TD 3: Oscillations entretenues

(I) Couleur bleue du ciel

Pour certaines applications, on peut considérer que les électrons des couches périphériques des atomes (ou molécules) sont élastiquement liés au noyau, à la manière du modèle de J.J. Thomson par exemple (cf. TD1). On modélise donc le mouvement de ces électrons par celui d'un oscillateur harmonique amorti de pulsation propre ω_0 correspondant à une radiation ultraviolette du spectre électromagnétique et un facteur de qualité Q. Une onde électromagnétique (lumière) incidente de pulsation ω caractérisée par le champ électrique variable $E(t) = E_0 \cos(\omega t)$ va venir exciter cet oscillateur.

- 1. Ecrire l'équation du mouvement de l'oscillateur.
- 2. Déterminer l'amplitude complexe du mouvement de l'électron et en déduire le facteur d'amplification G reliant l'amplitude du mouvement des électrons à celle de la force appliquée.
- 3. Sachant que $Q \simeq 10$, que peut-on dire de l'amplitude du mouvement des électrons pour ω "petit"? (ce dernier point étant à préciser).
- 4. Les électrons excités ré-émettent de la lumière avec une puissance rayonnée qui est proportionnelle au carré de leur accélération. Comment cette puissance varie-t-elle avec ω ? En déduire pourquoi le ciel est bleu.

(II) Cristal piezo-electrique

Une lame piezo-électrique à base de quartz est équivalent au dipôle AB de la figure 1 cidessous.

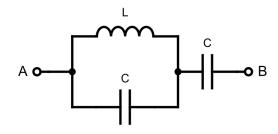


Figure 1 – Modèle d'une lame piezo-électrique.

- 1. Calculer l'impédance Z du dipôle AB.
- 2. Déterminer la pulsation ω_r pour laquelle il y a résonance d'intensité dans AB.
- 3. Déterminer la pulsation ω_{ar} pour laquelle il y a antirésonance en intensité dans AB.
- 4. A.N. On donne $L \simeq 2$ mH, $C \simeq 1$ nF et $C' \simeq 5$ pF. Calculer ω_r et ω_{ar} .
- 5. Tracer l'allure de l'intensité en fonction de ω . Commentaires.

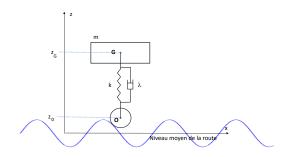


FIGURE 2 – Schéma d'un amortisseur.

(III) Suspension de voiture - 2eme partie

On reprend l'exercice III du TD précédent. Le véhicule se déplace à vitesse horizontale v constante. La route est désormais ondulée avec un profil sinusoidal de période spatiale Λ et d'amplitude A si bien que la cote du centre de la roue s'écrit désormais $z_0(t) = R + A\cos(\omega t)$ où R est le rayon de la roue (voir figure 2). On étudie toujours le mouvement du véhicule par rapport à sa position d'équilibre verticale définie précédemment : $Z = z_G - z_{G0}$.

- 1. Déterminer ω en fonction de v et de Λ .
- 2. Déterminer l'équation du mouvement vertical quand le véhicule roule sur le sol ondulé. Justifier que l'on cherche alors des solutions sous la forme $z(t) = z_m \cos(\omega t + \varphi)$.
- 3. Calculer le rapport Z/A (après être passé en notation complexe).
- 4. On pose $G = \mid Z/A \mid$. Montrer que G peut se mettre sous la forme :

$$G = \frac{\sqrt{1 + \left(\frac{\omega}{Q\omega_0}\right)^2}}{\sqrt{\left(1 - \left(\frac{\omega}{\omega_0}\right)^2\right)^2 + \left(\frac{\omega}{Q\omega_0}\right)^2}}.$$

- 5. Tracer $G(\omega)$.
- 6. Application : le salaire de la peur (il faut être cinéphile!)

FIGURE 3 – Le plus sûr est-il de passer l'obstacle tout doucement?

https://www.telerama.fr/cinema/films/le-salaire-de-la-peur,57758.php

(IV) Circuit bouchon

On considère le circuit RLC parallèle suivant (figure 3) alimenté par une source de tension sinusoidale à la pulsation ω , $U = U_0 \cos(\omega t)$.

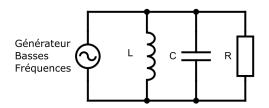


FIGURE 4 – Circuit RLC parallèle.

- 1. Déterminer l'admittance complexe entre les bornes du dipôle RLC parallèle. En déduire l'intensité complexe I.
- 2. Calculer amplitude I et phase ϕ de cette intensité. Tracer les courbes correspondantes.
- 3. Décrire le comportement de I en fonction de ω et justifier l'appellation "circuit bouchon".

(V) Ajustement fin d'une resonance

On considère un circuit RLC série alimenté par une source de tension sinusoidale de fréquence $f=100~\mathrm{kHz}$. La résistance R et l'inductance L sont fixes mais la capacité C est variable. Un ampèremètre supposé idéal permet de mesurer l'intensité (efficace) I. Quand on fait varier C, on constate que l'intensité I passe par un maximum pour une certaine valeur C_0 et qu'elle est divisée par $1/\sqrt{2}$ par rapport à ce maximum pour deux valeurs $C_1 \simeq 120~\mathrm{nF}$ et $C_2 \simeq 130~\mathrm{nF}$ avec $C_1 < C_0 < C_2$.

- 1. Les valeurs numériques de C_0 , C_1 et C_2 étant proches (notion à préciser), montrer que C_1 et C_2 sont équidistantes de C_0 et donner leurs expressions en fonction de C_0 , L, R et $\omega = 2\pi f$.
- 2. Pour quoi est-il plus intéressant du point de vue expérimental de déterminer C_1 et C_2 plutôt que C_0 ?
- 3. Rappeler l'expression du facteur de qualité Q en fonction de L, R et C puis le réécrire en fonction de C_1 , C_2 et C.
- 4. Estimer numériquement Q pour $C = C_1$, $C = C_2$ et $C = C_0$.
- 5. Quelles sont les valeurs de R et L utilisées dans ce montage?