
Phys106

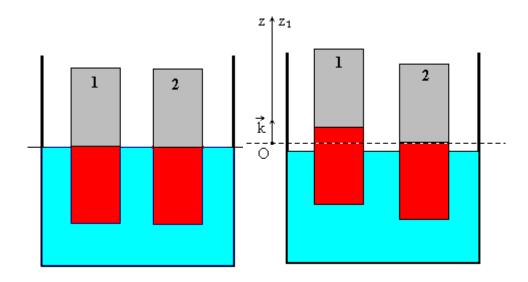
TD 4

Oscillateurs couplés

I. Mailles LC couplées par une capacité.

On considère le circuit de la figure ci-dessous. A l'instant t=0 on ferme l'interrupteur, la capacité C de la maille de gauche étant initialement chargée $(q_1(t=0)=q)$ les autres capacités étant déchargées.

- 1) Que valent les intensités i_0 , i_1 et i_2 à l'instant t = 0?
- 2) Etablir les équations différentielles que vérifient q_1 et q_2 .
- 3) Exprimer les pulsations propres du circuit en fonction de L, C_0 et C.
- 4) Déterminer $i_1(t)$ et $i_2(t)$ puis $q_1(t)$ et $q_2(t)$.


II. Vibrations d'une molécule d'eau : modèle simplifié

On s'intéresse aux vibrations d'une molécule triatomique linéaire A-B-A. Les deux liaisons A-B sont modélisées par un ressort de raideur k. On notera m_A et m_B les masses des atomes A et $x_1(t), x_2(t)$ et $x_3(t)$ les déplacements des 3 atomes par rapport à leurs positions d'équilibre.

- 1) Ecrire le bilan des forces qui s'exercent sur les 3 atomes et en déduire les équations du mouvement.
- 2) Effectuer le changement de variables $X(t) = x_2(t) x_1(t)$ et $Y(t) = x_2(t) x_3(t)$ et déterminer les deux équations différentielles pour Y(t) et Y(t).
- 3) En déduire les pulsations propres de la molécule.
- 4) L'eau présente une absorption dans l'infrarouge autour d'une longueur d'onde $\lambda \approx 2.7 \, \mu \text{m}$. Est-ce en accord avec le résultat du modèle précédent ? On donne : constante k pour la liaison O-H : $k \approx 730 \, \text{Nm}^{-1}$, $m_H = 1 \, \text{uma}$ et $m_O = 16 \, \text{uma}$ avec 1 uma (unité de masse atomique) $\approx 1.67 \, 10^{-27} \, \text{kg}$.

III. Flotteurs couplés

Deux flotteurs cylindriques identiques de section s et de hauteur h peuvent osciller dans une cuve cylindrique de section s remplie d'eau. On admet que la surface de l'eau reste horizontale et lisse (pas de vagues !). On suppose qu'au repos les tubes sont immergés à mi-hauteur (hauteur immergée = $h_0 = h/2$). On choisit l'origine de l'axe Oz comme le niveau de la surface de l'eau quand les flotteurs sont au repos.

- 1) En appliquant le théorème d'Archimède, et connaissant la condition d'équilibre, déterminer la masse m de chaque flotteur. On notera ρ la masse volumique du matériau constituant les flotteurs.
- 2) Dans un premier temps le flotteur numéro 2 est bloqué dans sa position de repos et on étudie le mouvement du flotteur numéro 1. On note $z_1(t)$ l'altitude du milieu du cylindre et z(t) l'altitude de la surface de l'eau.
 - a) A l'aide de la conservation du volume, déterminer la relation entre z(t), $z_1(t)$, s et s.
 - b) En déduire la longueur de la partie immergée du flotteur et écrire finalement la poussée d'Archimède sur ce flotteur.
 - c) Etablir alors l'équation différentielle du mouvement du flotteur. Que reconnait-on ? Comment modifier l'équation du mouvement si on considère de plus une force de frottement visqueux sur le cylindre (de type $\vec{F}=-\alpha\vec{v}$) ?
- 3) Le flotteur numéro 2 n'est plus bloqué et on note $z_2(t)$ l'altitude de son milieu.
 - a) De même qu'en (2.a) déterminer la relation entre z(t), $z_1(t)$, $z_2(t)$, s et s.
 - b) En déduire les poussées d'Archimède sur chacun des flotteurs et établir ensuite les équations différentielles (couplées) des mouvements des deux cylindres.
 - c) Quelles sont les pulsations caractéristiques du problème ?
 - d) Ecrire la solution générale du mouvement libre des deux cylindres (régime transitoire).
- 4) Le mouvement du flotteur numéro 2 est en fait forcé par un opérateur extérieur qui impose (par un moyen ad hoc) $z_2(t) = a \sin \omega t$.
 - a) Déterminer la solution du régime permanent pour z_1 .
 - b) Pour quelle pulsation y- a-t- il résonance d'amplitude ?