Systèmes oscillants (Phys106) Interrogation du 23 mars 2020 Durée : 1h

Documents de toutes sortes interdits. Calculatrices interdites.

Oscillations libres et forcées d'un oscillateur mécanique

On considère un système mécanique assimilable à un oscillateur harmonique à une dimensions et entretenu par une force périodique de pulsation ω . L'équation du mouvement dans le référentiel du laboratoire supposé galiléen s'écrit ainsi :

$$m\ddot{x} + \alpha \dot{x} + kx = F_0 \cos \omega t. \tag{1}$$

- 1. Interpréter les différents termes de l'équation (1).
- 2. Définir la pulsation naturelle de l'oscillateur ω_0 en fonction de k et m.
- 3. De même définir le facteur de qualité Q en fonction de m, α et ω_0 .
- 4. Réécrire l'équation (1) en faisant apparaître ω_0 et Q cette fois. On s'intéresse d'abord au régime transitoire, c'est à dire à la solution de l'équation homogène associée à (1).
- 5. Rappeler les 3 régimes possibles et leurs conditions en fonction de Q. On suppose dans toute la suite que $Q \gg 1$.
- 6. Donner la solution du régime transitoire en prenant une position initiale nulle (x(t=0)=0) et une vitesse initiale $\dot{x}(t=0)=v_0$.
- 7. Quelle durée minimale t_{min} doit s'écouler avant de pouvoir considérer en pratique que le régime transitoire s'annule ? Exprimer t_{min} en fonction de ω_0 et Q.
 - On s'intéresse maintenant au régime permanent (équation (1) complète) et on passe en notation complexe, $x(t) = \Re(\underline{x} \exp(j\omega t))$, où $\Re(z)$ dénote la partie réelle de z.
- 8. Ecrire l'équation scalaire à laquelle obéit l'amplitude complexe \underline{x} .
- 9. En déduire le module $A(\omega)$ de \underline{x} en fonction de ω_0 , Q et F_0/m .
- 10. Montrer que $A(\omega)$ admet un maximum (on rappelle qu'on suppose $Q\gg 1$) pour une certaine pulsation ω_m que l'on exprimera en fonction de ω_0 et Q. Comment nomme-t-on le phénomène mis ainsi en évidence ?