TD#2 : Effet Stark : Perturbation électrique des orbitales atomiques

Rq : Les questions marquées d'une * (ex 2*/)sont à faire en préparation de la séance de TD.

Dans l'atome d'hydrogène, l'électron et le proton sont fortement liés par l'énergie électrostatique qui donne lieu à une attraction Coulombienne. Dans ce potentiel de piégeage, les énergies accessibles à l'électron sont quantifiées par le nombre quantique radial n' et le nombre quantique orbital l. A partir de ces deux grandeurs, on forme le nombre quantique principal n=n'+l qui est utilisé pour quantifier l'énergie total (cinétique + potentiel) de l'électron. D'un point de vue formel, le hamiltonien qui décrit la dynamique de l'électron autour du proton est :

$$\hat{H}_0 = \frac{\hat{p}^2}{2m} - \frac{e^2}{4\pi\epsilon_0 r}$$

Les niveaux d'énergies de \hat{H}_0 sont :

$$E_n = -\frac{E_I}{n^2}$$

avec
$$E_I = \frac{m}{2\hbar^2} \left(\frac{e^2}{4\pi\epsilon_0}\right)^2 = 13.6$$
 eV.

En coordonnées sphériques, les premières fonctions d'ondes $\psi_{n,l,m}(r,\theta,\phi)=R_{n,l}(r)Y_{l,m}(\theta,\phi)$ avec $l\in[0,n-1]$ et $m\in[-l,l]$ sont données par :

$$R_{1,0}(r) = 2\left(\frac{1}{a}\right)^{3/2} e^{-r/a} \qquad Y_{0,0}(\theta,\phi) = 1/\sqrt{4\pi}$$

$$R_{2,0}(r) = 2\left(\frac{1}{2a}\right)^{3/2} (1 - \frac{r}{2a})e^{-\frac{r}{2a}} \qquad Y_{1,0}(\theta,\phi) = \frac{3}{4\pi}\cos\theta$$

$$R_{2,1}(r) = \frac{1}{\sqrt{3}} \left(\frac{1}{2a}\right)^{3/2} \frac{r}{a} e^{-\frac{r}{2a}} \qquad Y_{1,\pm 1}(\theta,\phi) = \mp \frac{3}{8\pi}\sin\theta e^{\pm i\phi}$$

avec $a=\frac{4\pi\epsilon_0\hbar^2}{me^2}=0.52\mathring{A}$ le rayon de Bohr.

1*/ Quelle est la dégénérescence du niveau d'énergie E_n ?

2*/ Dessiner l'allure des fonctions $R_{1,0}(r)$, $R_{2,0}(r)$, $R_{2,1}(r)$, $\psi_{1,0,0}(r,\theta,\phi)$, $\psi_{2,0,0}(r,\theta,\phi)$, $\psi_{2,1,0}(r,\theta,\phi)$ et préciser la parité de la fonction $\psi_{n,l,m}(r,\theta,\phi)$ (i.e. son comportement sous l'inversion $z \to -z$?)

3/ Calculer la position moyenne de l'électron dans la direction z : $\langle z \rangle$ pour l'état :

$$- \langle \mathbf{r} | \Psi \rangle = \psi_{1,0,0}(r,\theta,\phi) e^{-i\frac{E_1 t}{\hbar}}$$

$$- \langle \mathbf{r} | \Psi \rangle = \psi_{2,1,0}(r,\theta,\phi) e^{-i\frac{E_2 t}{\hbar}}$$

$$- \langle \mathbf{r} | \Psi \rangle = \frac{1}{\sqrt{2}} \left(\psi_{1,0,0}(r,\theta,\phi) e^{-i\frac{E_1 t}{\hbar}} + \psi_{2,1,0}(r,\theta,\phi) e^{-i\frac{E_2 t}{\hbar}} \right)$$

Comment interprétez vous ces résultats?

4/ Calculer la position moyenne de l'électron pour l'état

$$\langle \mathbf{r} | \Psi \rangle = \frac{1}{\sqrt{2}} \left(\psi_{1,0,0}(r,\theta,\phi) e^{-i\frac{E_1 t}{\hbar}} + \psi_{2,1,1}(r,\theta,\phi) e^{-i\frac{E_2 t}{\hbar}} \right)$$

- dans la direction z : $\langle z \rangle$
- dans la direction $x : \langle x \rangle$
- dans la direction y : $\langle y \rangle$

Comment interprétez vous ces résultats?

L'effet Stark (1913) est la levée de dégénérescence des niveaux d'énergie d'un atome d'Hydrogène en présence d'un champ électrique constant \mathcal{E} . Ce champ doit être assez fort pour négliger les effets de structure fine, mais pas trop fort pour ne pas ioniser l'atome : $10^5 V/m < \mathcal{E} < 10^7 V/m$.

Dans la suite, nous allons calculer cet effet Stark pour les différents états de l'atome.

A. Perturbation au premier ordre

Soit \hat{H}_0 le Hamiltonien de l'atome d'hydrogène précédent et $\hat{H}=\hat{H}_0+\hat{H}_1$ sa modification en présence du champ électrique \mathcal{E} selon z. $\hat{H}_1=-e\hat{\mathbf{r}}.\vec{\mathcal{E}}$ est l'hamiltonien d'interaction dipolaire électrique.

 $\mathbf{3*/}$ Donner l'expression de \hat{H}_1 en fonction de x,y,z,e et $\mathcal{E}.$ On traite \hat{H}_1 comme une perturbation. Montrer que le niveau E_1 , $\mathbf{n}=1$, n'est pas modifié au premier ordre.

4/ On s'intéresse maintenant au niveau E_2 , n = 2 qui est dégénéré. Quel est la multiplicité de cet état. Ecrire le système d'équations linéaires qui détermine la modification de l'énergie E_2 sous l'effet de la perturbation \hat{H}_1 , au premier ordre, en faiseant apparaître l'expression du rayon de Bohr $a_0 = \frac{4\pi\epsilon_0\hbar^2}{me^2}$.

On donne

$$\int_0^{+\infty} x^4 (1 - x/2) e^{-x} dx = -36, \qquad \int_0^{\pi} \cos^2 \theta \sin \theta d\theta = 2/3.$$

 $\mathbf{5}$ / Résoudre ces équations, et déduire que le champ E lève partiellement la dégénérescence du niveau E_2 .

6/ Dessiner l'allure des fonctions d'ondes obtenues, et interpréter.

B. Perturbation au deuxième ordre

On appelle $\hat{\mathbf{D}} = -e\hat{\mathbf{r}}$ le moment dipolaire électrique. On considère l'état fondamental n=1 de $\hat{H}=\hat{H}_0+\hat{H}_1$. Le champ \mathcal{E} est orienté selon \mathbf{z} .

- 7/ Donner l'expression du déplacement à l'ordre 2 de l'état d'énergie E_1 que l'on mettra sous la forme $\Delta E = -1/2\alpha(4\pi\epsilon_0)\mathcal{E}^2$ avec α la polarisabilité atomique que l'on exprimera.
- **8/** En négligeant la dépendance en n de la différence d'énergie $\left(E_1^{(0)}-E_n^{(0)}\right)\approx E_I$, montrer que l'on obtient :

$$\alpha = \frac{2}{4\pi\epsilon_0 R_{\infty}} \langle \psi_{1,0,0} | \hat{D}_z^2 | \psi_{1,0,0} \rangle$$

- où $R_{\infty}=rac{E_{I}}{hc}$ est la constante de Rydberg.
- **9/** Montrer que dans un milieu isotrope on a $\langle \hat{D}_z^2 \rangle = 1/3 \langle \hat{\mathbf{D}}^2 \rangle$. Justifier que $\psi_{1,0,0}$ est isotrope et calculer l'expression de α en fonction du rayon de Bohr $a_0 \approx 0.52 \text{Å}$. Comparez avec la valeur expérimentale $\alpha = 6, 6.10^{-31} m^3 = 4.4 a_0^3$. Quelle est la principale source d'erreur de votre calcul ?