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7 Lectures (7x1h30)

1 Homework
6 tutorial sessions 

(including one in numerical simulation) 

Lecture 1/7 : learning outcomes

N. Dubreuil - NONLINEAR OPTICS

By the end of this lecture, you will be able to ...
• cite nonlinear effects that arise in a 2nd and 3rd order nonlinear materials (K2)
• provide a classical description for the origin of the nonlinear susceptibilities (K3)

By the end of this lecture, you will start to understand ...
• the capability of light matter interactions in modifying light properties : 
frequency generation, optical rectification… (Q1)
• how a perturbative approache enables in describing and deriving a NON LINEAR 
problem in physics (Q2)
• the link between the microscopic and macroscopic terms in Maxwell’s equations
(induced dipole, macroscopic polarization and fields) (Q3)



Lecture 2 /7 : learning outcomes

N. Dubreuil - NONLINEAR OPTICS

By the end of this two lectures, you will know...
• the constitutive relations of nonlinear optics (! = #!$ + & and & = #!'(#)$ + 
#!'(%)$$ + #!'(&)$$$ + ⋯) (K1)
• the basic properties of nonlinear susceptibility tensors (K4)

By the end of this lecture, you will be skilled at...
• deriving and solving the nonlinear wave equation in a parametric situation under
the undepleted pump approximation (S3)

By the end of this lecture, you will understand ...
• Nonlinear effects are subject to phase matching conditions (U5)

Lecture 2 - Content

N. Dubreuil - NONLINEAR OPTICS

• Field notation

• Introduction to nonlinear susceptibility 
tensors

• Nonlinear wave equation: application to SHG 
& Phase matching condition
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Field notation
We assume that the electric field vector can be expressed as a plane 
wave (or as a projection of plane waves, i.e through a Fourier 
transformation) :

Purely REAL quantity

Polarization state

Notation :

Similarly for the macroscopic polarization :

Notation :

With :

Purely REAL quantity

2.3 Linear wave equation 17

Linear susceptibility

From Eq. (2.14), the propagation relation in a frequency domain is straightforward and is
expressed in terms of the Fourier components of electric field and polarization. The conventions
for the Fourier transform that will be used in the course are :!

"

#

$

Convention for the Fourier transform :

E(t) =

∫

E(ω)e−ıωtdω

E(ω) =
1

2π

∫

E(t)e+ıωtdt

The Eq. (2.14) can be rewritten in terms of the Fourier components :

P (ω) = ε0χ
(1)(ω)E(ω), (2.15)

where we have introduced the linear susceptibility, which is directly proportionnal to the Fourier
transform of system’s impulse response :

χ(1)(ω) = 2πTF
[

R(1)(t)
]

.

The reality of the function R(1)(t) implies that χ(1)(ω)" = χ(1)(−ω). Finally, the causality

property enables to derive the Kramers-Kronig relations that relates the real and imaginary
parts of the linear susceptibility.

2.3.2 Linear wave equation in an anisotropic medium

The linear propagation of the electromagnetic fields in a dielectric medium, free of charges and
current is governed by the following Maxwell’s equations :











∇× E = −∂B
∂t

∇ ·D = 0

∇×H =
∂D

∂t
∇ ·B = 0, (2.16)

whith the constitutive relations D = ε0E+P and B = µ0H . In order to derive a wave equation
for the electric field E , the magnetic field dependence is suppressed by taking the curl of the
first equation, using the relation between H and D and the constitutive relations:

∇×∇× E(t) +
1

c2
∂2E

∂t2
= −µ0

∂2P

∂t2
. (2.17)

In the Fourier domain, this wave equation becomes :

∇×∇×E(ω)− ω2

c2
E(ω) = ω2µ0P (ω). (2.18)

An anisotropic medium is characterized by the tensorial relation between vectors D and E .
Conversely to an isotropic medium, the direction of the two vectors may differ:

D(ω) = ε(ω)E(ω), (2.19)
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2.3 Linear wave equation 19

Fig. 2.2. Intersection
between the wavevector
direction s and the sur-
face of indices for a unix-
ial crystal. The two in-
tersections give the two
refractive indices no and
nθ (see left), which are
seen respectively by an
ordinary wave eo and an
ordinary wave eθ (see
right)

2.3.3 Field intensity

The intensity of a wave ω is given by the magnitude of the time averaged Poynting vector:

〈S〉 = 〈E ×H〉. (2.23)

The intensity associated with a field

E(t) = E0e
−ı(ωt−kz)e+ CC

H(t) = H0e
−ı(ωt−kz)e+ CC

is
I = 2ncε0|E0|2, (2.24)

with n the refractive index of the medium at ω. We have used the relation |H0| = ε0nc|E0| (see
Maxwell’s equations).

2.3.4 Transfer of energy between an electromagnetic field and a medium

The power per unit volume that is transferred from the field to the medium (specifically to the
electric dipoles) is given by the relation:

−∂W
∂t

= 〈E · ∂P
∂t

〉. (2.25)

We consider the simple case of the propagation of a monochromatic wave in the linear regime.
The electric field and the macroscopic polarization take the following form:

E(t) = E(ω)e−ıωt +E(−ω)e+ıωt

P(t) = P (ω)e−ıωt + P (−ω)e+ıωt,

with P (ω) = ε0χ(1)(ω)E(ω). Substituting these relations into (2.25) leads to the equality:

−∂W
∂t

= 2ωε0
(

e · χ(1)′′(ω)e
)

|E(ω)|2, (2.26)

with χ(1)(ω) = χ(1)′ + ıχ(1)′′ .

In conclusion, the transfer of energy between an electromagnetic wave and a medium implies
a non vanishing imaginary part of susceptibility. A positive sign for the imaginary part leads to
absorption, whereas a negative sign leads to amplification of the wave through the transfer of
energy from the medium to the wave.
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Nonlinear susceptibility tensor -
Definition

Case of the nonlinear interaction of 2 waves @ w1 and w2 in a 2nd

order NL medium :

•Classical anharmonic oscillator : scalar expression of the polarization 
@ w=w1+w2

(all the dipoles are supposed identically oriented along the linear 
polarization state of the applied field ):

• General description : the array of dipoles are oriented along the 3
directions x,y et z + different oscillator parameters for each direction

x

y

zE

General relation :

x

z

y

yyy yyy
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Nonlinear susceptibility tensor -
Definition

Case of the nonlinear interaction of 2 waves @ w1 and w2 in a 2nd

order NL medium :

• General description : the array of dipoles are oriented along the 3
directions x,y et z + different oscillator parameters for each direction

x

y

z

General relation :

Vector / Tensor notation :

VectorsVector
Tensor of rank 3

Lecture 2 - Content

N. Dubreuil - NONLINEAR OPTICS

• Field notation

• Introduction to nonlinear susceptibility 
tensors

• Nonlinear wave equation: application to SHG 
& Phase matching condition
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• Maxwell’s equations

• Nonlinear wave equation in a isotropic material

Ø Application : Second Harmonic Generation (SHG)

Ø Discussion about the phase matching condition

• Propagation in a linear anisotropic material

• Stationary nonlinear wave equation

• Phase Matching considerations

Nonlinear wave equation: application to SHG 
& Phase matching condition

NONLINEAR OPTICS

11N. Dubreuil - NONLINEAR OPTICS

•Maxwell’s equations

•Nonlinear wave equation in a isotropic material

Ø Application : Second Harmonic Generation (SHG)

Ø Discussion about the phase matching condition

•Propagation in a linear anisotropic material

•Stationary nonlinear wave equation

• Phase Matching considerations

Nonlinear wave equation: application to SHG 
& Phase matching condition
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Maxwell’s Equations

  

€ 

! 
P NL = ε0χ

(2)
! 
E 
! 
E + ε0χ

(3)
! 
E 
! 
E 
! 
E +"

macroscopic Polarization = 
source terme

Case of a Linear Dielectric material :
no free charges, no free currents, nonmagnetic

(Frequency domain)

(Frequency domain)

!
P = ε0 χ

(1)
!
E +
!
PNL
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Maxwell’s Equation

Wave equation

In the time domain

In the frequency domain

(local response)

3.3 Nonlinear wave equations 21

equation (3.2), which is valid is the linear regime, contains now a nonlinear polarization vector:

r⇥r⇥ E(r, t) + 1

c2
@2E(r, t)

@t2
= �µ0

@2P(1)(r, t)

@t2
� µ0

@2P(NL)(r, t)

@t2
, (3.12)

In the time Fourier domain, the wave equation becomes:

r⇥r⇥E(r,!)� !2

c2
E(r,!) = !2µ0P

(1)(r,!) + !2µ0P
(NL)(r,!). (3.13)

In the case of a material with a local response of the the linear contribution:

P
(1)(r,!) = ✏0�

(1)(r,!)E(r,!),

which leads to nonlinear wave equation:⇤
⇥

�
�r⇥r⇥E(r,!) =

!2

c2
✏(r,!)E(r,!) + !2µ0P

(NL)(r,!) (3.14)

with the relative permitivity defined as,

✏(r,!) = 1 + �(1)(r,!).

We next specify the derivation of Eq. (3.14) for di↵erent cases, illustrating the related ap-
proximations that can be conducted.

3.3.1 Nonlinear propagation of a plane wave in a isotropic medium

Whereas, the propagation of a plane wave in a nonlinear regime does not fit with any realistic
experimental situation (or very rarely), the corresponding nonlinear wave equation takes a simple
form and underlines the main conditions under which an e�cient nonlinear interaction will occur.

Actually, the following development corresponds to the propagation of a wave through a
nonlinear material for which the transverse or temporal behaviors are not taken into account.
For instance and for the case of a beam propagation, it would mean that the di↵raction e↵ect
is neglected in the derivation of the nonlinear propagation.

An other simplification consists in assuming first an isotropic and homogeneous medium
implying that the left hand side term of (3.14) is reduced to:

r⇥r⇥E(r,!) = r(r ·E)��E = ��E.

The equation r · (D) = r · (✏E) = 0 implies r · E = 0, the permitivity being described by a
scalar quantity, which does not depend on the spatial coordinate. The nonlinear wave equation
becomes:

�E(!) +
!2

c2
✏E(!) = �!2µ0PNL(!) (3.15)

We next consider a plane wave propagating along the direction z, E(z,!) = A(z)eıkze. After
substitution in (3.15), one gets:

@2A(z)

@z2
+ 2ık

@A(z)

@z
= � !2

✏0c2
e · PNL(z,!)e

�ıkz,

taking into account the dispersion relation k2(!) = !2

c2 ✏(!) for the material. A very frequent
approximation consists in neglecting the variation of the field envelope A(z) on a typical length

(Relative permitivity)

...

...
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Maxwell’s Equation

Wave equation

In the time domain

In the frequency domain

(local response)
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We next consider a plane wave propagating along the direction z, E(z,!) = A(z)eıkze. After
substitution in (3.15), one gets:

@2A(z)

@z2
+ 2ık

@A(z)

@z
= � !2

✏0c2
e · PNL(z,!)e

�ıkz,

taking into account the dispersion relation k2(!) = !2

c2 ✏(!) for the material. A very frequent
approximation consists in neglecting the variation of the field envelope A(z) on a typical length

(Relative permitivity)
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Nonlinear Wave Equation in isotropic material

Homogeneous and Isotropic Material :

Slowly varying amplitude approximation :

Considering the propagation of a plane wave along the direction z :

3.3 Nonlinear wave equations 21

equation (3.2), which is valid is the linear regime, contains now a nonlinear polarization vector:
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c2
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Whereas, the propagation of a plane wave in a nonlinear regime does not fit with any realistic
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form and underlines the main conditions under which an e�cient nonlinear interaction will occur.

Actually, the following development corresponds to the propagation of a wave through a
nonlinear material for which the transverse or temporal behaviors are not taken into account.
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!2
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@2A(z)

@z2
+ 2ık

@A(z)

@z
= � !2

✏0c2
e · PNL(z,!)e

�ıkz,

taking into account the dispersion relation k2(!) = !2

c2 ✏(!) for the material. A very frequent
approximation consists in neglecting the variation of the field envelope A(z) on a typical length

As (dispersion relation) 



Conclusion
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• Nonlinear wave equation :

• Efficient Energy transfer requires :

- Non-zero Nonlinear Polarization amplitude @ ω
- Non-zero projection between the electric field and the NL 

polarization

- phase matching condition ∆k=0

  

€ 

! e .
! 
P NL ≠ 0

NONLINEAR OPTICS
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•Maxwell’s equations

•Nonlinear wave equation in a isotropic material

Ø Application : Second Harmonic Generation (SHG)

=> SEE TUTORIAL n°1

Ø Discussion about the phase matching condition

•Propagation in a linear anisotropic material

•Stationary nonlinear wave equation

• Phase Matching considerations

Nonlinear wave equation: application to SHG 
& Phase matching condition



18N. Dubreuil - NONLINEAR OPTICS

2nd Harmonic Generation

1. Undepleted pump approximation regime

2ww

w

€ 

χ (2)
w w

2w

Assumption : Lossless medium

Aw(z)=Cste

è

Wavevector missmatch:

34 4 2ND ORDER NONLINEARITIES

the wave equation at 2ω is given by :

dA2ω(z)

dz
=

ı(2ω)

2n2ωc
χ(2)
eff A2

ω(z)e
ı∆k·z, (4.7)

with χ(2)
eff = e2ω · χ(2)(2ω;ω,ω)eωeω the effective nonlinear susceptibility and ∆k = 2kω − k2ω

the wave vector missmatch. Under the undepleted pump approximation the integration of the
last equation is straightforward :

A2ω(z) =
ı(2ω)

2n2ωc

χ(2)
eff A2

ω

∆k
2 sin

(
∆k

2
z

)

eı
∆k
2 z. (4.8)

Assuming a configuration where the two waves at ω and 2ω are co-propagating along the same
direction z we have set ∆k · z = ∆k z.

Using the relation I2ω = 2ε0n2ωc|A2ω |2, the spatial evolution for the intensity of the beam
generated along the crystal length z is:

I2ω(z) =
(2ω)2

2ε0n2
ωn2ωc3

∣
∣
∣χ

(2)
eff

∣
∣
∣

2
sin2

(
∆k

2
z

)
I2ω

(∆k)2
(4.9)

=
(2ω)2

8ε0n2
ωn2ωc3

∣
∣
∣χ

(2)
eff

∣
∣
∣

2
sinc2(∆kz/2) I2ω z2. (4.10)

Under the undepleted pump approximation, one can easily evaluate the maximum efficiency
than can be reached in a specific crystal:

!

"

#

$
ηSHG =

I2ω
Iω

=
(2ω)2

8ε0n2
ωn2ωc3

∣
∣
∣χ

(2)
eff

∣
∣
∣

2
sinc2(∆kz/2) Iω z2. (4.11)

In the case of a non-phase matched situation, i.e. ∆kz "= 0, and following the preliminary
discussion we gave in 3.3.2, the beam intensity at 2ω evolves along the crystal with an oscilla-
tory behavior, which is the consequence of successive constructive and destructive interferences
between the nonlinear polarization term P (2)(2ω) generated inside the crystal and the free wave
E(2ω) that propagates inside the crystal. To give an illustration, the evolution of SHG effi-
ciencies ηSHG with distance for phase matching ∆k equal to 10/L, 5/L, 2.5/L and 0, defined
respect to the crystal length L, are plotted in Figure 4.4. In case of ∆k "= 0, the maximum SHG
efficiency is reached at a distance Lc = π/∆k, which refers to the coherence length (see p. 25).
As an order of magnitude, one can take the example of an SHG experiment in Quartz plate
at λ = 1 µm. Taking the refractive index difference at ω and 2ω equal to 10−2, the coherence
length is 25 µm.

Although the maximum efficiency is reached for a perfect phase matching situation ∆k = 0,
in practice, this condition might not be perfectly fulfilled in practice, which does not signify that
SHG can not been performed. For some application, it might be sufficient to minimize ∆k in
order to maximize the coherence length and the SHG efficiency, which is inversely proportional
to (∆k)2. As illustrated in Fig. 4.4, the maximum SHG efficiency increases with 1/∆k in case
of of non-phase matched situations.

An other important comment concerns the dependence of SHG efficiency with the pump
intensity. Because of the proportionality between ηSHG and Iω, the quantity of SHG is expected
to increase by focusing the pump beam inside the crystal. As it will be frequently underlined,
nonlinear optics is related to beam intensity, and not to beam power. Now, we must remember
the limit of our present model that does not include diffraction effects, for instance. Intending
to increase the quantity of SHG, the beam size of the pump beam should be decreased. At a

Effective nonlinear susceptibility
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Although the maximum efficiency is reached for a perfect phase matching situation ∆k = 0,
in practice, this condition might not be perfectly fulfilled in practice, which does not signify that
SHG can not been performed. For some application, it might be sufficient to minimize ∆k in
order to maximize the coherence length and the SHG efficiency, which is inversely proportional
to (∆k)2. As illustrated in Fig. 4.4, the maximum SHG efficiency increases with 1/∆k in case
of of non-phase matched situations.

An other important comment concerns the dependence of SHG efficiency with the pump
intensity. Because of the proportionality between ηSHG and Iω, the quantity of SHG is expected
to increase by focusing the pump beam inside the crystal. As it will be frequently underlined,
nonlinear optics is related to beam intensity, and not to beam power. Now, we must remember
the limit of our present model that does not include diffraction effects, for instance. Intending
to increase the quantity of SHG, the beam size of the pump beam should be decreased. At a
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Solution : Intensity evolution

SHG efficiency :

34 4 2ND ORDER NONLINEARITIES
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direction z we have set ∆k · z = ∆k z.
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than can be reached in a specific crystal:

!

"

#

$
ηSHG =

I2ω
Iω

=
(2ω)2

8ε0n2
ωn2ωc3

∣
∣
∣χ

(2)
eff

∣
∣
∣

2
sinc2(∆kz/2) Iω z2. (4.11)
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in practice, this condition might not be perfectly fulfilled in practice, which does not signify that
SHG can not been performed. For some application, it might be sufficient to minimize ∆k in
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to (∆k)2. As illustrated in Fig. 4.4, the maximum SHG efficiency increases with 1/∆k in case
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An other important comment concerns the dependence of SHG efficiency with the pump
intensity. Because of the proportionality between ηSHG and Iω, the quantity of SHG is expected
to increase by focusing the pump beam inside the crystal. As it will be frequently underlined,
nonlinear optics is related to beam intensity, and not to beam power. Now, we must remember
the limit of our present model that does not include diffraction effects, for instance. Intending
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which are respectively related to the polarization states eo and e✓ (see Fig. 3.1, right side):

eo =
sin�

� cos�
0

, e✓ =
� cos ✓ cos�
� cos ✓ sin�

sin ✓
.

These two polarizations are called ordinary and extraordinary polarization states. They are
orthogonal and define the eigen modes of the medium along the direction of propagation s.

3.2.2 Field intensity

The intensity of a wave ! is given by the magnitude of the time averaged Poynting vector:

hSi = hE ⇥Hi. (3.8)

The intensity associated with a field

E(t) = E0e
�ı(!t�kz)

e+ CC

H(t) = H0e
�ı(!t�kz)

e+ CC

is
I = 2nc✏0|E0|2, (3.9)

with n the refractive index of the medium at !. We have used the relation |H0| = ✏0nc|E0| (see
Maxwell’s equations).

3.2.3 Transfer of energy between an electromagnetic field and a medium

The power per unit volume that is transferred from the field to the medium (specifically to the
electric dipoles) is given by the relation:

�@W

@t
= hE · @P

@t
i. (3.10)

We consider the simple case of the propagation of a monochromatic wave in the linear regime.
The electric field and the macroscopic polarization take the following form:

E(t) = E(!)e�ı!t +E(�!)e+ı!t

P(t) = P (!)e�ı!t + P (�!)e+ı!t,

with P (!) = ✏0�(1)(!)E(!). Substituting these relations into (3.10) leads to the equality:

�@W

@t
= 2!✏0

⇣
e · �(1)00(!)e

⌘
|E(!)|2, (3.11)

with �(1)(!) = �(1)0 + ı�(1)00 .

In conclusion, the absorption phenomenon is related to the imaginary part of susceptibility.

3.3 Nonlinear wave equations

Following the propagation of the electromagnetic field in the linear regime, we next study the
propagation under the nonlinear regime. Besides the linear macroscopic polarization, we need
to add in the constitutive relation D = ✏0E + P a nonlinear source term P(NL). The wave

Field intensity :
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2nd Harmonic Generation

1. Undepleted pump approximation regime

Conclusions :
• Non-phasematched situation : generation @ 2w occurs on a typical 
length  Lcoh=p/∆k, called coherent buildup length (coherence length)
• Intensity @ 2w is proportional to Iw2/ ∆k2
• The conversion efficiency I2w / Iw is proportional to Iw (need to focus 
the beam @ w to increase the efficiency)
• Efficiency Max. : requires to fulfill the  phasematching condition: ∆k=0

SHG efficiency :

∆k = 0
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2 - 2nd Harmonic Generation

Non-phasematched situation : ∆k≠0



NONLINEAR OPTICS
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•Maxwell’s equations

•Nonlinear wave equation in a isotropic material

Ø Application : Second Harmonic Generation (SHG)

Ø Discussion about the phase matching condition

•Propagation in a linear anisotropic material

•Stationary nonlinear wave equation

• Phase Matching considerations

Nonlinear wave equation: application to SHG 
& Phase matching condition
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Phase matching condition

The most common procedure for achieving the 
phase matching condition :

Use of birefringence properties of crystals.

About the difficulty to achieve the phase matching condition :

In general, the refractive index for lossless materials shows  a NORMAL 
DISPERSION : the refractive index is increasing with the frequency

n(
ω

)

Frequency (ω)

Case of 2nd Harm. Gen. :
Phase matching condition implies : 

n(ω)=n(2ω)ω 2ω

IMPOSSIBLE !

n(
ω

)

Frequency (ω)
ω 2ω

no

ne



Phase matching condition
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Nonlinear wave equation : 

Substituting
in the nonlinear wave equation :

The phase miss-match term

Assumption : weak nonlinear interaction (or parametric approx)

Const. along z

Solution of the wave equation :

Phase matching condition
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Nonlinear wave equation : 

Solution of the wave equation : under a weak nonlinear interaction 

When ∆k≠0, sinusoïdal
evolution of I(z)
When ∆k=0, I(z) grows as z2
(under the undepleted-
pump approximation)

Lc = π/Δk : coherence length
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A physical picture : Free and driven waves
- Phase Matching Condition

Nonlinear wave equation  

Complete  solution

With solution of  = FREE running 
WAVE

and driven solution of the wave equation = DRIVEN WAVE

• Sets of solution : general form

With Const.  in undepleted wave 
approximation, considering PNL(w)
independant of z
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Free and Driven Waves...

• Solution for the driven wave

• Complete solution 

• boundary condition

Intensity evolution  

When ∆k≠0, sinusoïdal evolution of I(z) : successive constructive and destructive
interference between the free wave and the driven wave (induced by PNL)
When ∆k=0, constructive interference and I(z) behaves as z2 (as long as the
undepleted-pump approximation is valid)
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Free wave + driven wave
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Student activities

To complete, read the lecture notes : 
➜ sections 3.2 and 3.3


