{ x } 0.2 \text{ mm}$
Mini. depth	20 µm	20 µm	20 µm	1 mm
Multiphase materials	Global information	Global information	Global information	Global information
Anisotropy sensibility	No	No	No	No
Instrument	Portable	Portable	No	No
Exprimentation duration	5 minutes	30 minutes	1 hour	1 hour
Equipement cost	7 K€ to 40 K€	7 K€ to 40 K€	8 K€	8 K€ to 50 K€

Ultrasonic method (1)

Variation of speed of wave propagation

information about the average information of internal stress
 information only in analysed zone

î susceptibility on thermal and microstructural variationsî weak spatial resolutionî great precision about the measurement vs. time

Ultrasonic method (3)

Origin of acoustoelastic effectA: Energy vs. atomic separation for a pair of atomsB: Interactomic force vs. atomic separation

C: Stress vs. an elastic solid, change in local slope inducing compressive or tensile stress

Ultrasonic method (4)

	\hat{K}_1	\hat{K}_2	Â3	Â4	ĥ5
Polystyrene ^a	-93.7	-4.49	-4.59	-40.80	-1 1.46
Magnesium (Tooling Plate) ^b	-19.36	-11.76	-1.02	-4.03	0.58
Al Alloy (2S) ^b	-7.73	1.12	-2.15	-3.96	0.79
Rail Steel #1 ^c	-1.21	0.18	-0.12	-0.75	0.02
Rail Steel #4 ^c	-1.21	0.11	-0.11	-0.71	0.01
Tungsten (Sintered) ^b	-0.91	-0.09	0.15	-0.54	-0.10
Pyrex ^{a, e}	8.26	-0.99	5.85	4.04	-4.72
ZrO2 ^d (partially stabilized)	-1.59	0.13	-0.31	-0.93	0.26
Al ₂ O ₃ d	-0.52	×199 20119	inter an particular Status - interior	-0.38	-0.014
WC-Co ceramic ^d	-0.28	0.003	late and a state of the second	-0.21	0.003

Acoustoelastic constants of selected materials (%GPa)

Principal: R.S. and XRD (1)

Parameters	Explanatory Factors
Peak Position	 * Geometrical aberrations from apparatuses * Average chemical composition * <u>Macroscopical stresses</u>
Peak Intensity	* Phases distribution * <u>Orientation distribution</u>
Peak Forme	 * Instrumental broadening * Chemical composition distribution * Elastic strain distribution * Coherent domain size/crystallite size * Strain inside coherent domain/crystallite

Principal: R.S. and XRD (2)

Principal: strain measurement (1)

Measured strain	Different approaches		
conventional strain :	$\varepsilon = \frac{d^{-} d_0}{d_0}$ \Rightarrow $\varepsilon = \frac{\sin \Theta_0}{\sin \Theta} - 1$		
rational strain:	$\varepsilon = \ln\left(\frac{d}{d_0}\right) = \ln\left(\frac{\sin\Theta_0}{\sin\Theta}\right)$		
development in series:	$\ln(x) - \left(\frac{x-1}{x}\right) + \frac{1}{2}\left(\frac{x-1}{x}\right)^2 + \dots \Rightarrow \varepsilon = 1 - \frac{\sin\Theta}{\sin\Theta_0}$		
Differentiation of Bragg law	$\varepsilon = -\cot g \Theta_0 . \Delta \Theta$		
strain E	diffraction peak shift $\Delta 2\theta$		

Principal: strain measurement (2)

 $\sin^2\psi$ law:

$$\varepsilon_{\phi\psi} = \frac{1+\nu}{E} \sigma_{\phi} \sin^{2}\psi - \frac{\nu}{E} \operatorname{Tr}(\sigma) = \frac{1}{2} S_{2} \cdot \sigma_{\phi} \cdot \sin^{2}\psi + S_{1} \cdot \operatorname{Tr}(\sigma)$$

$$S_{2} = 2 \cdot (1+\nu) / E \qquad S_{1} = -\nu/E$$

$$Assumptions$$

$$Homogeneous and isotropical materials$$

$$Elastic strain$$

$$Surface analysis$$

Principal: stress calculation (1)

Principal: stress calculation (2)

ICS : 19.100

Essais non destructifs

Méthode d'essai pour l'analyse des contraintes résiduelles par diffraction des rayons X

- E : Non-destructive Testing Test Method for Residual Stress analysis by X-ray Diffraction
- D : Zerstörungsfreie Pr
 üfung R
 öntgendiffraktometrisches Pr
 üfverfahren zur Ermittlung der Eigenspannungen

Principal: precautions and limits

- Analysis volume and depth:
 ≈ mm² x a few tens µm
- Stress average values: in the volume and on the depth
- Elastic Constant and anisotropy: microscopical REC
- Micro-macro passage : REC evaluation or measurement

- Grains size
- Gradient
- Texture
- anisotropy
- Multiphase
- Specimen geométry
- Thin films
- crystalline symmetry

Neutron diffraction (1)

Neutron diffraction (2)

Neutron diffraction (3)

Neutron diffraction (4)

Comparasion between X-ray diffraction and neutron diffraction

Barkhausen noise (1)

Barkhausen noise (3)

Stress field modification leads to a modification of arrangement of Weiss magnetic domains

î non destructive method î ferromagi

î ferromagnetic material

Barkhausen noise (5)

Unloading effect on ferromagnétic noise

Comparaison of methods

Methods for RS determination by physical order measurement

	d _{hkl} : interreticu	lar distance	US propagation speed	magnetism
Method	DRX	Neutron	Ultrason	Barkhausen
Hypothesis on material	Polycristalline with small grains ($< 50 \ \mu m$) homogeneious, isotrope	polycristalline, homogeneious, isotrope	Homogeneious, isotrope σ homogeneous in analysis zone	ferromagnetic
Analysis volume	1 mm ² x 15 μm	10 mm ³	30 mm ² x thickness	$1 \text{ mm}^2 \text{ x } 1 \text{ mm}$
Depth	5 to 100 µm	50 mm	some 100 cm	1 mm
Info. Multiphase materials	Information in each phase	Information in each phase	Global information	Global information
Sensibility to l'anisotropy	Yes	No	Yes	Yes
Instrument	portable	No	Portable	portable
Experimentation duration	5 to 30 minutes	2 hours	2 minutes	several s
Equipement cost	70 K€ to 200 K€	Price of a reactor ?	30 K€ to 150 K€	7 K€ to 50 K€

RS relaxation (1)

- Dimensional stability during forming

- Reduction of compressive RS
- Dimension and forme modification of components

RS relaxation (2)

R constante des gaz parfaits, avec ΔH enthalpie d'activation de relaxation. surface shot-peening of X22CrMoV12 steel

RS relaxation (4)

Mechanical relaxation by uniaxial plastic deformation of shot-peened residual stress

RS relaxation (5)

RS befroe plastic deformation

RS after uniaxial plastic deformation (tensile test with 2,2% in longitudinal direction of piece)

Mechanical relaxation by uniaxial plastic deformation of RS from quenching Al 7075 quenched in water at 20 °C, sheet with 70 mm of thickness

RS relaxation (6)

Mechanical relaxation

RS in piece before relaxation

macroscopic relaxation schema of **RS by plastic deformation**

Stress vs plastic deformation

- déformation longitudinale standard (éprouvette sans contraintes
- déformation longitudinale quand $\overline{\sigma}$ atteint le point A
- contrainte résiduelle σ_{R}

Les valeurs surlignées sont des valeurs moyennes

RS relaxation (7)

Mechanical relaxation - fatigue

mechanical relaxtion of RS of shot-peening by fatigue

intensité Almen de grenaillage

- + 6-8 N
- 12-14 A
- O 8-10 C

acier 35 CrMo4 trempé et revenu

- N nombre de cycles
- I contrainte appliquée ± 330 MPa
- II contrainte appliquée ± 230 MPa

RS relaxation (8)

Mechanical relaxation - fatigue

Contrainte appliquée (MPa)

Evolution of shot-peening RS under repeated tensile loading for 35CD4 steel

RS relaxation (9)

General consideration

RS relaxation is related to resistance to microplasticity R_i of material. Relaxation under an applied stress *s* and with the presence of σ_R begins when: $\sigma + \sigma_R > R_i$ resistance to microplasticity Ri takes different values according cases. It's related to T°C, time, frequence and microstructural state of material

Sollicitation	Contrainte appliquée o	Ri		
Thermique	$\sigma = 0$	R _p (<i>t</i>) résistance au fluage		
Déformation uniaxiale	σΖ	R _e limite d'élasticité		
Fatigue	σ-	σ _D limite d'élasticité cyclique		
t temps.				

Value of resistance to microplasticity R_i for different loadings

Les enjeux techniques concernent :

— l'amélioration de la résistance à la fatigue sous certains type de sollicitations ;

— l'amélioration de la résistance à la corrosion simple ou à la corrosion sous contrainte ;

— l'amélioration de la résistance à l'usure.

À l'échelle micro-, les «défauts» situés en surface sont soumis à l'attaque du milieu environnant. Le mouvement des dislocations est libre et les domaines cristallins qui « débouchent » en surface se déforment plus aisément.

À l'échelle macro-, les zones de concentration de contrainte (raccordements, entailles, stries d'usinage, trous, ...) sont souvent associées aux surfaces libres des pièces. En outre, la plupart des modes de sollicitation génèrent des maxima de contraintes situés en surface.

→ modification d'une couche superficielle de la pièce originale sur une épaisseur suffisante par traitement superficiel mécanique ou thermique

→ traitements de mise en précontrainte superficielle sont des processus contrôlant parfaitement la source primaire de génération des contraintes résiduelles. Ils peuvent être classés en deux grandes catégories selon la nature de la source primaire active

- les traitements mécaniques d'écrouissage superficiel ;
- les traitements thermiques ou thermochimiques superficiels.

Type de traitement	Origines principales des contraintes	Noms des traitements
Mécanique	Déformation plastique locale	Sablage, grenaillage, martelage, galetage, polissage, etc.
Thermique	Dilatation différentielle et transformations de phase	Trempe et trempe superficielle
Thermochimique	Diffusion, dilatation différentielle et trans- formations de phase	Cémentation, carboni- truration, nitruration, etc.

Traitements de précontraintes

Dénomination	Mise en œuvre	Profondeur de traitement	Avantages et inconvénients
Tribofinition	Frottement	de 0,01 à 0,03 mm	Long et coûteux à réaliser
Grenaillage	Projection contrôlée de billes de différents diamètres, de différentes mesures et de différentes vitesses	de 0,1 à 0,6 mm suivant le matériau et les conditions	Quelques problèmes d'incrustation, de microdéfauts et parfois de rugosité S'adapte à toutes les géométries
Martelage	Impact d'aiguilles à extrémité sphérique	de 1 à 2 mm	Problème d'état de surface, ne s'applique qu'aux géométries simples
Galetage	Roulement d'un galet avec une forte force d'appui	de 2 à 3 mm	Variations dimensionnelles, nécessite une géométrie particulière
Ondes de choc	Explosion Laser impulsionnel de très forte puissance	jusqu'à 4 mm	S'adapte à toutes les géométries (pour le laser) Pas de modification de l'état de surface Traitement en cours de développement
Préconformage Autofrettage	Flexion, expansion ou torsion avec passage en plasticité	quelques mm	Traitement directionnel

Différents traitements mécaniques de surface, modifier

- caractéristiques géométriques de la surface;

- microstructure dans une couche sur la densité des défauts

grenaillage

Le grenaillage (Shot peening) change

- la distribution des contraintes résiduelles
- la morphologie superficielle
- la dureté de la couche superficielle
- la microstructure de la couche traitée

grenaillage

Les objectifs du grenaillage:

- augmentation de la limite en fatigue
- diminution des risques de corrosion sous-contrainte (stress corrosion and stress corrosion fatigue)
- diminution des risques de fatigue-abrasion (fretting and fretting corrosion)
- augmentation de la resistance anti-usure (abrasion and cavitation)

Shot-peening & RS

Shot-peening & RS

distribution des contraintes avant grenaillage et chargement

distribution des contraintes après grenaillage et chargement

Shot-peening & process

	Compressed-air	Centrifugal-force
Shot peening system: comressed-air or centrifugal-force	Val	V.
Velocity of impact Angle of impact	€	→ <i>∅</i> ⁄∕
Diameter of shot peening media Density of shot peening media	0	-
Hardness of shot peening media		
Amount of impacts Peening time		Coverage

Coverage ratio

Coverage: the percentage of the surface impacted by the shot-peening process. A coverage of 100% is only a theoretical limit and is neither realizable nor measurable. In the shot-peening process a minimum coverage of 98% is mandatory. A coverage of 98 % is the highest measurable limit.

Intensity and coverage are the most important parameters in the shotpeening process.

Metallurgical influence

DUO-Shot peening

-In the 1st operation, a high intensity jet and a shot size of up to 1.2 mm Ø are used with spherical cut wire in a centrifugal-force shot peening machine.

- In the 2nd operation, a low intensity jet and small shot size are applied, with glass beads in a nozzle shot peening machine powered by compressed-air.

DUO-SP on carbon steel

Example 1: welded carbon steel component

1st SP: steel shots, $\phi=0.3 \text{ mm}, \text{Hv} = 45/55 \text{ HRC},$ F 15/20A > 125% 2nd SP: steel shots, f=1.4 mm, Hv = 45/55 HRC, F 20/23C > 125%

Material characteristics:Component:

- $-\mathrm{Re} = 460 \mathrm{MPa}$
- -Rm = 585 MPa
- -A = 25%
- -Hv < 25 HRC

- -Thickness: 30 mm
- -Admissible treatment thickness > 1 mm
 - -Mimimum radius : R=0.5 mm

-Roughness: $Ra < 2 \ \mu m$

Example 2: steel gears after carbonitriding

1st SP: steel shots, $\phi=0.6 \text{ mm}, \text{Hv} = 55/62 \text{ HRC},$ F 40/45A = 150%2nd SP: glass shots, $\phi=0.2 \text{ mm},$ F 15/20 N > 100%

Material characteristics:Component:

- $-\mathrm{Re} = 850 \mathrm{MPa}$
- -Rm = 1300 MPa
- -A = 8%
- -Hv = 62 HRC

-Thickness: 3 mm in tooth head -Admissible treatment thickness > 0.3 mm

-Mimimum radius : R=1.5 mm

-Roughness: $Ra < 1.2 \ \mu m$

Example 3: steel gears teeth after surface induction quench

SP: steel shots, $\phi = 0.8 \text{ mm}, \text{Hv} = 45/55 \text{ HRC},$ F 40/45A> 150%

Material characteristics:Component:

- $-\mathrm{Re} = 600 \mathrm{MPa}$
- -Rm = 920 MPa
- -A = 10%
- -Hv = 58/60 HRC

- -Thickness: 10 mm
- -Admissible treatment thickness > 1 mm
 - -Mimimum radius : R=2.5 mm
 - -Roughness: $Ra < 1.6 \mu m$

Example 4: inside thread in steel with Nickel

SP: ceramic shots, $\phi=0.215$ mm, F 10/15A > 125%

Material characteristics:Component:

- $-\mathrm{Re} = 700 \mathrm{MPa}$
- -Rm = 800 MPa
- -A = 10%
- -Hv = 20 HRC

- -Thickness: > 10 mm
- -Admissible treatment thickness > 1 mm
- -Mimimum radius : R=0.6 mm
- -Roughness: $Ra = 2 \ \mu m$

Example 5: Louvre Pyramide strainlees steel structure

1st SP: stainless steel shots, $\phi=0.8 \text{ mm},$ F 45/50A > 100%2nd SP: glass shots, $\phi=75/150 \text{ mm},$ F 10/12 N > 100%

Material characteristics:Component:

- $-\mathrm{Re} = 750 \mathrm{MPa}$
- -Rm = 950 MPa
- -A = 30%
- -Hv = 35 HRC

- -Thickness: > 10 mm
- -Admissible treatment thickness > 1 mm -Roughness: $Ra = 6.4 \mu m$

New technologies

- Stress peening
- Peen Forming
- Ultrasonic peening
- Water peening
- Laser peening

New technologies

Stress peening

• A part is shot peened in a externally loaded condition by using a fixture or weight to simulate the operating tensile stress.

* After shot peening, the parts will be relieved of the applied load, leading an even higher compressive residual stress up to the yield stress of the material

New technologies

Peen Forming

Low velocity of shot peening media

Plastically deformed zone

High velocity of shot peening media

parts with relatively thin cross section may be formed only on one side. The advantages are: no tooling, no development time, no heat

Ultrasonic peening

The bearing balls are put in movement by a Sonotrode, vibrating at an ultrasonic frequency. the balls are contained inside a housing enclosed by the Sonotrode surface and the part to treat. Longitudinal vibrations of the Sonotrode randomly throw the balls inside the housing as molecules in a gas. Therefore, the treatment is homogeneous on all surfaces of the

enclosure on the part to treat.

Ultrasonic peening advantages

- A very consistent and repeatable peening process
- A clean, simple and lean process
- The use of small quantities of media
- A reduction or elimination of masking
- The elimination of decontamination
- Machines are small, quiet and easy to operate
- Increased flexibility
- Much improved surface finish
- Introduce very deep compressive residual stresses
- A highly optimized fatigue life
- Peening complicated geometries (threads, notches, ID of holes or the inside of hollow parts)

univers

PARIS-SA

Mechanism of residual stress improvement with Water jet peening

universite

PARIS-SACLAY

Laser peening

- → Extension of conventional shot peening
- → Laser peening provides
- * Highly compressive surface residual stress
- * Deep layer of compressive residual stress
- * Smooth surface
- * Deterministic, precise process control

Laser peened aluminum

Laser peening

F110- GE-400 2nd stage fan disk

universite

PARIS-SACLAY

Laser peening

universite

PARIS-SACLAY

Laser peening

B1-B Lancer, F101-GE-102 Engine

F/A-22 Raptor, F119-PW-100 Engine

F-16 Falcon, F110-GE-100,129 Engines

Laser peening

- Chinook Transmissions
 - Engine Gear tooth root
 - Forward Planetary gears
 - Aft Spiral bevel gear
- Apache
 - Main rotor transmission shaft Upper and lower splines

Apache