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Chapter 1
Introduction to nonlinear optics

This first chapter provides an introduction to the optical nonlinear effects. The origin of the
nonlinearities is described through a standard model based on the classical anharmonic oscillator,
which allows to derive approximated relations for the linear and nonlinear susceptibilities in the
vicinity of an energy transition of the medium. Finally various nonlinear effects, to be studied
in more details in the next chapters, will be introduced.
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2 1 INTRODUCTION TO NONLINEAR OPTICS

1.1 Learning outcomes

The learning outcomes of this chapter are the following:

By the end of this chapter, students will be able to:

• provide a classical description for the origin of the nonlinear susceptibilities,

• cite the principal nonlinear effects that arise in a 2nd and 3rd order nonlinear materials,

• derive the relation between the macroscopic polarization and the electric field (the so-called
constitutive relations of nonlinear optics).

By the end of this chapter, students will be start to understand:

• the capability of light matter interactions in modifying light properties : frequency gener-
ation, optical rectification...,

• how perturbative models can be used to describe and derive a nonlinear problem in physics,

• the link between the microscopic and macroscopic terms in Maxwell’s equations (induced
dipole, macroscopic polarization and fields).

1.2 Basics of nonlinear optics

In the following, a dielectric material is considered, which is composed of microscopic entities
(atoms, molecules, ions...). The medium is then described as a collection of electric dipoles which,
under the action of an external oscillating electric field E, oscillate and radiate collectively a
source term called the macroscopic polarization P .

Nonlinear optical effects occur when the macroscopic polarization P magnitude is no longer
proportional to the applied electric field amplitude E. The polarization P is the source term
that is included into the Maxwell’s equations to describe the propagation of electromagnetic
fields in a medium.

The relationship between P and E takes generally a complicated form. A first attempt
consists in considering that both the nonlinear polarization and the electric field keep the same
polarization state, allowing a scalar description respectively denoted P and E . A second as-
sumption considers an instantaneous response of the material. Vectorial relations that take into
account the finite time response of the material will be introduced in chapter 2. Under these
assumptions, the induced polarization can be expanded in terms of a power series in the field
strength:

P(t) = R(1)E(t) +R(2)E(t)E(t) +R(3)E(t)E(t)E(t) + · · · , (1.1)

where the coefficients R(i) are taken constant as a first approximation. Note that the power
series expansion is valid as long as the amplitude of the incident field is much weaker than the
atomic electric field strength.

Let’s consider an applied monochromatic field at ω propagating along the direction z, E(t) =
A cos(ωt − kz). The first order term of (1.1) depicts the linear response of the material, with
the generation of a macroscopic polarization term at ω:

P(1)(t) = R(1)A cos(ωt− kz).
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By increasing the magnitude of the applied field, the strength of the second order term may
appear no longer negligible. In addition to the linear response, the material will generate a
macroscopic polarization with a second order term P(t) = P(1)(t) + P(2)(t), with:

P(2)(t) = R(2)A2 cos2(ωt− kz) =
R(2)

2
A2 (1 + cos(2ωt− 2kz)) .

The quadratic response of the material induces a polarization term at frequencies equal to 0 and
2ω. One can anticipate the possibility to generate inside the material a static field and a novel
beam at twice the frequency of the applied field. These nonlinear interactions refer respectively
to the optical rectification effect and the second harmonic generation effect that will be
studied in details in chapter 4.

A more general situation consider the interaction of two waves at ω1 and ω2 that leads, in
addition to terms at 0, 2ω1 and 2ω2, to polarization terms at ω3 = ω1±ω2. These terms originate
from the experimental observation of a beam at either the sum- or the difference-frequency
of the two incident beam frequencies !

The consequence of the 3rd order nonlinear response in (1.1), assuming a single applied fied
at ω, yields:

P(3)(t) = R(3)A3 cos3(ωt− kz) = R(3) 3A3

4
cos(ωt− kz) +R(3)A

3

4
cos(3ωt− 3kz),

as a third order polarization term. It shows the possibility of a third-harmonic generation
following the propagation of a beam at ω inside a material. Interestingly, an additional po-
larization term at ω is expected. This term clearly differs from the linear contribution as it
is proportional to the cube of the applied field amplitudes and denotes its nonlinear behavior.
Actually, the polarisation term at ω is the sum of the linear and third order terms:

P(t) =

(
R(1) +R(3) 3A2

4

)
A cos(ωt− kz),

showing that the propagation of an optical beam through a material may induce a modification
of its linear properties, namely the refractive index and the absorption. The modification of the
refractive index leads to the so called optical Kerr effects that will be studied in section 5.4.

The relationship between the incident electric field and the macroscopic polarization will be
described in more details, especially the determination of the nonlinear susceptibilities and their
relations to the coefficients R(i). However, the expansion of the material response subject to
an optical field excitation in a power series of the field strength provide physical insights in the
variety of nonlinear effects and applications of nonlinear optics.�

�

�



Comment:
Nonlinear interactions are governed by nonlinear coefficients, which are related to the
material properties as it will be clarified in the next section, and by the magnitude of the
optical field amplitudes. The latter means that nonlinear effects are governed by the
optical beam intensities, so the power density per unit of surface, as the intensity is
proportional to field amplitude square.

1.3 Physical origins of the optical nonlinearities

Basic concepts of nonlinear optics can be introduced using simple models that lead to a relation-
ship between the applied field strength and the induced polarization in metals or plasma-gas,
and in dielectric media. In the case of metals or plasma-gas, the model presented in appendix A
describes the motion of a free charge gas subject to the Lorentz force induced by an electromag-
netic wave. For dielectric media, a classical model that describes the motion of bound charges
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Fig. 1.1. Classical description of
the dipolar interaction between an ap-
plied electromagnetic field and polarized
entity.

(electrons) under the action of an external field gives rise to the determination of relationships
for the induced dipole and for the macroscopic polarization. This model is presented in details
below.

In the linear regime, both models allow to retrieve expressions of the conductivity for metals
and the susceptibility for dielectric medium. Beside the simplicity of those models, they allow
the prediction of most of the nonlinear effects to be studied in more details in the following part
of the course.

1.3.1 Classical anharmonic oscillator model

A linearly polarized plane wave at ω is propagating through a dielectric material. It interacts
with the atoms or the molecules that constitute the material and induces a polarization P(z, t):

P(z, t) = Np(z, t), (1.2)

where p(z, t) is the induced microscopic dipole and N the density of atoms or molecules. Ac-
cording to a classical description of this interaction, depicted in Fig. 1.1, the dipole originates
from the modification of the trajectories of the valence electrons induced by the time varying
external field through the Coulomb force. The motion of the ion cores is neglected.

Subsequently, the field amplitude of the linearly polarized monochromatic plane wave, which
propagates along the direction (Oz) with a wavevector k, is given by :

E(z, t) =
[
A(ω)e−ı(ωt−kz) +A(−ω)e+ı(ωt−kz)

]
x,

= E(ω)e−ıωt + E(−ω)e+ıωt,

where vector x indicates the direction of polarization of the wave. The electric field E(z, t)
is assumed to be a purely real quantity. In the following, the conjugate of the complex field
amplitude E(ω) will be denoted by :

E(ω)? = E(−ω) (1.3)�




�

	

Notation :

• E(z, t) is a purely real quantity,

• E(ω)? = E(−ω) is the complex conjugate of the complex field amplitude E(ω)

For the sake of simplicity, we are considering an entity (atoms or molecules) with a single
valence electron, with a uniaxial x motion induced by an external electric field linearly polarized
along the x direction. The expression of the induced dipole is :

p(z, t) = −e x(z, t)x, (1.4)

where the quantity −e is the charge of one electron and the function x(z, t) represents the
instantaneous position of the electron. Its position is given with respect to its equilibrium
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position (no applied field). In order to get an expression for the polarization P(z, t) induced by
a given external field E(z, t), one can solve the following equation of motion for the electron:

d2x

dt2
+ α

dx

dt
+ ω2

0x+ βx2 + γx3 + · · · = −e
m

x · E(z, t). (1.5)

Conversely to the case of classical harmonic oscillator, we have voluntarily introduced restoring
force terms that nonlinearly depend on the coordinate x(z, t). Actually, the expression ω2

0x +
βx2 + γx3 + · · · corresponds to the Taylor expansion of the restoring force. The right hand side
term of (1.5) describes the driven Coulomb force. Considering the case of a dilute material, the
local field is assumed to be equal to the macroscopic external field E(z, t).

In general, this equation does not have an analytical solution with a simple expression.
However, taking into account that the harmonic term ω2

0x dominates the anharmonic ones, the
equation can be solved by means of a perturbation method for which the general solution takes
the form:

x = λx(1) + λ2x(2) + λ3x(3) + ..., (1.6)

where λ is a parameter set between 0 and 1. Using such a perturbative approach, one can derive
the expressions for the linear and nonlinear polarizations.

Linear polarization

Firstly, the anharmonicity terms are neglected (not included) and the equation of motion be-
comes:

d2x

dt2
+ α

dx

dt
+ ω2

0x =
−e
m

[
A(ω)e−ı(ωt−kz) +A(−ω)e+ı(ωt−kz)

]
x · x. (1.7)

One solution of the driven regime (steady-state solution) takes the following form:

x(1)(z, t) = a(ω)e−ı(ωt−kz) + a(−ω)e+ı(ωt−kz). (1.8)

Substituting (1.8) in (1.7) gives:

a(ω) =
−eA(ω)

mD(ω)
,

with D(ω) = ω2
0 − ω2 − ıαω. Following the form of the driven solution (1.8), the induced dipole

is directly proportional to the applied electric field :

p(1)(z, t) = α(1)(ω)A(ω)e−ı(ωt−kz)x + CC,

with α(1) = e2

mD(ω)
the first order polarizability (or linear polarizability) of the entity. If we

assume that all the dipoles are identical and aligned along the single direction x, and since the
linear susceptibility is defined by the relation

P(1)(z, t) = ε0χ
(1)(ω)E(ω)e−ıωt + CC,

one can find an expression of the linear susceptibility of the material :�
�

�
�χ(1)(ω) =

Ne2

ε0m(ω2
0 − ω2 − ıαω)

. (1.9)

The susceptibility is a complex quantity. The real part of the susceptibility is related to
the dispersion of the material (the refractive index), while its imaginary part is related to the
absorption (or gain) coefficient. The figure 1.2 show the typical behavior of these two parts
around the resonance frequency ω0.

As a first conclusion, we can say that the harmonic oscillator model well described the
behavior of the linear susceptibility : we were able to recover the well known shape of the
dispersive and absorption behavior of a material near to a resonance.
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Fig. 1.2. Real and imaginary parts of the linear suscep-
tibility around the frequency ω0.

2nd order nonlinear polarization

The quadratic anharmonic term of the restoring force is now introduced in the equation of
motion of the oscillator :

d2x

dt2
+ α

dx

dt
+ ω2

0x+ βx2 =
−e
m

x · E(z, t). (1.10)

Considering a weak applied electric field, the quadratic term of the restoring force will be kept
much smaller than the linear term. Assuming that βx2 � ω2

0x, one seeks a solution of the form:

x(z, t) = λx(1)(z, t) + λ2x(2)(z, t) + · · · , (1.11)

where λ represents the strength of the perturbation and can be arbitrarily set between 0 and 1.
This solution is substituted in (1.10), and considering that x(1) is the solution of (1.7), we find
that x(2) is solution of the equation :

d2x(2)

dt2
+ α

dx(2)

dt
+ ω2

0x
(2) = −β

(
x(1)

)2
. (1.12)

This equation describes the motion of a harmonic oscillator with a driven force proportional

to
(
x(1)

)2
, which contains oscillating terms at the frequencies ±2ω and 0. One can seek a

steady-state solution of the form :

x(2)(z, t) = b(0) + b(2ω)e−2ı(ωt−kz) + b(−2ω)e+2ı(ωt−kz). (1.13)

After substitution in (1.12) and identification between the terms oscillating at the same fre-
quency, we find the expressions :





b(0) =
−2βe2|A|2(ω)

m2D(0)D(ω)D(−ω)

b(±2ω) =
−βe2A2(±ω)

m2D(±2ω)D(±ω)D(±ω)
,

where D(ω) = ω2
0 − ω2 − ıαω.

The expression for the second order induced dipole, which is proportional to x(2)(z, t), is
then:

p(2)(z, t) = 2α(2)(ω,−ω)A(ω)A(−ω)x + α(2)(ω, ω)A(ω)A(ω)e−2ı(ωt−kz)x + CC,
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with

α(2)(ω1, ω2) =
βe3

m2D(ω1 + ω2)D(ω1)D(ω2)
,

the second order polarizability of the material. Finally, a second order polarization and a second
order nonlinear susceptibility can be defined by:

P(2)(z, t) = 2ε0χ
(2)(ω,−ω)A(ω)A(−ω)x + ε0χ

(2)(ω, ω)A(ω)A(ω)e−2ı(ωt−kz)x + CC,

with

χ(2)(ω1, ω2) =
Nα(2)(ω1, ω2)

ε0
.

The total macroscopic polarization induced inside the material is then given by the sum :

P(z, t) = P(1)(z, t) + P(2)(z, t)

= P (2)(0) + P (1)(ω)e−ıωt + P (2)(2ω)e−2ıωt + CC. (1.14)

with :

P (2)(0) = 2ε0χ
(2)(ω,−ω)E(ω)E(−ω)x

P (2)(2ω) = ε0χ
(2)(ω, ω)E(ω)E(ω)x

The macroscopic polarization being generated inside the material contains terms oscillating at
the frequencies ω (linear response), ω = 0 and ±2ω.

The expression (1.14) shows that the polarization that is radiated inside the materials con-
tains new frequency components. The term with a frequency component at ω = 0 corresponds
to the creation of a static field inside the material. This process is referred to as optical rec-
tification. A second component radiated at the frequency 2ω describes the second harmonic
generation (SHG) nonlinear effect. As in the case of the optical rectification, the amplitude of
the polarization is proportionnal to the square of the applied electric field amplitude, which is
the signature of a nonlinear response.

This simple model enables a description of the nonlinear response of dipoles excited by a an
external oscillating electric field. The nonlinear response originates from the anharmonicity in
the restoring force that is no longer proportional to the deformation of the electronic cloud sur-
rounding the nucleus. As the linear susceptibility, the nonlinear interaction can be strengthened
once the frequency of the interacted electric fields is close to a material resonance.

An other comment concerns the wavevector related to the polarization component at 2ω,
which is equal to 2k(ω). In general, it will differ from the wavevector k(2ω) of the electric
field at 2ω and freely propagating along the direction z. The value of the wavevector k(2ω) is
set through the dispersion relation of the material. However, the phase matching condition, in
this case k(2ω) = 2k(ω), must be fulfilled in order to efficiently generate a beam at the second
harmonic. If not, the nonlinear polarization at 2ω is not radiated in phase with the electric field
at 2ω and the second-harmonic beam can not generated.

3rd order nonlinear polarization

Following the second order perturbation, the next step is the case of a dipole governed by a
restoring force that contains a cubic term ω2

0x + γx3. For simplification, we have omitted the
quadratic term in this expression. The equation of motion for such a dipole is then given by :

d2x

dt2
+ α

dx

dt
+ ω2

0x+ γx3 =
−e
m

x · E(z, t). (1.15)
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Actually, a material with a collection of dipoles governed by such an equation of motion
exhibits a center of symmetry. Indeed, equation (1.15) remains the same after the following
substitution : x→ −x and E → −E. The medium supports a centro-symmetry.

As in the previous cases, we seek a solution of (1.15) with the form given by (1.6). After
substitution, one can show that the second order steady state solution vanishes and the equation
of motion is reduced to:

d2x(3)

dt2
+ α

dx(3)

dt
+ ω2

0x
(3) = −γ

(
x(1)

)3
. (1.16)

The motion is then equivalent to that of a harmonic oscillator driven by an external force
containing terms oscillating at ±ω and ±3ω. The derivation of the previous equation exhibits
the following expression for the third-order induced dipole:

p(3)(z, t) = 3α(3)(ω,−ω, ω)A(ω)A(−ω)A(ω)e−ı(ωt−kz)x+α(3)(ω, ω, ω)A(ω)A(ω)A(ω)e−3ı(ωt−kz)x+CC,

with

α(3)(ω1, ω2, ω3) =
−γe4

m3D(ω1 + ω2 + ω3)D(ω1)D(ω2)D(ω3)
,

the third order polarizability of the material. Assuming that the dipoles are all oriented along
the direction x, the expressions for the third order polarization and third order nonlinear sus-
ceptibility are:

P(3)(z, t) = 3ε0χ
(3)(ω,−ω, ω)A(ω)A(−ω)A(ω)e−ı(ωt−kz)x+ε0χ

(3)(ω, ω, ω)A(ω)A(ω)A(ω)e−3ı(ωt−kz)x+CC,

with

χ(3)(ω1, ω2, ω3) =
Nα(3)(ω1, ω2, ω3)

ε0
.

The total macroscopic polarization generated inside the material is then given by the sum :

P(z, t) = P(1)(z, t) + P(3)(z, t)

= P (ω)e−ıωt + P (3ω)e−3ıωt + CC.

and contains terms oscillating at the frequencies ω (with both a linear and nonlinear contribu-
tion) and ±3ω.

The polarization term vibrating at the frequency ±3ω is responsible for the 3rd harmonic
generation (THG) :

P (3)(3ω) = ε0χ
(3)(ω, ω, ω)E(ω)E(ω)E(ω)x

Like the second harmonic generation, this nonlinear effect requires to fulfill a phase matching
condition, which is given by the relation : 3k(ω) = k(3ω).

For the term vibrating at ω, it is interesting to notice that it will affect the linear properties
of the material. Indeed, the complex amplitude of the macroscopic polarization at ω is :

P (3)(ω) = 3ε0χ
(3)(ω,−ω, ω)E(ω)E(−ω)E(ω)x

P (ω) = P (1)(ω) + P (3)(ω)

= ε0

[
χ(1)(ω) + 3χ(3)(ω,−ω, ω)E(ω)E(−ω)

]
E(ω)x

= ε0χ
(1)
eff (ω)E(ω)x.

This relation shows that the nonlinear response of the dipole at ω will modify the linear sus-
ceptibility χ(1)(ω) of the material through the quantity 3χ(3)(ω,−ω, ω)E(ω)E(−ω). This mod-
ification is directly proportional to the field intensity and affects both the real part, which is
related to the refractive index, and the imaginary part, related to the absorption (or gain). The
modification of the refractive index refers to the optical Kerr effect, while the modification of
the absorption refers to the two-photon absorption effect.



Chapter 2
Nonlinear susceptibilities

In the previous chapter, we have introduced a simple model that provides physical insight in the
origin of the nonlinear interactions. In the case of dielectric media, approximated expressions
for the nonlinear susceptibilities can be derived from the anharmonic classical oscillator model
that describes the motion of bounded electrons subject. Assuming a collection of identical
dipoles, we have been able to give the relations between the macroscopic polarization terms and
the applied optical fields. Hereafter, and considering the finite response time of a material, the
tensorial relation between the interacted electrical fields (vectors) and the nonlinear susceptibility
(tensors) are introduced. The relation between the nonlinear susceptibilities and the impulse
response of the material is demonstrated. The properties of the nonlinear susceptibility tensors
are presented in details, with a focus on their symmetry properties.
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2.1 Learning outcomes

The learning outcomes of this chapter are the following:

By the end of this chapter, students will know:

• the relation between the macroscopic polarization and the electric field (the so-called
constitutive relations of nonlinear optics)

• the basic properties of nonlinear susceptibility tensors.

By the end of this chapter, students will be skilled at:

• Manipulating the nonlinear susceptibility tensor components and, with given incident
fields, calculate the components of nonlinear polarisation vector.

2.2 Linear susceptibility

The constitutive relation between the linear polarization P (t) and the incident electric field E(t)
in the frequency domain is given by:�

�
�
�P (ω) = ε0χ

(1)(ω)E(ω),

where we have introduced the linear susceptibility χ(1)(ω). One can show that the linear

susceptibility is directly proportional to the Fourier transform of system’s impulse response :

χ(1)(ω) = 2πTF
[
R(1)(t)

]
.

A time invariant system implies that the impulse response does not depend on the time of
excitation, but it directly depends on the time delay between the response and the excitation.
This assumption yields:

P(t) = ε0

∫
R(1)(t− τ)E(τ)dτ,

= ε0

∫
R(1)(τ)E(t− τ)dτ (2.1)

A causal system implies that R(1)(τ) = 0 for τ < 0.

The conventions for the Fourier transform that will be used in the course are :�

�

�



Convention for the Fourier transform :

E(t) =

∫
E(ω)e−ıωtdω

E(ω) =
1

2π

∫
E(t)e+ıωtdt

The reality of the function R(1)(t) implies that χ(1)(ω)? = χ(1)(−ω). Finally, the causality

property enables to derive the Kramers-Kronig relations that relates the real and imaginary
parts of the linear susceptibility.



2.3 Nonlinear susceptibility tensors 11

2.3 Nonlinear susceptibility tensors

Following this reminder on the linear propagation regime of electromagnetic waves, we next
study the case of the nonlinear propagation. As in the linear case, it requires to set a general
form for the relation between the macroscopic polarization P and the electric field E. We
consider first an incident electromagnetic field upon a causal and time invariant system with a
nonlinear impulse response. Subsequently, the electric dipole approximation is assumed, which
consists in neglecting the quadripole term in the constitutive relation and the polarization term
is developed in power series expansion of the electric field:

P(t) = P(1)(t) + P(2)(t) + P(3)(t) + · · · , (2.2)

where P(1)(t) is a linear function of E (linear response), P(2)(t) is a quadratic function of E
(2nd order nonlinear response), etc. Having defined the nonlinear response of the material in
the time domain, we can write this relation in the frequency domain and define a nonlinear
susceptibility, similarly to the case of a linear susceptibility. The properties of the nonlinear
susceptibility tensors will be presented in details, especially their symmetry properties.

2.3.1 Nonlinear impulse response

A generalization of the linear time response (2.1) applied to the 2nd order yields:

P(2)(t) = ε0

∫ ∫
T (2)(t; τ1, τ2)E(τ1)E(τ2)dτ1dτ2, (2.3)

with T (2)(t; τ1, τ2) the 2nd order nonlinear impulse response, which is a 3rd order tensor in order

to fully describe the quadratic dependance of the 2nd order nonlinear polarization. For a given
applied field E(t), and assuming a given function T (2)(t; τ1, τ2), the relation (2.3) determines the

time evolution of the 3 vectorial components for the second order polarization P(2)(t), which
is induced by the nonlinear interaction between the incident field and the medium. The ith
component is given by:

P(2)
i (t) = ε0

∑

(j,k)

∫ ∫
T

(2)
ijk (t; τ1, τ2)Ej(τ1)Ek(τ2)dτ1dτ2, (2.4)

where T
(2)
ijk is the component ijk of the tensor T (2), Ei,j,k and Pi,j,k are the three vectorial

components of E and P .

Properties of the nonlinear pulse response

- Symmetry condition: The tensor T (2) can be expressed as the summation of a symmetric

and an antisymmetric tensor:

T
(2)
ijk (t; τ1, τ2) = S

(2)
ijk(t; τ1, τ2) +A

(2)
ijk(t; τ1, τ2), (2.5)

where

S
(2)
ijk =

1

2

[
T

(2)
ijk (t; τ1, τ2) + T

(2)
ikj (t; τ2, τ1)

]

is a symmetric tensor1, and

A
(2)
ijk =

1

2

[
T

(2)
ijk (t; τ1, τ2)− T (2)

ikj (t; τ2, τ1)
]

1S
(2)
ijk(t; τ1, τ2) = S

(2)
ikj(t; τ2, τ1)
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is an antisymmetric tensor2. Substituting (2.5) in (2.4) shows that the antisymmetric
tensor does not contribute to the expression of Pi and vanishes. In conclusion, the tensor
T (2) is symmetric and :

T
(2)
ijk (t; τ1, τ2) = T

(2)
ikj (t; τ2, τ1) (2.6)

- Time invariant response property: As we have assumed a time invariance in the system
response, the impulse response shall not depend on the time of excitation and the equality

T (2)(t+ t0; τ1, τ2) = T (2)(t; τ1 − t0, τ2 − t0)

is valid for any given time t. In particular, it is verified for t = 0 and we can write an
impulse response with a dependence on the time delay between the excitation and the
response times:

T (2)(t; τ1, τ2) = R(2)(t− τ1, t− τ2). (2.7)

The second order nonlinear time response is then rewritten into the form:

P(2)(t) = ε0

∫ ∫
R(2)(t− τ1, t− τ2)E(τ1)E(τ2)dτ1dτ2,

= ε0

∫ ∫
R(2)(τ1, τ2)E(t− τ1)E(t− τ2)dτ1dτ2. (2.8)

- Causal system: The causality property implies that R(2)(τ1, τ2) = 0 for τ1 < 0 and τ2 < 0.

- Real function: The field vectors are real quantities which imply the reality of the nonlinear
impulse response.

- Intrinsic permutation property: We have shown that the tensor R(2) is symmetric. It

means that the component R
(2)
ijk(τ1, τ2) is invariant through the simultaneous permutation

of the couple of indices (j, τ1) and (k, τ2).

nth order nonlinear pulse response

The nth nonlinear contribution to the response function is given by :

P(n)(t) = ε0

∫ ∫
· · ·
∫
R...

(n)(t; τ1, τ2, · · · , τn)E(t− τ1)E(t− τ2) · · ·E(t− τn)dτ1dτ2 · · · dτn. (2.9)

The properties listed for the 2nd order nonlinear time response are generalized to any nth order
nonlinear time response.

2.3.2 2nd order nonlinear susceptibility

In order to derive a relation between the polarization and the electric field in the frequency
domain, the polarization P(2)(t) is written in terms of Fourier components:

P(2)(t) =

∫
P (2)(ω)e−ıωtdω

= ε0

∫ ∫
R(2)(τ1, τ2)E(t− τ1)E(t− τ2)dτ1dτ2.

2A
(2)
ijk(t; τ1, τ2) = −A(2)

ikj(t; τ2, τ1)
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Substituting the relation E(t− τ) =
∫
E(ω)e−ıω(t−τ)dω, we obtain:

P(2)(t) = ε0

∫ ∫
χ(2)(ω;ω1, ω2)E(ω1)E(ω2)e−ı(ω1+ω2)tdω1dω2, (2.10)

where we have introduced a 2nd order nonlinear susceptibilities χ(2)(ω;ω1, ω2) that turns to be

proportional to the Fourier transform of the nonlinear pulse response,

χ(2)(ω;ω1, ω2) =

∫ ∫
R(2)(τ1, τ2)eı(ω1τ1+ω2τ2)dτ1dτ2.

= (2π)2TF
[
R(2)(τ1, τ2)

]
.

As the complexe amplitude for the 2nd order nonlinear polarization is P (2)(ω) = 1
2π

∫
P(2)(t)eıωtdt,

it yields:

P (2)(ω) =
ε0
2π

∫ ∫
χ(2)(ω;ω1, ω2)E(ω1)E(ω2)dω1dω2

∫
e−ı(ω1+ω2)teıωtdt.

The latter integral is equal to the Dirac function δ(ω − ω1 − ω2) that is equal to 0 except for
ω = ω1 + ω2. Finally, we find the constitutive relation for the 2nd order nonlinear optical
interactions :�

�
�
�P (2)(ω) = ε0

∫ ∫
χ(2)(ω;ω1, ω2)E(ω1)E(ω2)δ(ω − ω1 − ω2)dω1dω2, (2.11)

which is equal to 0 except for ω = ω1 + ω2.
This constitutive relation demonstrates that the interaction between waves at

ω1 and ω2 through a 2nd order nonlinear leads to the generation of a polarization
term at the frequency ω = ω1 + ω2. In case of two single frequencies at ω1 and ω2,
the relation is simply equal to�

�
�
�P (2)(ω = ω1 + ω2) = ε0 χ

(2)(ω = ω1 + ω2;ω1, ω2)E(ω1)E(ω2) (2.12)

Notice that the frequency arguments can take either positive or negative values, which comes
from the assumption for the electric field E(t) to be a purely real quantity (see (1.3)).

As an illustration and depending on the interacting frequency components, we can list a
variety of 2nd order nonlinear interactions :

• A situation where ω1 = ω2 generates a polarization P (2)(2ω) : second harmonic generation,

• A situation where ω1 = −ω2 generates a static polarization P (2)(0) : optical rectification,

• A situation where ω1 = ω and ω2 = 0 describes the electro-optic effect,

• A situation where ω1 6= ω2 generates a polarization P (2)(ω1 + ω2) and P (2)(ω1 − ω2) :
respectively the sum and difference frequency generation.

Each vectorial component of the polarization can be expressed in terms the tensorial com-

ponents χ
(2)
ijk(ω = ω1 + ω2;ω1, ω2) and the electric field components Ei,j,k(ω) :

P
(2)
i (ω1 + ω2) = ε0

∑

jk

χ
(2)
ijk(ω1 + ω2;ω1, ω2)Ej(ω1)Ek(ω2).
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In accordance with the constitutive relation (2.11), each component might also require to sum
over the frequency arguments:

Pi(ω = ωp + ωq) = ε0
∑

jk

∑

(pq)

χ
(2)
ijk(ω = ωp + ωq;ωp, ωq)Ej(ωp), Ek(ωq).

P (ω = ωp + ωq) = ε0
∑

(pq)

χ(2)(ω = ωp + ωq;ωp, ωq)E(ωp)E(ωq),

where we have considered here a discrete number of frequency components.

2.3.3 3rd order nonlinear susceptibility

In the same way, the constitutive relation for the 3rd order nonlinear optical interactions is
defined:

�
�

�
�P (3)(ω = ωp + ωq + ωr) = ε0

∑
(pqr) χ

(3)(ω = ωp + ωq + ωr;ωp, ωq, ωr)E(ωp)E(ωq)E(ωr)

(2.13)

Summing over the frequency arguments gives the relations:

P
(3)
i (ω = ωp + ωq + ωr) = ε0

∑

jkl

∑

(pqr)

χ
(3)
ijkl(ω = ωp + ωq + ωr;ωp, ωq, ωr)Ej(ωp)Ek(ωq)El(ωr)

P (3)(ω = ωp + ωq + ωr) = ε0
∑

(pqr)

χ(3)(ω = ωp + ωq + ωr;ωp, ωq, ωr)E(ωp)E(ωq)E(ωr)

2.3.4 nth order nonlinear susceptibility

The generalization to the nth order nonlinear interactions is straightforward. The related con-
stitutive relation for the nth order nonlinear polarization vector implies the interaction of n
electric field vectors through an n+ 1 rank tensor.

2.3.5 Properties of the nonlinear susceptibility tensors

- Real functions: The reality of the quantities P (t) and E(t) implies

χ
(2)
ijk(ω3;ω1, ω2)? = χ

(2)
ijk(−ω3;−ω1,−ω2).

- Intrinsic permutation symmetry: The two quantities :

χ
(2)
ijk(ω3;ω1, ω2)Ej(ω1)Ek(ω2)

and

χ
(2)
ikj(ω3;ω2, ω1)Ek(ω2)Ej(ω1)

are identical.

χ
(2)
ijk(ω3 = ω1 + ω2;ω1, ω2) = χ

(2)
ikj(ω3 = ω1 + ω2;ω2, ω1).
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- Purely real quantity: In situations where the frequencies of the interacted waves are far
from any material resonances, the expressions established within the classical anharmonic
oscillator model (see section (1.3.1) show that the nonlinear susceptibilities are purely real
quantities3. More generally, the quantum mechanical derivation of susceptibilities shows

that in a lossless medium, the components χ
(2)
ijk(ω3 = ω1 + ω2, ω1, ω2) are real.

- Degeneracy Factor: We consider the case of a three-wave mixing between waves at ω1, ω2

and ω3 = ω1 + ω2. The nonlinear polarization components at ω3 is:

Pi(ω3) = ε0
∑

jk

[
χ

(2)
ijk(ω3;ω1, ω2)Ej(ω1)Ek(ω2) + χ

(2)
ijk(ω3;ω2, ω1)Ej(ω2)Ek(ω1)

]
. (2.14)

The intrinsic permutation symmetry for the nonlinear susceptibilities implies that the
two right hand side terms are equal (they differ by a permutation between the frequency
arguments ω1 and ω2), and yields:

Pi(ω3) = 2ε0
∑

jk

χ
(2)
ijk(ω3;ω1, ω2)Ej(ω1)Ek(ω2).

The factor 2 in the latter equation is called the degeneracy factor and relies on the fact that
the interacted wave are discernible. Waves are discernible if they differ either in frequency,
in polarization, in wave vector (in the direction of propagation), in spatial mode. In the
case of the second-harmonic generation, the degeneracy factor is equal to 2 as j 6= k. If
not, it takes the value 1, meaning that the interacted waves at ω can not be distinguished.

To summarize, the second-order nonlinear polarization components can be expressed as:

Pi(ω3) = D(2)ε0
∑

jk

χ
(2)
ijk(ω3;ω1, ω2)Ej(ω1)Ek(ω2), (2.15)

with D(2) the degeneracy factor that accounts for the number of distinct permutation
between the applied fields. It can take the values :

• D(2) = 1 in the case of one distinct field,

• D(2) = 2 in the case of 2 distinct fields.

The degeneracy factor for the third order nonlinear polarization components take the
values:

• D(2) = 1 in the case of one distinct field,

• D(2) = 3 in the case of 2 distinct fields,

• D(2) = 3! = 6 in the case of 3 distinct fields.

- Kleinman’s symmetry: For a lossless medium, it can be shown that a sufficient condition
is

χ
(2)
ijk(ω3 = ω1 +ω2;ω1, ω2) = χ

(2)
jki(−ω1 = ω2−ω3;ω2,−ω3) = χ

(2)
kji(−ω2 = ω1−ω3;ω1,−ω3).

(2.16)
This condition can be derived (see tutorial) in a simple way from the expression of the
average power transferred by the electromagnetic field to the medium per volume unit4:

−∂W
∂t

= 〈E · ∂P
∂t
〉,

3The damping terms can be neglected in this case.
4Cf. A. Yariv, Quantum Electronics, Third edition, Chapter 5.
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where 〈...〉 stands for a time average. The simultaneous permutations of the indices with
the frequency arguments in (2.16) can be further extended by neglecting the dispersion of
the nonlinear susceptibilities for any strong non-resonant interaction. The relation (2.16)
becomes:

χ
(2)
ijk(ω3 = ω1 + ω2;ω1, ω2) = χ

(2)
jki(ω3 = ω1 + ω2;ω1, ω2) = χ

(2)
kji(ω3 = ω1 + ω2;ω1, ω2)

= +Intrinsic permutations (2.17)

In conclusion, the nonlinear susceptibilities in lossless media, which implies no exchange of
energy between the nonlinear medium and the interacted waves, support a full permutation
of the indices, without permuting the frequencies.

- Contracted notations: Let us introduce the tensor dijk = 1
2χ

(2)
ijk. We assume that the

component dijk is symmetric in its last two indices. This assumption is valid whenever
Kleinman’s symmetry condition is valid or and in addition is valid in general for two wave
mixing (as ω1 = ω2 = ω).

The notation dijk is then replaced by a contracted notation dil according to the correspon-
dence between indices l and (j, k) given in Tab. 2.1.

Tab. 2.1. Relations between dijk and the contracted notation dil.

jk 11 22 33 23 ou 32 13 ou 31 12 ou 21
l 1 2 3 4 5 6

Notice that the contracted notation may differ by a factor 1/2 in different textbooks or in
nonlinear crystal datasheets.

- Spatial symmetries: The symmetry properties of materials allow a significant reduction
in the number of tensor components to be determined. Among those symmetries, let
consider a nonlinear medium with a centrosymmetry. It means that nonlinear susceptibility
tensor is invariant through the transformation i → −i, with i = x, y, z, the three spatial
coordinates. Because of the transformations E → −E and P → −P under the centro-
symmetry, we conclude that all the components of the tensor χ(2)(ω3, ω1, ω2) must vanish

identically. More generally, centro-symmetric materials do not support any even order
optical nonlinearities.



Chapter 3
Nonlinear wave equations

In the previous chapters, we have introduced the constitutive relations for nonlinear optics that
explicite in particular the relation between the electric field and the macroscopic polarization
vector by means of nonlinear susceptibility tensors. In the present chapter we examine the
modification of the electromagnetic field during its propagation through a material subject to
optical nonlinear interactions by deriving nonlinear wave equations in various situations.

At first, we demonstrate a generic equation in the case of the propagation of a stationary
and uniform monochromatic wave through a nonlinear material. Assuming the slowly varying
approximation for the envelop of the fields, the nonlinear wave equation takes the form of a first
order differential equation. The importance of the phase matching condition will be underlined
and discussed in details. As the most common method to fulfill the phase matching condition
utilizes the birefringence properties of materials, a short reminder on optics in anisotropic ma-
terials is presented. We next show that the nonlinear propagation of waves in an anisotropic
material can be treated as the propagation in an isotropic material by priorly decompose the
incoming field other the eigen polarization states, namely the ordinary and the extraordinary
fields.

To complete, we derive nonlinear wave equations for temporal and spatial wave-packets,
which can be applied to describe the nonlinear propagation of laser pulses and laser beams
through a nonlinear material. Finally, we consider the case of nonlinear interactions that take
place in a waveguide and derive a specific nonlinear wave equation under the weak guidance
approximation.
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3.1 Learning outcomes

The learning outcomes of this chapter are the following:

By the end of this chapter, students will be skilled at:

• deriving and solving the nonlinear wave equation in a parametric situation under the
undepleted pump approximation,

• Determining the phase matching conditions for a given nonlinear interaction and achiev-
ing/fulfilling this condition by exploiting birefringence properties of materials.

By the end of this chapter, students will understand:

• Nonlinear optics is an essential tool to create novel optical frequencies generated through
the interaction of incident beams within nonlinear materials,

• Nonlinear effects are subject to phase matching conditions.

3.2 Linear wave equation

In this section, we briefly recall the properties of the wave propagation through a linear dielectric
medium.

3.2.1 Linear wave equation in an anisotropic medium

The linear propagation of the electromagnetic fields in a dielectric medium, free of charges and
current is governed by the following Maxwell’s equations :





∇× E = −∂B
∂t

∇ ·D = 0

∇×H =
∂D
∂t

∇ ·B = 0, (3.1)

with the constitutive relations D = ε0E +P and B = µ0H. In order to derive a wave equation
for the electric field E, the magnetic field dependence is suppressed by taking the curl of the
first equation, using the relation between H and D and the constitutive relations:

∇×∇× E(t) +
1

c2

∂2E
∂t2

= −µ0
∂2P
∂t2

. (3.2)

In the Fourier domain, this wave equation becomes :

∇×∇×E(ω)− ω2

c2
E(ω) = ω2µ0P (ω). (3.3)

An anisotropic medium is characterized by the tensorial relation between vectors D and E.
Conversely to an isotropic medium, the direction of the two vectors may differ:

D(ω) = ε0ε(ω)E(ω), (3.4)

with ε(ω) = 1 + χ(1)(ω). The principle axes define a basis for which the matrix ε is diagonal.

For an electric field polarized along one of the principal axes, the medium is equivalent to an
isotropic medium.
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In the following, we recall the main propagation properties of a plane wave in a linear
anisotropic medium. The complex field amplitude of the plane wave is defined as :

E(ω) = A(ω)eık·re. (3.5)

Substituting this form into the wave equation (3.3) yields:

k × (k × e) +
ω2

c2
ε(ω)e = 0. (3.6)

This equation explicits the dependence between the wavevector and the direction of polarization
of the electric field in an anisotropic medium. For a given propagation direction we need to
determine both the refractive index n and the polarization of the field, which requires to solve
(3.6). One can show that the values of n for a given propagation direction defined by a unitary
vector s, with k = |k|s = n(ω/c)s, are solution of the Fresnel’s equation:

s2
x

n2 − n2
x

+
s2
y

n2 − n2
y

+
s2
z

n2 − n2
z

=
1

n2
, (3.7)

where (sx, sy, sz) are the direction of propagation coordinates defined along the principal direc-
tions, denoted (x, y, z), and nx, ny, nz are the principal refractive indices1. Actually, the Fresnel’s
equation is a quartic polynomial equation2. For a direction of propagation s = (sx, sy, sz), one
can show that this equation admits 2 positive roots for n. Each solution for the refractive index
n is associated a polarization direction for the electric field given by the equation (3.6).

Finally, one can conclude that for any direction of propagation, two waves can
propagate (independently) with phase velocity v1 = c/n1 and v2 = c/n2 where n1 and
n2 are solutions of the Fresnel’s equation (3.7).

The index of ellipsoid

An equivalent method to determine the refractive indices and the related directions of the electric
fields is based on the index of ellipsoid. The latter is determined by calculating the electric energy
density stored in a medium :

we =
1

2
E ·D =

1

2

∑

j,k

EkεkjEj ,

or equivalently,

2we = εXXE
2
X + εY YE

2
Y + εZZE

2
Z + 2εY ZEYEZ + 2εXZEXEZ + 2εXYEXEY . (3.8)

The surface of constant energy forms an ellipsoid as the coefficients εXX , εY Y and εZZ are
positive in case of a lossless material3. Equation (3.8) can be reduced to :

2we = εxxE
2
x + εyyE

2
y + εzzE

2
z , (3.9)

where x, y, z refers to the principal dielectric axes for which ε is diagonal. The constant energy
surfaces in the space (Dx, Dy, Dz) form ellipsoids defined by:

2we =
D2
x

εxx
+
D2
y

εyy
+
D2
z

εzz
. (3.10)

1 For a wave polarized along one of the principal axes, for instance x, the relation Dx = εxEx is satisfied,
where εx = ε0(1 + χ

(1)
xx ) is the permitivity. The refractive index is defined as : n2

x = c2εxµ0.
2A quartic polynomial equation is an equation of the form : n4 + an3 + bn2 + cn+ d = 0.
3Assuming a field polarized along the direction X, the electric energy density is equal to 2we = εxXE

2
X ,

meaning that we > 0 implies that εXX > 0
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Fig. 3.1. (a) Inter-
section between the
wavevector direction s
and the surface of indices
for a uniaxial crystal.
The two intersections
give the two refractive
indices no and nθ, which
can be seen on the index
of ellipsoid (b) showing
the directions for the
related ordinary eo and
extraordinary eθ waves.

(a) (b)

One can rewrite the latter equation using the new variable r = D√
2weε0

and εi = n2
i :

x2

n2
x

+
y2

n2
y

+
z2

n2
z

= 1, (3.11)

It defines the index of ellipsoid equation that is used to determine, for any direction of propaga-
tion, the two refractive indices and the associated direction for D. The two axes of the ellipse
formed by the intersection between the plane perpendicular to s, the direction of propagation,
and the ellipsoid, are equal to 2na and 2nb. Their related field Da and Db are parallel to these
two axes (see figure 3.1(b)).

Uniaxial birefringent media

An uniaxial birefringent medium exhibits two identical principal refractive indices : nx = ny =
no and nz = ne 6= no. We consider the propagation of a wave along the direction s, which is
defined in the crystallographic principle axes of the crystal in terms of the Euler’s Angles:

s =
cosφ sin θ
sinφ sin θ

cos θ
.

Solutions of Eq. (3.7) are graphically represented in Fig. 3.1(a). Along the given propagation
direction s, the medium exhibits two refractive indices no and nθ:

(
1

nθ

)2

=

(
cos θ

no

)2

+

(
sin θ

ne

)2

,

which are respectively related to the polarization states eo and eθ (see Fig. 3.1(b)):

eo =
sinφ
− cosφ

0
, eθ =

− cos θ cosφ
− cos θ sinφ

sin θ
.

These two polarizations are called ordinary and extraordinary polarization states. They are
orthogonal and define the eigen modes of the medium along the direction of propagation s.

3.2.2 Field intensity

The intensity of a wave ω is given by the magnitude of the time averaged Poynting vector:

〈S〉 = 〈E ×H〉. (3.12)
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The intensity associated with a field

E(t) = E0e
−ı(ωt−kz)e + CC

H(t) = H0e
−ı(ωt−kz)e + CC

is
I = 2ncε0|E0|2, (3.13)

with n the refractive index of the medium at ω. We have used the relation |H0| = ε0nc|E0| (see
Maxwell’s equations).

3.2.3 Transfer of energy between an electromagnetic field and a medium

The power per unit volume that is transferred from the field to the medium (specifically to the
electric dipoles) is given by the relation:

−∂W
∂t

= 〈E · ∂P
∂t
〉. (3.14)

We consider the simple case of the propagation of a monochromatic wave in the linear regime.
The electric field and the macroscopic polarization take the following form:

E(t) = E(ω)e−ıωt + E(−ω)e+ıωt

P(t) = P (ω)e−ıωt + P (−ω)e+ıωt,

with P (ω) = ε0χ
(1)(ω)E(ω). Substituting these relations into (3.14) leads to the equality:

−∂W
∂t

= 2ωε0

(
e · χ(1)′′(ω)e

)
|E(ω)|2, (3.15)

with χ(1)(ω) = χ(1)′ + ı χ(1)′′ .

In conclusion, the absorption phenomenon is related to the imaginary part of susceptibility.

3.3 Nonlinear wave equations

Following the propagation of the electromagnetic field in the linear regime, we next study the
propagation under the nonlinear regime. Besides the linear macroscopic polarization, we need
to add in the constitutive relation D = ε0E + P a nonlinear source term P(NL). The wave
equation (3.2), which is valid is the linear regime, contains now a nonlinear polarization vector:

∇×∇× E(r, t) +
1

c2

∂2E(r, t)

∂t2
= −µ0

∂2P(1)(r, t)

∂t2
− µ0

∂2P(NL)(r, t)

∂t2
, (3.16)

In the time Fourier domain, the wave equation becomes:

∇×∇×E(r, ω)− ω2

c2
E(r, ω) = ω2µ0P

(1)(r, ω) + ω2µ0P
(NL)(r, ω). (3.17)

In the case of a material with a local response of the the linear contribution:

P (1)(r, ω) = ε0χ
(1)(r, ω)E(r, ω),

which leads to nonlinear wave equation:�
�

�
�∇×∇×E(r, ω) =

ω2

c2
ε(r, ω)E(r, ω) + ω2µ0P

(NL)(r, ω) (3.18)
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with the relative permitivity defined as,

ε(r, ω) = 1 + χ(1)(r, ω).

We next specify the derivation of Eq. (3.18) for different cases, illustrating the related ap-
proximations that can be conducted.

3.3.1 Nonlinear propagation of a plane wave in a isotropic medium

Whereas, the propagation of a plane wave in a nonlinear regime does not fit with any realistic
experimental situation (or very rarely), the corresponding nonlinear wave equation takes a simple
form and underlines the main conditions under which an efficient nonlinear interaction will occur.

Actually, the following development corresponds to the propagation of a wave through a
nonlinear material for which the transverse or temporal behaviors are not taken into account.
For instance and for the case of a beam propagation, it would mean that the diffraction effect
is neglected in the derivation of the nonlinear propagation.

An other simplification consists in assuming first an isotropic and homogeneous medium
implying that the left hand side term of (3.18) is reduced to:

∇×∇×E(r, ω) = ∇(∇ ·E)−∆E = −∆E.

The equation ∇ · (D) = ∇ · (εE) = 0 implies ∇ · E = 0, the permitivity being described by a
scalar quantity, which does not depend on the spatial coordinate. The nonlinear wave equation
becomes:

∆E(ω) +
ω2

c2
εE(ω) = −ω2µ0PNL(ω) (3.19)

We next consider a plane wave propagating along the direction z, E(z, ω) = A(z)eıkze. After
substitution in (3.19), one gets:

∂2A(z)

∂z2
+ 2ık

∂A(z)

∂z
= − ω2

ε0c2
e · PNL(z, ω)e−ıkz,

taking into account the dispersion relation k2(ω) = ω2

c2
ε(ω) for the material. A very frequent

approximation consists in neglecting the variation of the field envelope A(z) on a typical length
of the order of the wavelength λ. Such an assumption stands for the slowly varying envelope
approximation ∣∣∣∣

∂2A(z)

∂z2

∣∣∣∣�
∣∣∣∣2k

∂A(z)

∂z

∣∣∣∣ ,

and relies on the generally weak efficiency of the nonlinear interactions. Based on that, the
nonlinear wave equation takes the very simple form:�

�
�
�∂A(z)

∂z
=

ıω

2ε0nc
e · PNL(z, ω)e−ıkz (3.20)

We conclude that a wave at ω can be modified by a nonlinear term source PNL(z, ω) at ω if
e · PNL(z, ω) 6= 0. The second condition is related to the phase-matching condition related to
the fact that the nonlinear polarisation amplitude PNL(z, ω) contains a phase term.

As an illustration, we next consider the case of the second-harmonic generation induced
by the propagation of a wave ω in a χ(2) material. The complex amplitude of the nonlinear
polarization generated at 2ω is given by:

PNL(z, 2ω) = εχ(2)(2ω;ω, ω)e1e1A
2(z, ω)e2ık(ω)·r

= ΠNL(z, ω) e2ık(ω)·r,
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with ΠNL(z, 2ω) the envelope amplitude of the nonlinear polarization. Even if the condition
e2 ·PNL(z, 2ω) 6= 0 would be respected, the second condition to be fulfilled in order to maximize
the second-harmonic wave will be : 2k(ω) · r = k(2ω) · r. This condition refers to the phase-
matching condition that is discussed in the next paragraph.

3.3.2 Phase-matching condition

Following the previous illustration, the complex amplitude on the nonlinear polarisation is writ-
ten in terms of an envelope ΠNL and a phase terme :

PNL(z, ω) = ΠNL(z, ω) eıkp(ω)·r, (3.21)

with kp the wavevector related to the nonlinear polarization, which depends on the wavevectors
of the interacted waves. The nonlinear wave equation (3.20) then takes the form :

∂A(z)

∂z
=

ıω

2ε0nc
e ·ΠNL(z, ω)e−ı∆kz, (3.22)

with ∆kz = (kp−k)·z the phase miss-match between the nonlinear polarization and the free-
wave at ω. Assuming a very weak nonlinear interaction (also called, parametric interaction), we
can suppose that the strength of the nonlinear polarisation is constant along z, i.e. ΠNL(z, ω) '
Const.. In such condition, the wave equation (3.22) can be easily integrated and the intensity
evolution of the wave is given by:�

�
�
�I(z) =

ω2

2ncε0
|e ·ΠNL(ω)|2 sinc2

(
∆kL

2

)
L2. (3.23)

The figure (3.2) shows the intensity evolution (3.23) for three phase-matching conditions:
∆k = 0, ∆k = 10/L, ∆k = 40/L, with L the thickness of the nonlinear material. While
the intensity grows with the square of the distance (under the assumption of a parametric
interaction) in a case of a perfect phase-matching situation, it follows an oscillating behavior
since ∆k 6= 0. As the periodicity increases with ∆k, the maximum intensity of the wave inversely
decreases with ∆k.

In the case of a non-phase matched interaction, it can be useful to define the coherence
length Lc = π/∆k , which is equal to half of a period of the oscillating feature of the intensity.

3.3.3 Stationary nonlinear wave equation in a anisotropic medium

Most of the nonlinear materials exhibits birefringent properties, which will be of strong interest
to fulfill the phase matching condition. In this paragraph, the stationary nonlinear propagation
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Fig. 3.3. Directions of (D,H,k) for an
electromagnetic wave propagating along
the direction z in an anisotropic medium.

of a wave in an anisotropic material is described. A wave at ω, with a wavevector k is considered:

E(r, ω) = A(r)eık·re

After substitution in the general form of the wave equation (3.18), and few developments, we
get:

−
[
k × (k × e) +

ω2

c2
ε(ω)e

]
A(r)

+ı [∇A× (k × e) + k × (∇A× e)] +∇× (∇A× e) = −ω2µ0PNL(z, ω)e−ık·r (3.24)

The decomposition of the wave along the eigen polarization states eo and eθ, i.e. E = Eo +Eθ,
solutions of the Fresnel’s equation (3.6), yields the simplification:

+ı [∇A× (k × e) + k × (∇A× e)] +∇× (∇A× e) = −ω2µ0PNL(z, ω)e−ık·r,

We assume that the slowly-varying approximation is valid, which is consists in assuming that
∣∣∣∣k
∂A

∂xi

∣∣∣∣�
∣∣∣∣
∂2A

∂xi∂yi

∣∣∣∣ .

Actually, this assumption imply to neglect the diffraction effects and to consider the propagation
of plane waves in a nonlinear anisotropic material. Following this assumption, we get :

2ı∇A · [(k × e)× e] = ω2µ0e ·ΠNL(z, ω)eı∆k·r

In the coordinate system (D,H,k) (see the figure 3.3), the wave equation is:�
�

�
�− tanα

∂A

∂x
+
∂A

∂z
=

ıω2µ0

2k cos2 α
e ·ΠNL(z, ω)eı∆k·r, (3.25)

with α the walk-off angle defined between the directions of propagation of the Poynting vector S
and the wave-vector k. Neglecting the walk-off angle, the equation (3.25) takes exactly the form
of the wave equation (3.20) that has been established in the case of the nonlinear propagation
in a isotropic material.

In conclusion, the nonlinear propagation of waves in a anisotropic material can
be treated as the propagation in a isotropic material by priorly decompose the in-
coming field other the eigen polarization modes, the ordinary and the extraordinary
fields. We remind that the eigen modes are the solutions of the Fresnel’s equation (3.6) for a
given direction of propagation, corresponding to polarization states that keep unchanged along
the propagation. Neglecting the walk-off angle, the nonlinear propagation of an electric field
polarized either along the ordinary or the extraordinary direction, can be simply treated as the
nonlinear propagation of a wave in a isotropic material.
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3.4 Nonlinear wave equation for temporal and spatial wave-
packets

As mentioned before, the description of nonlinear interactions with plane waves signifies that
transverse and temporal effects have been neglected. In many situations, these assumptions will
not be verified. The objective of this section is to provide a more accurate description of nonlinear
effects that occur with focused beams, in a regime where diffraction effect can be no longer
neglected, and optical pulses, accounting for dispersive effects. In both cases, the nonlinear
wave equations are sustained by a linear term, describing the diffraction and/or the dispersion
effects, corrected by a perturbative nonlinear terms driven by the nonlinear polarization vector
that modifies the linear behavior of the interacted waves.

As nonlinear effects are driven by the field amplitudes, equivalently by the field intensities,
one easily understands that numerous of nonlinear interactions evolve with focused beams and
pulsed laser beams in order to reach high peak intensities. For the sake of clarity, we will
derive hereafter separately two nonlinear wave equations for spatial and temporal wave-packets.
The derivation of a spatio-temporal nonlinear wave equation, which accounts simultaneously for
the spatial and temporal effects, would be straightforward. It would contain linear terms for
diffraction and dispersion effects. The spatio-temporal dependence of the nonlinear polarisation
term should also be taken into account.

3.4.1 Nonlinear propagation of optical beams

As it has been underlined during the course, the strength of the nonlinear interaction is governed
by the magnitude of the electromagnetic fields in interaction. As a consequence, nonlinear optics
experiments implies to focus laser beams in order to increase the beam intensity. In addition,
diffraction effects are no longer negligible since the interaction length L is longer than the
Rayleigh lengths LR related to the interacted beams, as it is illustrated in the Figure 3.4. One
can easily understand, the necessary tradeoff between beam focusing and interaction length :
increasing the beam focusing inside the material to achieve higher intensity, implies a reduction
of the interaction length through the reduction of the Rayleigh length.

The very common configuration depicted in Figure 3.4, an interaction with focused beams,
illustrates the interest in deriving a nonlinear equation that includes transverse effects : the linear
diffraction effect, and the spatial dependence in the amplitude of the nonlinear polarization term.
The latter is directly related to the variation in the field envelop with the spatial coordinate r.

We start with the general wave equation (3.16) and consider the propagation in a homogenous
and isotropic medium, implying the equality that∇×∇×E(r, ω) = −∆E. We can seek solutions
of the form:

E(r, t) = A(r, z)eıkze−ıωte + CC,

and we consider that the spatial dependence of the nonlinear polarization is given by an envelope
ΠNL(r, z) through the expression :

P(r, t) = ΠNL(r, z)eıkpze−ıωt + CC.

After substitution in (3.16), the nonlinear wave equation takes the form:

∂2A(r, z)

∂z2
+ 2ık

∂A(r, z)

∂z
+ ∆TA(r, z) = −ω2µ0e ·ΠNL(r, z)eı∆kz,

where ∆T stands for the transverse Laplacian (over the radial coordinate r = (x, y)), and
∆k = kp− k is the phase missmatch between the nonlinear polarization and the free wave at ω.
Assuming a weak nonlinear interaction, the slowing varying approximation leads to
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Fig. 3.4. Case of the nonlinear interac-
tion between two focused beams at ω1 and
ω2 in a nonlinear medium with a thickness
L longer than the Rayleigh lengths LR re-
lated to the beams.

ω1
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z

LR

L > LR

�
�

�
�∂A(r, z)

∂z
+

1

2ık
∆TA(r, z) =

ıω

2ε0nc
e ·ΠNL(r, z)eı∆kz (3.26)

Under the linear regime, e ·ΠNL(r, z) = 0, the equation describes the deformation of the
envelope A(r, z) driven by the diffraction effect, which is described by the term 1

2ık∆TA(r, z).
In the nonlinear case, the efficiency of the nonlinear interaction will be directly related to the
spatial overlapping, at a distance z, between the field envelope distribution A(r, z) and the
spatial distribution of the nonlinear polarization envelope e ·ΠNL(r, z). The latter is governed
by the spatial distribution of the interacted waves evolving under diffraction! Finally, if we
neglect the diffraction effect, equation (3.26) retrieves the form of the nonlinear wave equation
(3.20) in case of a plane wave.

3.4.2 Nonlinear propagation of optical pulses

A very efficient way to observe nonlinear effects consists in using the very high peak-power
delivered by pulsed lasers. Similarly to the previous situation, with focused beam, shorter
pulses (considering a fixed pulse energy) will increase the strength of the nonlinear response of
a material. As the spectral linewidth increase for shorter pulse, one needs to account for the
temporal distorsions effects driven by the frequency dependent refractive index of the material.

As an illustration, Figure 3.5 shows the evolution of two distinct optical pulses, nearby ω1

and ω2, along their propagation in a material. The group velocity mismatch, vg1 6= vg2, leads
to a temporal walk-off between the two pulses, reducing their temporal overlapping ant their
nonlinear interaction. A second order dispersive effect is related to the group velocity dependence
with the frequency content of the pulse vg(ω). This so-called chromatic dispersion effect induces
a pulse spreading in time, which is accompanied by a reduction of the peak power.

Similarly to the case of the spatial beam propagation, we now need to proceed with the
derivation of the nonlinear wave equation for a temporal wavepacket subject to the modification
through both the linear dispersive effects and a time varying nonlinear polarization. As in the
spatial case, one can seek the following forms for the electric field and for the time dependent
nonlinear polarization:

E(z, t) = A(z, t)eıβ0ze−ıω0te + CC,

PNL(z, t) = ΠNL(z, t)eıβpze−ıω0t + CC.

Because we need to take into account for the dispersive properties of the material, i.e. the
frequency dependent permittivity ε(ω), we start with the equation (3.18) writing:

E(z, ω) = eÃ(z, ω − ω0)eıβ0z

PNL(z, ω) = Π̃NL(z, ω − ω0)eıβpz,
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Fig. 3.5. Propagation of two pulses
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tion, the variation of the group veloci-
ties with frequency induces a dispersion
effect.

which gives

∂2Ã(z, ω − ω0)

∂z2
+2ıβ0

∂Ã(z, ω − ω0)

∂z
+
[
β2(ω)− β2

0

]
Ã(z, ω−ω0) = −ω2µ0e·Π̃NL(z, ω−ω0)eı∆βz.

(3.27)
In the following, the pulse duration is supposed to be very small compare to the time period
1/ω0 of the optical carrier. Its spectral linewidth being very narrow (∆ω � ω0), one can use a
Taylor’s expansion of β2(ω) around ω0 :

β(ω) = β0 + β1∆ω +
β2

2
∆ω2 + · · · ,

β2(ω) ' β2
0 + 2β0β1∆ω +

(
β2

1 + β0β2

)
∆ω2 + · · · ,

with βi = ∂iβ
∂ωi

calculated for ω = ω0. The wave equation is then expressed into the time domain:

∂2A(z, t)

∂z2
+ 2ıβ0

∂A(z, t)

∂z
+ 2ıβ0β1

∂A(z, t)

∂t
−
[
β2

1 + β0β2

] ∂2A(z, t)

∂t2
=

µ0e ·
[
−ω2

0ΠNL(z, t)− 2ıω0
∂ΠNL(z, t)

∂t
+
∂2ΠNL(z, t)

∂t2

]
eı∆βz.

Considering that the envelope A(t) travels at the group velocity vg = 1/β1, the wave equation
can be simplified by introducing the retarded time variable τ = t− z/vg. The wave equation in
the time base τ is then:

∂2A(z, τ)

∂z2
− 2β1

∂2A(z, τ)

∂z∂τ
+ 2ıβ0

∂A(z, τ)

∂z
− β0β2

∂2A(z, τ)

∂τ2
=

µ0e ·
[
−ω2

0ΠNL(z, τ)− 2ıω0
∂ΠNL(z, τ)

∂τ
+
∂2ΠNL(z, τ)

∂τ2

]
eı∆βz.

We then proceed with few assumptions in order to derive a simplified nonlinear wave equation:

• slowly varying approximation for the envelope that implies:
∣∣∣∂

2A(z,τ)
∂z2

∣∣∣�
∣∣∣β0

∂A(z,τ)
∂z

∣∣∣,

• narrow spectral linewidth of the pulse, which means that
∣∣∣∂A(z,t)

∂τ

∣∣∣ � ω0A(z, τ). If we

suppose that the group velocity vg = 1/β1 is close to the phase velocity vφ ' c/n0, then:∣∣∣2β1
∂2A(z,τ)
∂z∂τ

∣∣∣� 2
∣∣∣β0

∂A(z,τ)
∂z

∣∣∣,

• finally, the slowly varying approximation for the envelope implies a slow variation of the
nonlinear polarization envelope, which means that :

ω2
0ΠNL(z, τ)� 2ω0

∂ΠNL(z, τ)

∂τ
� ∂2ΠNL(z, τ)

∂τ2
.
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Following those assumptions, the nonlinear wave equation for a temporal wavepacket is:�
�

�
�∂A(z, τ)

∂z
+
ıβ2

2

∂2A(z, τ)

∂τ2
=

ıω

2ε0nc
e ·ΠNL(z, τ)eı∆kz (3.28)

Under the linear regime, e ·ΠNL(z, τ) = 0, the equation describes the temporal dispersion

of the pulse A(z, τ) governed by the term ıβ2

2
∂2A(z,τ)
∂τ2 . Because we have only considered the

2nd order dispersive effects β2, one could easily introduce higher order dispersive effects by
simply extending the Taylor’s expansion for β(ω). As in the case of the transverse wave packet
propagation, the efficiency of the nonlinear interaction is related to the temporal overlapping,
at a distance z, between the field envelope distribution A(z, τ) and the temporal distribution
of the nonlinear polarization envelope e · ΠNL(z, τ). The latter is governed by the temporal
distribution of the interacted dispersed pulses !

3.5 Nonlinear wave equation in optical waveguides

A very interesting situation consists in studying nonlinear interactions inside a waveguide. For
instance, a single mode waveguide enables to maintain a transverse confinement of light other
a very long distance (thousand of kilometers in case of trans-oceanic fiber cables). Conversely
to the case of focused beam, Rayleigh length is no longer a limit as the diffraction is strictly
compensated by the refractive guiding effect of the waveguide. In addition, one reminds that
a waveguide operates under a single mode regime for specific operating wavelength range. It
means that we may have to consider the case of nonlinear interactions taking place inside a
multimode waveguide, as illustrated in the Figure 3.6.

In order to derive the nonlinear wave equation in an optical waveguide, we start from the
general form (3.18) that takes into account the inhomogeneity of the material (which is the case
for an optical waveguide).

As in the previous situations, we need to give an expression for the first term of the left hand
side of the equation:

∇×∇×E(r, ω) = ∇(∇ ·E(r, ω))−∆E(r, ω)

Although ∇ ·D(r, ω) = 0, the propagation of the light in an inhomogeneous medium does not
imply the same equality for the electric field. We have to consider that : ∇ ·E(r, ω) 6= 0. The
wave equation becomes:

∆E(r, ω) +
ω2

c2
ε(r, ω)E(r, ω) = ∇(∇ ·E(r, ω))− ω2µ0PNL(r, ω). (3.29)

Under the weak guidance approximation, it can been shown that the term ∇(∇ · E(r, ω))
can be neglected (see the texbook on Guided Optics of Jean-Michel Jonathan).

The electric field propagating inside the waveguide into the z direction, along which the
waveguide is invariant, can be decomposed over the transverse eigen modes of the waveguide:

E(r, z, t) =
∑

p,m

epφ
p
m(r)Ap(z)e

−i(ωmt−βp(ωm)z) + CC,

where we have assumed that the set of transverse modes (labelled with the indices p) form
a complete base of normalized and orthogonal modes:

∫ ∫
φpm(r)φp

′
m(r)?d2r = δpp′ .



3.5 Nonlinear wave equation in optical waveguides 29

!"#$%&'()*+,(-)

./
01)

./
112)

3
)
./

11,)

)

E(r, z = 0) E(r, z) ?? Fig. 3.6. Nonlinear interaction in a
multimode wave-guide, like a few-mode
fiber supporting the fundamental LP01

mode and the two-degenerated modes
LP11a and LP11b.

Assuming first the case of a linear propagation under the weak guidance approxima-
tion (and neglecting the anisotropy of the waveguide), the wave equation is reduced to:

∆E(r, ω) +
ω2

c2
ε(r, ω)E(r, ω) = 0 (3.30)

Writing ∆E(r, z, ω) = (∇2
T + ∂2

∂z2 )E(r, z, ω), and using the fact that A(z) is constant (linear
regime and invariance of the waveguide along the z direction), we find at the frequency ωm:

∇2
Tφ

p
m(r) +

(
ω2

c2
n2(r, ωm)− β2

p(ωm)

)
φpm(r) = 0

We consider next the case of a nonlinear propagation. The nonlinear wave equation
is simply derived from (3.30) by adding the nonlinear term source:

∆E(r, ω) +
ω2

c2
ε(r, ω)E(r, ω) = −ω2µ0PNL(r, ω). (3.31)

Next, we consider the nonlinear propagation of a wave at the frequency ω = ωm and defined
by the transverse mode φpm(r). Under the slowly varying envelope approximation, the equation
(3.31) can be written is a simpler manner:

∑

p

epφ
p
m(r)2iβp(ωm)

∂Ap(z)

∂z
eiβp(ωm)z = −ω2

mµ0PNL(r, ωm)

Following the projection on a specific transverse mode φpm(r), the nonlinear wave equation
takes the form �

�
�
�

∂Ap(z)

∂z
=
iω2
mµ0

2βp

∫ ∫
ep.PNL(r, ωm)φpm

?
(r)d2r∫ ∫

φpm(r)φpm
?
(r)d2r

e−iβp(ωm)z. (3.32)

This equation signifies that the modification in the envelop amplitude Ap(z) contained in
the transverse mode p is driven by an overlapping function between the vectorial transverse
distribution of the nonlinear polarization term and the vectorial transverse distribution φpm(r)
of the transverse mode p of interest. The magnitude of the right hand side term governs the
strength of the nonlinear coupling impacting the variation of the field intensity contained in
the transverse mode p. We retrieve the condition discussed before that the nonlinear po-
larization vector should not be orthogonal to the polarization state of the transverse mode
(ep.PNL 6= 0). Additionally, the nonlinear interaction is governed by the overlapping between
the transverse distribution of the nonlinear polarization term and that of the specific guided
mode p, implying that

∫ ∫
PNL(r)φpm

?
(r)d2r 6= 0. Finally, and the following the expansion

PNL(z, ω) = ΠNL(z, ωm) eıkp(ωm)·r,, the phase matching condition is easily determined.
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4.1 Manley-Rowe relations

Prior to the specific study of 2nd order nonlinear interactions, we give in the following a gen-
eral description of the propagation of 3 waves ω1, ω2, ω3, with ω1 + ω2 = ω3, interacting in a
lossless 2nd order nonlinear material. The lossless medium assumption means that the 3 wave
interaction will take place without any exchange of energy between the waves and the material.
Therefore, the three coupled nonlinear wave equations at ω1, ω2 and ω3 should satisfy the energy
conservation condition.

To verify it, we consider the simple situation of co-propagating plane waves for which the
nonlinear wave equations are directly derived from (3.20) :

dA3(z)

dz
=

ıω3

2ε0n3c
e3 · PNL(z, ω3 = ω1 + ω2)e−ık3z,

dA2(z)

dz
=

ıω2

2ε0n2c
e2 · PNL(z, ω2 = ω3 − ω1)e−ık2z, (4.1)

dA1(z)

dz
=

ıω1

2ε0n1c
e2 · PNL(z, ω1 = ω3 − ω2)e−ık1z.

The derivation of the spatial evolution for the field intensities I1, I2 and I3 is straightforward,
reminding that I = 2ncε0|A|2 (3.13) :

dI3(z)

dz
= +ıε0ω3χ

(2)
effA1A2A

?
3e
ı∆kz + C.C.,

dI2(z)

dz
= −ıε0ω2χ

(2)
effA1A2A

?
3e
ı∆kz + C.C., (4.2)

dI1(z)

dz
= −ıε0ω1χ

(2)
effA1A2A

?
3e
ı∆kz + C.C.,

with ∆k = k1 +k2−k3 the wave vector mismatch and χ
(2)
eff the effective nonlinear susceptibility

given by :

χ
(2)
eff = 2 e3 · χ(2)(ω3;ω1, ω2)e1e2

= 2 e2 · χ(2)(ω2;ω3,−ω1)e3e1 (4.3)

= 2 e1 · χ(2)(ω1;ω3,−ω2)e3e2.

These equalities between the nonlinear effective susceptibilities are the key point of the demon-
stration. They are actually justified by the lossless medium assumption allowing the full per-
mutation between the indices of the susceptibility tensor (without exchanging the frequency
arguments). In addition, the lossless assumption allows to treat them as purely real quantitates
(see § 2.3.5). Note that these relations are written in the case of frequency non-degenerated
waves (ω1 6= ω2). For the degenerated case, coinciding with a specific configuration of second
harmonic generation, there are only two equations at 2ω and ω which differ by a factor of 2, the
degeneracy factor1.

Following the interaction of the 3 waves in a lossless 2nd order nonlinear material, their
intensity evolutions (4.2) follow the relation :

dI3(z)

dz
+
dI2(z)

dz
+
dI1(z)

dz
= 0, (4.4)

1In the case of second harmonic generation, the nonlinear polarization expressions at 2ω and ω differ by a
factor of 2: P (2)(2ω) = ε0χ

(2)(2ω;ω, ω)E(ω)E(ω), while, P (2)(ω) = 2ε0χ
(2)(ω; 2ω,−ω)E(2ω)E(−ω)
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Fig. 4.1. Energy diagram based descrip-
tion of the interaction between 3 waves at
ω1, ω2 and ω3 in a lossless 2nd order non-
linear material: the annihilation (a) (resp.
the creation (b)) of one photon at ω3 must
be accompanied by the simultaneous cre-
ation (resp. the annihilation) of one pho-
ton at ω1 and one photon at o2.

which means that the exchange of energy occurring between the 3 waves along their propagation
into the nonlinear medium is done by conserving the total amount of intensity I = I1 + I2 + I3

and dI(z)/dz = 0.
It is worth deriving a similar relation for the quantity Ni = Ii/~ωi related to the number of

photons at ωi propagating trough the material per unit of time and surface, which gives :

dN1(z)

dz
=
dN2(z)

dz
= −dN3(z)

dz
. (4.5)

These two relations refer to the so-called Manley-Rowe relations that depict the interaction
between 3 waves in a lossless 2nd order nonlinear material. These two relations show that
their interactions are governed by the conservation of the total energy carried by the 3 waves,
in agreement with the lossless medium assumption. The second relation (4.5) is of particular
relevance since it gives a description of the 3 wave interaction in terms of number of photons, in
accordance with a quantum optics description. Actually, the ”quantum” reading of the equality
(4.5) would be the following : the annihilation (resp. the creation) of one photon at ω3 must
be accompanied by the simultaneous creation (resp. the annihilation) of one photon at ω1

and one photon at o2. The Manley-Rowe equations are consistent with a quantum-mechanical
interpretation of the 3 wave interactions, which could be represented by the two energy diagrams
depicted in Fig. 4.1.

4.2 Three-wave mixing interactions

Using the Manley-Rowe relations, we next give general comments about the different Three-wave
mixing interactions that can be explored in 2nd order nonlinear medium. For all situations, we
consider the interaction between 3 waves at ω1, ω2 and ω3, where ~ω1 + ~ω2 = ~ω3, inside a
lossless χ(2) material.

The various three-wave mixing interactions studied in this course are depicted in Figure 4.2:

(a) Sum-Frequency Generation (SFG) is presented in chart (a) where the interaction of
two incident intense beams at ω1 and ω2 generate a third beam at ω3 = ω1 + ω2. Two
photons, respectively at ω1 and ω2, generate one photon at ω3. The direction of propaga-
tion of the beam at ω3 is given by the phase matching condition: k3 = k1 +k2. The most
well-known situation is the Second-Harmonic Generation (SHG) where an intense pump
beam at ω propagates through a χ(2) material to generate a doubling in frequency beam

at 2ω.

(b) Second-Harmonic Generation (SHG) can be seen as a frequency degenerate case of
SFG with a single incident beam, ω1 = ω2 = ω, which will be doubled in frequency:
ω3 = ω + ω = 2ω. As illustrated by chart (b), the generation of one photon at 2ω is
governed by the simultaneous annihilation of 2 photons at ω. SHG is further studied in
§ 4.3. With a single incident beam along the wave vector kω, the SHG beam will be
generated along te same direction since k2ω = 2kω.
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Fig. 4.2. Three wave mixing configurations, with the corresponding photon energies diagrams. (a) Sum-
Frequency Generation. (b) Second-Harmonic Generation. Optical Parametric effects : (c) Fluorescence, (d)
Amplification and (e) Oscillation.

(c) Optical Parametric Fluorescence (OPF) can be observed with a single intense beam
at ω3 incident onto the nonlinear crystal, which will generate photon pairs at ω1 and ω2

along the directions set by the phase matching relation k1 +k2 = k3. We will show below
that such a nonlinear effect is not predicted through classical description conducted in this
course. A complete description requires quantum physics approach, which is out of the
scope of this introductive course.

(d) Optical Parametric Amplification (OPA) differs from the previous configuration by
the adjonction of a weak beam at ω2 (or ω1) along the direction at which ω2 (or ω1)
photons would be emitted through parametric fluorescence effect. As it will be shown
in § 4.4 and conversely to the fluorescence effect, the parametric amplification can be
perfectly described by solving coupled nonlinear wave equations. The solutions show that
an amplification of the incident ω2 (or ω1) beam occurs at the expense of an intensity
decrease of the pump beam ω3. In agreement with the Manley-Rowe relations, a third
beam at ω1 (or ω2) is simultaneously generated inside the crystal along the direction
k2 = k3 − k1.

(d) Optical Parametric Oscillation (OPO) consists in inserting an OPA inside an optical
cavity. The configuration described in chart (e) coincides with co-propagating OPA con-
figuration, with the 3 waves propagating along the same direction, although non-collinear
configuration such as in (d) could be set. In practices the mirrors get a reflection coating
at either ω1 or ω2, in a singly resonant OPO, or at both ω1 and ω2 in a doubly resonant
configuration. Once the pump intensity reaches a threshold value, the parametric amplifi-
cation gain experienced by either ω1 or ω2 perfectly compensate for the cavity losses, and
the cavity oscillation condition is satisfied. Two coherent beams at ω1 and ω2 exit from
the cavity. The OPO behaviors will be studied in more details in § 4.4.



4.3 Second Harmonic Generation 35

ħ2ω
 

ħω
 

ħω
 ω

 

2ω
 

ω
 

!"

χ(2)

Fig. 4.3. Second Harmonic Generation scheme. An
incident laser beam at ω generates, inside a 2nd order
nonlinear crystal with a nonlinear susceptibility χ(2), a

nonlinear polarization at 2ω, which may generate an op-
tical beam at the doubling frequency 2ω. The generation
efficiency depends on the phase matching condition.

4.3 Second Harmonic Generation

As an introduction to nonlinear optics, we have first studied the behavior of an anharmonic
oscillator subject to an excitation at the frequency ω. The oscillator in our case stands as
a classical representation for an entity (an atom or a molecule) that is polarized through the
application of an external electric field. By introducing a quadratic term in the expression of
the restoring force, a second order contribution in the induced electric dipole has been derived.
In particular, we have shown that a collection of such dipoles would generate a macroscopic
polarization vibrating at the frequency 2ω (actually ±2ω as shown by the relation (1.14)).

In this section, we are going to study in more details this nonlinear effect, which refers to the
Second Harmonic Generation (SHG) effect2. It was the first nonlinear effect to be experimentally
demonstrated few months after the realization of the Ruby Laser in 1962. The SHG effect is
schematically represented in Fig. 4.3. It takes place in a nonlinear crystal with a non vanishing
2nd order susceptibility χ(2) and we consider a lossless material, which means that the Manley-

Rowe relations are valide. As a consequence, one can anticipate that the generation of one
photon at 2ω is supported by the annihilation of simultaneously 2 incident photons at ω, as it
is illustrated by the energy diagram in Fig. 4.3. At first, the SHG effect in a weak interaction
approximation is considered, which means that the depletion of the beam at ω is considered
negligible. By doing so, we will introduce the necessity to fulfill a phase matching condition
in order to perform SHG with high efficiency. Prior to the study of SHG under perfect phase
matching condition, achievements of phase matching in nonlinear materials is considered. In
particular, the phase matching in birefringent material is discussed in details.

In the following, the theoretical description is treated with monochromatic plane waves. As
a first attempt, we intend to neglect any transverse (diffraction) or temporal (group velocity
walk-off, dispersion...) effects that would necessarily impact the efficiency of the process.

4.3.1 Undepleted pump approximation regime

A weak interaction efficiency is first considered, such that the depletion of the incident wave at
ω can be neglected. Subsequently, the wave ω will be referred to the pump wave or beam. The
variation of the field envelope A(ω) along the direction of propagation z being negligible, one
seeks to solve the wave equation at 2ω:

dAω(z)

dz
= 0

dA2ω(z)

dz
=

ı(2ω)

2ε0n2ωc
e2ω · PNL(z, 2ω)e−ık2ω ·z . (4.6)

By substituting in (4.6) the expression for the nonlinear polarization

PNL(z, 2ω) = ε0χ
(2)(2ω;ω, ω)E(z, ω)E(z, ω)

= ε0χ
(2)(2ω;ω, ω)eωeωA

2
ω(z)eı2kω ·z ,

2It may also be referred to Doubling Frequency Effect.
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the wave equation at 2ω is given by :

dA2ω(z)

dz
=
ı(2ω)

2n2ωc
χ

(2)
eff A2

ω(z)eı∆k·z , (4.7)

with χ
(2)
eff = e2ω · χ(2)(2ω;ω, ω)eωeω the effective nonlinear susceptibility and ∆k = 2kω − k2ω

the wave vector missmatch. Under the undepleted pump approximation the integration of the
last equation is straightforward :

A2ω(z) =
ı(2ω)

2n2ωc

χ
(2)
eff A2

ω

∆k
2 sin

(
∆k

2
z

)
eı

∆k
2
z. (4.8)

Assuming a configuration where the two waves at ω and 2ω are co-propagating along the same
direction z we have set ∆k · z = ∆k z.

Using the relation I2ω = 2ε0n2ωc|A2ω|2, the spatial evolution for the intensity of the beam
generated along the crystal length z is:

I2ω(z) =
(2ω)2

2ε0n2
ωn2ωc3

∣∣∣χ(2)
eff

∣∣∣
2

sin2

(
∆k

2
z

)
I2
ω

(∆k)2
(4.9)

=
(2ω)2

8ε0n2
ωn2ωc3

∣∣∣χ(2)
eff

∣∣∣
2

sinc2(∆kz/2) I2
ω z

2. (4.10)

Under the undepleted pump approximation, one can easily evaluate the maximum efficiency
than can be reached in a specific crystal:�

�
�
�ηSHG =

I2ω

Iω
=

(2ω)2

8ε0n2
ωn2ωc3

∣∣∣χ(2)
eff

∣∣∣
2

sinc2(∆kz/2) Iω z
2. (4.11)

In the case of a non-phase matched situation, i.e. ∆kz 6= 0, and following the preliminary
discussion we gave in 3.3.2, the beam intensity at 2ω evolves along the crystal with an oscilla-
tory behavior, which is the consequence of successive constructive and destructive interferences
between the nonlinear polarization term P (2)(2ω) generated inside the crystal and the free wave
E(2ω) that propagates inside the crystal. To give an illustration, the evolution of SHG effi-
ciencies ηSHG with distance for phase matching ∆k equal to 10/L, 5/L, 2.5/L and 0, defined
respect to the crystal length L, are plotted in Figure 4.4. In case of ∆k 6= 0, the maximum SHG
efficiency is reached at a distance Lc = π/∆k, which refers to the coherence length (see p. 23).
As an order of magnitude, one can take the example of an SHG experiment in Quartz plate
at λ = 1 µm. Taking the refractive index difference at ω and 2ω equal to 10−2, the coherence
length is 25 µm.

Although the maximum efficiency is reached for a perfect phase matching situation ∆k = 0,
in practice, this condition might not be perfectly fulfilled in practice, which does not signify that
SHG can not been performed. For some application, it might be sufficient to minimize ∆k in
order to maximize the coherence length and the SHG efficiency, which is inversely proportional
to (∆k)2. As illustrated in Fig. 4.4, the maximum SHG efficiency increases with 1/∆k in case
of of non-phase matched situations.

An other important comment concerns the dependence of SHG efficiency with the pump
intensity. Because of the proportionality between ηSHG and Iω, the quantity of SHG is expected
to increase by focusing the pump beam inside the crystal. As it will be frequently underlined,
nonlinear optics is related to beam intensity, and not to beam power. Now, we must remember
the limit of our present model that does not include diffraction effects, for instance. Intending
to increase the quantity of SHG, the beam size of the pump beam should be decreased. At a
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Fig. 4.4. Second Harmonic Generation efficiency under the undepleted pump approximation for phase matching
conditions ∆k = 10/L, 5/L, 2.5/L and 0, with L the crystal length. The red curve ∆k = 0 gives the maximum
efficiency that can be achieved in the crystal for a given pump intensity Iω.

certain point, the improvement will face the diffraction limit : by reducing the beam size, the
Rayleigh length of the beam decreases, which tends to shorten the interaction length !

Despite these comments, the more important result concerns the necessity to fulfill the phase
matching condition ∆k = 0, which is required to benefit for the maximum SHG efficiency in a
given configuration. In such a situation, ηSHG scales with Iω and with L2, the square of the crystal
length. Of course, one would rapidly reach the limit of the undepleted pump approximation.
Under such an efficient operating situation, the depletion of the pump intensity could not be
neglected anymore.

Before, we study the general solution in that case, we give considerations towards the tech-
niques to achieve the phase matching condition, which is one of the most critical point to achieve
while dealing with 2 nd order nonlinear experiments.

4.3.2 Phase matching considerations

The achievement of the phase matching condition ∆k = 0 implies, for SHG experiment, the
equality n(ω) = n(2ω) between the two refractive indices of the nonlinear material at ω and 2ω.
In general, the frequency dependence of refractive index for lossless material shows a normal
dispersion, meaning that refractive index increases with frequency. As illustrated in Fig. 4.6(a),
the equality n(ω) = n(2ω) might be impossible in practice, if we consider isotropic material.

One could argue that such a condition could be specifically fulfilled nearby an optical res-
onance by using the dispersive shape of the real part of the linear susceptibility, which locally
undertakes an anomalous shape (with a negative slope of dn/dω). Such a situation remains ex-
ceptional, and can not be transposed over a broad operating frequency range and a large variety
of materials !

Instead, we may prefer to exploit the birefrengent properties of materials. Following the
reminder in 3.2, an anisotropic medium exhibits, at most, two refractive indices along a given
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Fig. 4.5. Variation of the refractive index with fre-
quency in material with normal dispersion. (a) Isotropic
material for which n(2ω) 6= n(ω). (b) Example of an
anisotropic material for which one can achieve n(2ω) =
n(ω) for an extraordinary polarized 2ω wave and an or-
dinary polarized ω wave.
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direction of propagation z. Each refractive index, no or nθ, referring to ordinary and extraordi-
nary indices, is related to a specific eigen polarization state, either eo or eθ. Using the dispersion
relation, phase matching can be achieved for instance by selectively propagating the pump beam
at ω along the ordinary polarized state eo, and the 2ω wave along the extraordinary polarized
state eθ as illustrated in Fig. 4.6(b).

In order to identify the different possibilities to achieve phase matching, we proceed by
deriving the nonlinear wave equations at ω and 2ω in a anisotropic medium. Without loss
of generality, we next consider the case of uniaxial crystals. We have shown in ?? that, in
birefringent materials, the nonlinear wave equation can take the simple form derived in case of
isotropic medium if the electric fields are decomposed along the eigen polarized states eo and
eθ (and if we neglect the walk-off angle). In the case of SHG experiment, the two waves at ω
and 2ω will be decomposed into the sum of ordinary and extraordinary modes:

E(ω) = Eo(ω) + Eθ(ω) and E(2ω) = Eo(2ω) + Eθ(2ω),

with

Eo(ω) = Ao(ω)eo exp ı(ko(ω).z)

Eθ(ω) = Aθ(ω)eθ exp ı(kθ(ω).z),

and

Eo(2ω) = Ao(2ω)eo exp ı(ko(2ω).z)

Eθ(2ω) = Aθ(2ω)eθ exp ı(kθ(2ω).z).

If we neglect the walk-off effect, the nonlinear wave equation (3.25) derived for anisotropic
medium is similar to that of isotropic medium. Keeping in mind the electric field decomposition,
the SHG problem requires the derivation of 4 coupled wave equations: 2 at ω and 2 at 2ω. To
identify the different phase matching situations, it is sufficient to set the equation at 2ω (or ω):

dAo(2ω)

dz
=

ı(2ω)

2ε0no(2ω)c
eo · PNL(2ω)e−ıko(2ω)·z , (4.12)

dAθ(2ω)

dz
=

ı(2ω)

2ε0nθ(2ω)c
eθ · PNL(2ω)e−ıkθ(2ω)·z . (4.13)

with the nonlinear polarization at 2ω,

PNL(2ω) = ε0χ
(2)(2ω;ω, ω)E(ω)E(ω)

= ε0χ
(2)(2ω;ω, ω)(Eo(ω) + Eθ(ω))(Eo(ω) + Eθ(ω))

= ε0χ
(2)(2ω;ω, ω)[Eo(ω)Eo(ω) + Eo(ω)Eθ(ω) + Eθ(ω)Eo(ω) + Eθ(ω)Eθ(ω)].

(4.14)
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Fig. 4.6. Illustrations
of types I and II phase
matching realization for
SHG in negative and posi-
tive uniaxial crystals, for a
collinear configuration.

The substitution of (4.14) in wave equations (4.12) and (4.13) leads, for each polarization state,
to 4 terms contributing to the generation of a wave at 2ω. Behind the apparent complexity of
the wave equations, one needs to identify one of the terms that will efficiently contribute to the
modification of the 2ω wave amplitude. The selection between the whole terms (actually, the 8
terms) is dictated by the possibility to achieve or not the phase matching condition, enabling
to apply a selection between the different contribution terms. A quick analysis of the wave
equations shows that 2 types of phase matching can be fulfilled:

• Type I: phase matching realized through either ko(ω)+ko(ω) = kθ(2ω) or kθ(ω)+kθ(ω) =
ko(2ω), leading to the necessary equality

no(ω) = nθ(2ω) or nθ(ω) = no(2ω).

• Type II: phase matching realized through either ko(ω) + kθ(ω) = kθ(2ω) or ko(ω) +
kθ(ω) = ko(2ω), leading to the necessary equality

1

2
(no(ω) + nθ(ω)) = nθ(2ω) or

1

2
(no(ω) + nθ(ω)) = no(2ω)

Application: SHG in uniaxial crystals
With the help of a graph, such that of Fig. 4.6(b), one can easily show that the 2ω wave should

be necessarily polarized along the ordinary direction in a positive uniaxial crystal (ne > no) and
along the extraordinary direction in a negative uniaxial crystal (no > ne).

4.3.3 Phase-matched SHG regime

In the case of a perfect phase matching situation, the undepleted pump approximation given in
4.3.1 might become invalid as the pump intensity increases. To completely study such an SHG
situation, the derivation of the two coupled wave equations at ω and 2ω is necessary.

We next consider the copropagating nonlinear interaction depicted in Fig. 4.3 where the ω
and 2ω waves propagate along the direction z, with the electric field amplitudes:

E(ω) = e1A1(z) eık1z

E(2ω) = e2A2(z) eık2z.

We suppose a type I phase matching, which means that the polarization states e1 and e2 coincide
with the eigen polarization states eo and eθ. This assumption allows to treat the problem with



40 4 2ND ORDER NONLINEARITIES

Fig. 4.7. Variation of pump intensity and the second harmonic intensity along the crystal length L in case of a
perfect phase-matching SHG experiment.

only two wave equations. For a type II phase matching, one would have to set 3 coupled wave
equations: two at ω (for eo and eθ) and one equation at 2ω (at eo or eθ). The wave equations
for a type I phase matching ∆k = 2k1 − k2 = 0, and neglecting the walk off, lead to

dA1

dz
=
ı(ω)

2n1c
2χ

(2)
eff A2A

?
1, (4.15)

dA2

dz
=
ı(2ω)

2n2c
χ

(2)
eff A

2
1, (4.16)

with the effective nonlinear susceptibility χ
(2)
eff = e1 ·χ(2)(ω; 2ω,−ω)e2e1 = e2 ·χ(2)(2ω;ω, ω)e1e1.

Note the difference into the degeneracy factor set to 2 in the first equation, while it is set to 1
into the second. The resolution of these two coupled equations is not difficult, although a little
long3. Using the boundary conditions A1(z = 0) = A1(0) and A2(z = 0) = 0, one can show

A1(z) =
|A1(0)|

cosh (q|A1(0)|z) , (4.17)

A2(z) = |A1(0)| tanh (q|A1(0)|z) , (4.18)

with q =
ωχ

(2)
eff√

n1n2c
. The spatial evolutions for the pump and second harmonic beam intensities

are plotted in Fig. 4.7. The graph illustrates the growth in SHG beam at the expense of the
decrease in pump beam intensity inside the crystal. The maximum SHG efficiency under perfect
phase matching interaction is

ηSHG = tanh2


qz

√
I1(0)

2n1cε0


 .

Although the theoretical efficiency may reach 100 %, it can neither be achieved in practice.
Actually, the present model does not include major limiting effects like:

Walk-off effect: the wave equations used above are an approximation of (3.25) for which the
walk-off effect is neglected. A reduction in SHG efficiency is expected because of the

3For those interested by the demonstration, please refer to the original article by Armstrong et al. Phys. Rev.
127, p. 1918 (1962).
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angular mismatch between the two Poynting vectors related to ω and 2ω waves. In a first
approximation, one can compare the beam size Φ and the quantity L tanα ' Lα, which
gives the beam deviation at the exit facet of a L thick crystal. The walk-off effect can be
neglected if Φ� L tanα.

Spatial effects: the present model treats the case of plane waves, and does not include inherent
diffraction effect that accompagnes the propagation of finite size beam. For a beam with a
diameter of 2w0, diffraction effect can be neglected since the Rayleigh length ZR = πw2

0/λ
is much longer than the nonlinear crystal length: ZR � L.

Angular acceptance: as already mentioned, by focusing the beam inside the crystal we will
increase the pump intensity and increase the SHG efficiency. Now, a reduction of the
beam size is accompanied by an extension of the spatial frequency contents, namely the k
vectors. Whereas, the phase-matching can be fulfilled around a specific k value, it might
be imperfect for neighbouring values. As a consequence, the SHG beam profile would not
match with that of the pump, because of the non uniformity of the SHG efficiency.

Temporal effects: in general these experiments are performed with pulsed laser in order to
meet the required high peak powers. With typical crystal thickness of few centimeters,
temporal effects could affect the SHG efficiency since the pulse duration are shorter than
typically 100 ps, which corresponds to a pulse packet length of the order of 1 cm. For even
shorter pulse, the group velocity difference between the ω and 2ω might also be an issue.

4.4 Optical parametric amplification, fluorescence and oscilla-
tion

We now describe a three-wave mixing that requires an intense beam at ω3. The simultaneous
propagation inside the crystal of the pump beam and a weaker signal beam at ω1 (or ω2) is
expected to amplify the signal beam at the expanse of a decrease in the pump beam intensity.
From Manley-Rowe relations, we know that such an interaction will also result in the generation
of a third signal at ω2 = ω3 − ω1, which is usually referred to the idler beam. Such Optical
Parametric Amplification effect is studied in 4.4.1. Following the understanding of this amplifier,
one can easily envisioned to place it inside an optical cavity that would exhibit resonances either
at the signal or idler frequencies, or at both. This problem is actually very similar to the study
of a cavity laser, with few differences that will be underlined in 4.4.3.

4.4.1 Optical Parametric Amplification

Subsequently, we consider the propagation of 3 collinear waves at ω1, ω2 and ω3 = ω1 + ω2

inside a χ(2) lossless crystal. The ω3 beam is sent with a very high intensity, so that it is referred

to the pump beam. Considering a weak efficiency for the nonlinear interaction, and that the
signal and idler beam intensities are much weaker than that of the pump, the problem is solved
assuming the undepleted pump approximation (or also called the parametric approximation):
I3(z) ' Cste. Considering the collinear configuration depicted in Fig. 4.8, the simplified wave
equations at ω1 and ω2 lead to

dA1

dz
=

ıω1

2n1c
χ

(2)
eff A3A

?
2e
ı∆kz, (4.19)

dA2

dz
=

ıω2

2n2c
χ

(2)
eff A3A

?
1e
ı∆kz, (4.20)
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Fig. 4.8. Optical Parametric Amplifi-
cation scheme. The interaction between
an incident pump beam 3 with a weaker
incident signal beam ω1, results in ampli-
fication of the signal beam that is accom-
panied by the generation of a third beam
ω2 = ω3 − ω1 (referred to idler beam).
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χ(2)

with ∆k = k3−k2−k1 and χ
(2)
eff = 2×e1 ·χ(2)(ω1;ω3,−ω2)e3e2 = 2×e2 ·χ(2)(ω2;ω3,−ω1)e3e1.

Before solving these two coupled equations, it is important to insist again on the assumptions
that have been made. The beams are treated as monochromatic plane waves, which means for
instance that their Rayleigh lengths are supposedly longer than the crystal length in order to
neglect diffraction effects. The polarization states e1, e2 and e3 are supposed to coincide with
eigen polarization states defined in the birefringent crystal for the direction of propagation z.
Hereafter, walk-off effect will also be neglected.

To solve the problem, one needs to eliminate the eı∆kz phase term by introducing the new
variables

a1(z) =

√
n1

ω1
A1(z)e−ı∆kz/2

a?2(z) =

√
n2

ω2
A?2(z)e+ı∆kz/2

a3(z) =

√
n3

ω3
A3(z).

Their substitution in (4.19) and (4.20) leads

da1

dz
+ ı

∆k

2
a1 = ıγ0a

?
2,

da?2
dz
− ı∆k

2
a?2 = ıγ?0a1,

with

γ0 =
χ

(2)
eff

c

√
ω1ω2

n1n2
A3.

The derivatives of the previous equations enable to write�
�

�
�d2a1,2

dz2
− γ2a1,2 = 0, (4.21)

with the parametric gain defined as�
�

�
�γ2 = |γ0|2 −

(
∆k

2

)2

. (4.22)

Before setting the solutions for signal and idler amplitudes, we need to emphasize the con-
dition at which amplification can occur. Actually, it arises from (4.21) that the form of the
solutions depends on the sign of the gain parameter γ2. In case of a strong phase miss-matching
condition, for which γ2 < 0, the signal and idler amplitudes take oscillating solutions giving a
very weak amplification directly related to 1/∆k. In contrary, a situation with γ2 > 0 insures
non-oscillating solutions and optical amplification can take place even if ∆k 6= 0. The condition

to amplify the signal beam is then |γ0|2 >
(

∆k
2

)2
.
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Fig. 4.9. Optical Parametric Amplification simulations : variations of the signal and idler beam intensities along
the nonlinear crystal thickness L for γ2 > 0 (left graph, with ∆k = 0 and γ0 = 1.2/L) and γ2 < 0 (right graph,
with ∆k = 4/L and γ0 = 1.2/L).

Assuming next a positive parametric gain γ2 > 0, one seeks solutions of the form a1,2(z) =
C1,2 exp(−γz) + D1,2 exp(+γz) with the constants C1,2 and D1,2 to be determined with the
boundary conditions

a1(z = 0) =

√
n1

ω1
A1(0) and a2(z = 0) =

√
n2

ω2
A2(0).

The solutions are finally given by:�
�

�
�A1,2(z) = A1,2(0)

[
cosh(γz)− ı∆k

2γ
sinh(γz)

]
eı∆kz/2 + ı

K1,2

γ
A?2,1(0) sinh(γz)eı∆kz/2, (4.23)

with K1,2 =
ω1,2

n1,2c
χ

(2)
eff A3 an amplification parameter that depends directly on the nonlinear

susceptibility strength of the material and on the pump intensity.

Variations for signal and idler beam intensities are plotted in Figure 4.9 for γ2 > 0 (with
∆k = 0 and γ0 = 1.2/L) and γ2 < 0 (with ∆k = 4/L and γ0 = 1.2/L). While in the first case
(left graph) the two intensities increase gradually along the crystal thickness, they periodically
oscillate in the second case (right graph). Note that the plotted solutions coincide with a
situation where the idler beam intensity is set to 0 at z = 0 (A2(0) = 0). In that case, and
assuming a perfect phase-matching condition ∆k = 0, the solutions are :

A1(z) = A1(0) cosh(γz) and A2(z) = ı
K2

γ
A?1(0) sinh(γz). (4.24)

In conclusion, the derivation of the nonlinear wave equations (4.19) and (4.20) shows that
the interaction between a pump beam ω3 and a weaker signal beam ω1 < ω3 can give rise to

an optical amplification of the signal beam. Optical amplification occurs if |γ0|2 >
(

∆k
2

)2
, with

γ0 =
χ

(2)
eff
c

√
ω1ω2
n1n2

A3 the intrinsic parametric gain and ∆k = k3−k2−k1 the phase-matching term.

For a given wavevector missmatch ∆k, the pump intensity must reach the threshold value :

I3th =
(∆k)2n1n2n3c

3ε0

2(χ
(2)
eff )2ω1ω2

, (4.25)

which is calculated setting the equality |γ0|2 =
(

∆k
2

)2
. The threshold intensity is null for ∆k = 0,

and its minimum value for ∆k 6= 0 is achieved for ω1 = ω2 = ω3/2.
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Fig. 4.10. Picture of an optical parametric fluorescence
effect observed by pumping a 2nd order nonlinear crystal
with a UV laser beam.

Fig. 4.11. Parametric amplification
laser source that delivers two indepen-
dent pulses, with a distinct control of
their wavelength, and its application in
a pump-probe experiment. UV pump
pulses generate some parametric fluores-
cence effect in a first nonlinear crystal
(BBO), which is amplified in a second.
The beam is spectrally filtered and back
reflected insight the two BBOs crystals
for additional amplification. A short
length of optical fiber is used to spatially
filter the beam. The operating wave-
length on the two lines can be selected
independently.

4.4.2 Optical Parametric Fluorescence

The previous situation considers the interaction between a pump wave at ω3 and a weaker signal
beam at ω1 (with ω1 < ω3) leading to the amplification of the signal beam at the expense of the
pump for a perfect phase matching situation, and which is accompanied by the simultaneously
generation of an idler beam at ω2 = ω3 − ω1. Now, it is interesting to note that, following the
relation (4.23), the generation of the idler beam requires a non-zero incident signal beam. For
boundary conditions A1(z = 0) = 0 (and A2(z = 0) = 0), no idler can be generated.

Yet, and as it is illustrated in the figure 4.10 picture, pumping a 2nd order nonlinear crystal
with a UV laser beam results in the apparition at the crystal output of new frequencies arranged
in rainbow circles. The description of such a fluorescence effect, which is not predicted by the
previous classical model, requires the quantization of the electromagnetic fields. Such a quantum
approach shows that the annihilation of a photon at ω3 is expected and is accompanied by the
creation simultaneously of one photon at ω1 and one photon at ω2. The directions toward which
the photons are generated are given by the vectorial phase matching condition k3 = k1 +k2, and
are distributed along circles in the case of uniaxial crystals (in accordance with the uncertainty
principle of quantum mechanics).

Numerous of quantum optics experiments use this spectacular fluorescence effect as photons
generated in a pair of signal and idler modes (defined by wavevectors that satisfy the phase
matching condition) are correlated.

Parametric fluorescence effect is also used to generate seed light to be amplified through a
succession of optical parametric amplifiers as illustrated in figure 4.11. Even more interestingly,
fluorescence effect serves as a first step to initiate a parametric oscillation inside a cavity, giving
rise to a new class of optical oscillators studied in the next paragraph.
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Fig. 4.12. Optical Parametric Oscillator (OPO)
scheme. The interaction between an incident pump beam
ω3 and an intracavity nonlinear crystal gives rise to the
generation of weak signal and idler beams through a para-
metric fluorescence effect. This beams serve as a seed
that will be amplified after many reflections inside the
cavity. The cavity oscillation occurs for a pump inten-
sity at which the parametric gain strictly compensates
for the cavity losses over one round-trip.

4.4.3 Optical Parametric Oscillation

In order to achieve a higher efficiency in the amplification of the seed signal generated by
parametric fluorescence effect, the nonlinear material is inserted inside an optical cavity as
illustrated in figure 4.12. Following the successive reflections on the two mirrors, the signal
and idler beams are expected to experience amplification. Once the parametric gain exceeds
the cavity losses over one round trip, an oscillation of the cavity is expected, similar to that
observed in a laser. Such a source is called an Optical Parametric Oscillator (OPO).

At first, we consider the case of a singly resonant cavity for which the two mirrors of the
cavity only reflect the signal beam. The mirrors are then coated with anti-reflection layers to
prevent any reflection at the pump and idler wavelengths. Assuming a perfect phase matching
and using the relation (4.24), the oscillation threshold for a singly resonant OPO is given by:

r1r
′
1 cosh(γ0L) = 1, (4.26)

where r1 and r′1 stands for the reflectance of the two cavity mirrors and L the nonllinear crystal
thickness. It is important to underline that the optical amplification of the signal beams only
occurs in the forward direction, for which a perfect phase matching is satisfied (assuming a
collinear configuration). Along the backward direction, the phase matching is not verified as
signal and pump beams propagate in two opposite directions.

In case of a doubly resonant OPO, with mirrors reflecting both the signal and idler beams,
one can show that the oscillation threshold condition satisfies:

cosh(γ0L) =
1 + r1r

′
1r2r

′
2

r1r′1 + r2r′2
, (4.27)

where r2 and r′2 are reflectance of the two cavity mirrors for the idler beam.

Although it generates coherent beams, the operation of an OPO differs from that of a laser.
Optical amplification in OPOs is driven by a 2nd order nonlinear interaction, a parametric am-
plification, and has to be clearly distinguished from the amplification by simultaneous emission
of radiation for lasers. The latter is based on the pumping of active elements or dopants (atoms,
ions, molecules, electrons...) for their excitations to upper level states in order to reach the
inversion of the population between the two energy states involved for the amplification tran-
sition. The parametric amplification implies no transfer of energy between the pump and the
material as it is based on a non-resonant transition (we always consider lossless materials). The
gain saturation observed as the pump power increases is directly monitored through the pump
depletion consecutive of the transfer of energy between the pump and the two signal and idler
beams. As it is based on a non-resonant interaction, an OPO can be widely tuned in frequency,
where the tunability for a laser is limited by the optical transition linewidth. The tunability of
an OPO is achieved by changing the phase matching condition, either through an angular posi-
tion control of the crystal respectively to the cavity optical axis, or a control on the temperature
of the crystal.
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4.5 Quasi-Phase Matching

We have previously shown how phase matching condition can be fulfilled by exploiting bire-
fringence properties of materials. However, birefringent phase matching can not be achieved
in all materials, nor for all nonlinear interactions. More specifically, it may happen that the
exploitation of a strong nonlinear susceptibility tensor component does not allow any birefrin-
gent phase matching. Indeed, some materials (for instance Lithium Niobate) are characterized

by a strong χ
(2)
ZZZ coefficient implying that all the interacted waves are polarized in the same

direction, which makes the phase matching impossible to realize by birefringence.
An alternative technique consists in introducing a periodicity in the nonlinear term source,

more specifically by periodically inverting the sign of the effective nonlinear susceptibility. One
reminds that in a non-phase matched situation, the wave intensity follows an oscillating variation.
Whereas, it reaches a maximum value after a distance z = π/∆k = Lc, the coherence length
(3.3.2), the intensity decreases down to zero at z = 2 × Lc as the nonlinear polarization being
out off phase with the free running wave at ω. The solution consists in periodically inverting the
sign the crystal orientation in order to introduce a π phase shift to the nonlinear polarization
and to maintain a constructive interference with the free running wave.

As an illustration, let’s consider the second harmonic generation case in a configuration that

exploits the strong χ
(2)
ZZZ coefficient. The 2ω wave follows the wave equation (4.7)

dA2ω(z)

dz
=
ı(2ω)

2n2ωc
χ

(2)
eff A2

ωe
ı∆k·z ,

with χ
(2)
eff = eZ · χ(2)

ZZZeZeZ the effective nonlinear susceptibility and ∆k = 2kω − k2ω the wave
vector missmatch. By means of a technique presented below, we next introduce a periodic spatial

variation for χ
(2)
eff (z) = χ

(2)
eff,0 cos(Kz) in the 2ω wave equation

dA2ω(z)

dz
=
ı(2ω)

2n2ωc
χ

(2)
eff,0 A

2
ω cos(Kz)eı∆k·z ,

=
ı(2ω)

2n2ωc
χ

(2)
eff,0 A

2
ω

eıKz + e−ıKz

2
eı∆k·z , (4.28)

which shows that a quasi-phase matched (QPM) situation is achieved since K = ∆k = 2kω−k2ω.

One concludes that a periodic inversion of the χ
(2)
eff sign, with a period Λ = 2 × Lc, leads to a

growth in the intensity at 2ω. Compare to the case of a perfect phase-matching condition with

an effective susceptibility χ
(2)
eff , the efficiency of SHG under the quasi-phase matching condition

is reduced by a factor 4 as the effective nonlinear susceptibility is χ
(2)
eff /2. Nevertheless, a phase

matching condition is reached in a configuration for which no birefringent phase matching can
be set !

The generalization to a 3-wave mixing configuration is straightforward. The quasi-phase
matched condition for the interaction between 3 waves at ω1, ω2 and ω3 = ω1 + ω2 implies to
satisfy the equality k(ω3) = k(ω1)+k(ω2)+KQPM, as illustrated in figure 4.13(b) for a collinear
configuration.

Material poling is achieved by applying a static field between electrodes, which leads to
a permanent domain reversal of the material. A patterning of the electrodes is performed to
realize a periodically poled crystal shown in figure 4.13(a) and to obtain a succession of piles
with inverted domains. Considering the propagation of Z polarized waves, the effective nonlinear

susceptibility for the even piles is χ
(2)
effEV = eZ ·χ(2)

ZZZeZeZ , whereas it is opposite for odd piles as

χ
(2)
effOD = (−eZ) · χ(2)

ZZZ(−eZ)(−eZ) = −χ(2)
effEV. A more accurate description of QPM efficiency

consists in developing the effective nonlinear susceptibility with a square wave function S(z)
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Fig. 4.13. (a) Periodically poled nonlinear crystal with a period set to Λ = 2×Lc to satisfy the phase matching
for the 3 wave interaction depicted in (b).

Fig. 4.14. Comparison in the power evolution under perfect phase matching (i), non-phase matching (ii) and

quasi-phase matching (iii) situations. The signs represent the sign of the effective nonlinear susceptibility χ
(2)
eff

along the material thickness. Figure from HCP Photonics https://www.hcphotonics.com/ppln-guide-overview

of period Λ = 2 × Lc. Using the Fourier expansion S(z) = 4
π

∑
p

1
2p+1 sin ((2p+ 1)2πz/Λ), the

effective nonlinear susceptibility is then equal to i
χ

(2)
eff
π/2 .

Finally, a comparison of power evolutions through a χ(2) nonlinear material for different
phase matching situations is shown in figure 4.14 (figure from HCP Photonics web site). Under
QPM, power evolution can be approximated by a parabolic curve, as for the perfect phase
matched situation, with a reduced efficiency due to a lower effective nonlinear susceptibility as
predicted below.

https://www.hcphotonics.com/ppln-guide-overview
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5.1 Introduction

This chapter is dedicated to the study of 3rd order nonlinear optical effects, through which
4 waves at ω1, ω2, ω3 and ω4 = ω1 + ω2 + ω3 could interact in a material with a non-zero
third order susceptibility χ(3). In a first part, we will describe the so-called Four-Wave Mixing
(FWM) (5.3) interactions occurring in lossless materials. Generally, these interactions refer
to parametric interactions. Similarly to parametric interactions in χ(2) materials, third order
optical parametric amplification process can be exploited to amplify a signal beam by means of
its interaction with a pump beam. This amplification is also accompanied by the simultaneous
generation of an idler beam. An other application of FWM is the realization of Phase-Conjugate
Mirrors, enabling the generation of a beam which is the phase-conjugated of an incoming signal.

Section (5.4) will present the Optical Kerr Effect related to the capability of an intense
beam to modify the refractive index of the material. The consequence on the propagation
of optical wave-packets (either temporal or spatial) will be analyzed in details, showing the
interdependence between optical Kerr effect and dispersion (in time domain) or diffraction (in
spatial domain).

The last section will focus on resonant nonlinear interactions involving a two-photon tran-
sition on the material, like two-photon absorption or emission effects, Raman or Brillouin scat-
tering.

5.2 Transfer of energy between an electromagnetic field and a
medium

We consider the propagation of an electromagnetic wave at ω through a third order nonlinear
material. We suppose that it contains a nonlinear polarization P (3)(ω) radiating at the frequency
ω. This term source could have been generated by the wave ω itself through

P (3)(ω = ω − ω + ω) = 3ε0χ
(3)E(ω)E(−ω)E(ω),

or by means of a pump beam at ωp. It that case the nonlinear polarization expression is 1 :

P (3)(ω = ωp − ωp + ω) = 6ε0χ
(3)E(ωp)E(−ωp)E(ω).

The quantity of energy that is exchanged between the wave at ω and the material, per unit
of time and volume is given by the relation (3.14) p. 21. Substituting P (ω) = P (1)(ω)+P (3)(ω)
into (3.14) leads to the relation :

−∂W
∂t

= 2ωε0

(
e · χ(1)′′(ω)e

)
|E(ω)|2 + 2ωε0

(
e · χ(3)′′epepe

)
|E(ωp)|2|E(ω)|2. (5.1)

A nonlinear interaction implying a transfer of energy between the interacted waves and the
material requires a non-zero imaginary part χ(3)′′ of the susceptibility (as for the linear case).

1Beside the difference in the frequency arguments between those two relations, note the difference in the
degeneracy factor. For a given effective material susceptibility, an interaction governed by ω = ωp − ωp + ω is
twice more efficient that an interaction ω = ω − ω + ω.
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Fig. 5.1. Four Wave Mixing schemes.
(a) The interaction between three waves
at ω1, ω2 and ω3 generate a fourth wave
at ω4 = ω1 + ω2 + ω3. (b) One single
intense pump beam at ω4 can generate 3
waves at ω1, ω2 and ω3.

5.3 Four-Wave Mixing

Third order nonlinear interactions involve interaction between 4 waves at ω1, ω2, ω3 and ω4 =
ω1 + ω2 + ω3. Hereafter, we study different Four-Wave Mixing (FWM) configurations, non-
degenerate and degenerate in frequencies, through lossless nonlinear materials with a purely
real χ(3) nonlinear susceptibility (and a purely real linear susceptibility). As a consequence,
interactions will not be accompanied by any transfer of energy between the interacted waves
and the nonlinear material. As for the 2nd order nonlinear effects, one could easily show that
FWM interactions in lossless material follow the energy conservation relation:

~ω1 + ~ω2 + ~ω3 = ~ω4.

Similarly, the derivation of nonlinear wave equations would give the following phase matching
condition:

k1 + k2 + k3 = k4,

which is equivalent to a law of momentum conservation.

5.3.1 Generation of UV and IR beams

Figure 5.1 schematically illustrates (a) the capability for three incident waves at ω1, ω2 and ω3

to generate a fourth wave at ω4 = ω1 +ω2 +ω3, and (b) for one single intense pump beam at ω4

to generate 3 waves at ω1, ω2 and ω3. These interactions are governed by the phase matching
condition k1 + k2 + k3 = k4, which determines the directions of propagation for the 4 waves
(in relation with the dispersion property of the nonlinear material). Whereas the interaction
described in Fig. 5.1(a), which could serve to generate a UV beam from IR pump beams, can be
theoretically described solving nonlinear wave equations, the Fig. 5.1(b) interaction requires a
quantum description. Following the quantization of the optical electromagnetic waves, one could
show that, through the interaction, one photon at ω4 is annihilated to generate simultaneously
3 photons respectively at ω1, ω2 and ω3.

These third order interactions find some interests in centro-symetric material since their χ(2)

vanishes. Now, one has to underline the inherently weak efficiency of these nonlinear effects,
since χ(3)EEE � χ(2)EE for nonresonant interactions. A way to enhance the χ(3) nonlinear
susceptibility consists in using a quasi-resonant interaction as depicted in Figure 5.1(a) for which
~ω1 + ~ω2 ' ~ωab, the energy transition between energy states |a〉 and |b〉.

5.3.2 Optical parametric amplification through FWM in an optical fiber

In the following, we illustrate the optical amplification of a signal ωs using either two pump
beams ωp1 and ωp2, or one pump beam ωp, through the interaction depicted in Figure 5.2 where



52 5 3RD ORDER NONLINEAR OPTICAL INTERACTIONS

Fig. 5.2. 3rd Order optical parametric
amplification : a signal beam ωs is ampli-
fied through the interaction in a χ(3) ma-
terial with one single intense pump beam
at ωp. The interaction follows the en-
ergy conservation relation ~ωp + ~ωp =
~ωs + ~ωi, with ωi the frequency of the
idler beam that accompanies the ampli-
fication of the signal beam.

ħωs 

ωi 
ħωi 

ħωp ωs ω
ωp ωp 

ωs 

ħωp χ(3)

the beam frequencies follow the relation ~ωp + ~ωp = ~ωs + ~ωi. It is anticipated that the
amplification of the signal beam ωs is accompanied by the generation of a third beam at ωi,
referred to as the idler beam.

Optical fiber parametric amplifier: We next take the example of a parametric amplifier
realized in a length of optical fiber. Typically the fiber is made in silica. Although the value
of χ(3) in silica remains rather small, significant amplification can be achieved in practice by
using a long interaction length easily achievable in optical fibers. In addition, it would give the
opportunity to play with nonlinear wave equations that has been derived in case of waveguides
(see section 3.5).

The complex amplitude related to the three waves is written:

Em(r, z) = emφ
q
m(r)Am(z)eıβq(ωm)z, (5.2)

with m = p, s or i. The three waves propagate inside a waveguide along the z direction,
along which the waveguide is invariant. The mode field distribution related to each wave is
characterized by the wavevector βp(ωm), the polarization state em and the spatial distribution
φpm(r). Assuming that the set of transverse modes form a complete base of normalized and
orthogonal modes, we have the relation (orthogonality between the transverse modes):

∫ ∫
φqm(r)φq

′
m(r)?d2r = δqq′ .

Using the nonlinear wave equation (3.32), one can write three coupled wave equation at ωp,
ωs and ωi:

dAp
dz

=
iωp

2npc
3ξp−pp−pχ

(3)
eff |Ap|2Ap

dAs
dz

=
iωs

2nsc
3χ

(3)
eff

[
2ξp−ps−s|Ap|2As + ξppi−sA2

pA
∗
i e
i∆βz

]
(5.3)

dAi
dz

=
iωi

2nic
3χ

(3)
eff

[
2ξp−pi−i|Ap|2Ai + ξp−ps−iA2

pA
∗
se
i∆βz

]

As underlined by the right hand side term of wave equation (3.32), the modification of the
envelope field is governed by the spatial overlapping between the spatial dependent nonlinear
polarization term P (NL)(r, ω) and the spatial distribution of the mode φpm(r). As a consequence,
the three wave equations are expressed with overlapping coefficients, which are given by:

ξijk−l =

∫
φiφjφkφl

?d2r∫
φlφl

?d2r
and ξi−jk−l =

∫
φiφj

?φkφl
?d2r∫

φlφl
?d2r

, (5.4)

where the indices i, j, k, and l refer to any of the interacted waves indices, p, s or i. Subsequently,
we consider the propagation in a single mode fiber. The variation in the confinement for the
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three waves is neglected and the overlapping coefficients are taken equal. Finally, the interaction
efficiency is governed by the phase matching term:

∆β = 2βp − βs − βi. (5.5)

Note that nonlinear wave equations (5.3) assume that signal and idler wave intensities are
much weaker than the pump intensity.

We start by deriving the wave equation for the pump:

dAp
dz

= iγPpAp,

which has been expressed in terms of the pump power Pp = 2ncε0|Ap|2
∫ ∫

φlφl
?d2r and the

parametric gain coefficient γ:

γ =
3ωp

4ε0n2
pc

∫
|φp|4d2r

(∫
|φp|2d2r

)2χ
(3)
eff (5.6)

Under a parametric regime, i.e. neglecting the pump depletion, the pump wave evolution
follows

Ap(z) = Ap(0)eiγPpz

= |Ap(0)|eiθeiγPpz,

where θ is the linear phase related to the pump wave Ap(z = 0). The solution shows that,
under parametric interaction, the undepleted pump wave experiences a nonlinear phase shift
ΦNL(z) = γPpz. This nonlinear effect refers to Optical Kerr Effect that is studied in more
details in section 5.4.

Substituting the pump wave evolution in wave equations (5.3), one can re-write wave equa-
tions for signal idler waves:

dAs
dz

= iγPp
np
ωp

ωs
ns

[
2As +A∗i e

2iθei(∆β+2γPp)z
]

(5.7)

dA∗i
dz

= −iγPp
np
ωp

ωi
ni

[
2A∗i +Ase

−2iθe−i(∆β+2γPp)z
]
. (5.8)

In order to simplify those coupled equations one can introduce new variables:

Bs(z) = As(z) exp

(
−2iγPp

np
ωp

ωs
ns

)
and B∗i (z) = A∗i (z) exp

(
+2iγPp

np
ωp

ωi
ni

)
,

leading to the set of coupled equations:

dBs
dz

= iγPp
np
ωp

ωs
ns
e2iθB∗i (z)e+iK′z (5.9)

dB∗i
dz

= −iγPp
np
ωp

ωi
ni
e−2iθBs(z)e

−iK′z. (5.10)

with K ′ = ∆β+ 2γPp

[
1− np

ωp

(
ωs
ns

+ ωi
ni

)]
. Actually, the previous coupled equations take a form

similar to those derived for the parametric amplification in a χ(2) material (section ??), helping
in deriving the solutions in case of parametric amplification in a χ(3) material.
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Assuming the boundary conditions Ai(z = 0) = 0 and As(z = 0) = As0, the solutions for
signal and idler optical power evolutions are:

Ps(z) = Ps(0)

[
1 +

Γ′2

g′2
sinh2(g′z)

]
(5.11)

Pi(z) =
ωins
niωs

Ps(0)
Γ′2

g′2
sinh2(g′z), (5.12)

with Γ′ = γPp
np
ωp

√
ωiωs
nins

and g′2 = Γ′2 − K′2
4 , the parametric gain.

The amplification factor for the signal can be directly derived from (5.11):

G(z) =
Γ′2

g′2
sinh2(g′z). (5.13)

As a conclusion, an incident signal wave at ωs is subject to amplification through its in-
teraction with a pump beam at ωp in a χ(3) nonlinear material. Assuming a lossless material,
this amplification is accompanied by the generation of an idler beam at ωi = 2ωp − ωs. The
amplification factor is directly proportional to the pump intensity2 and depends on the phase

matching condition given by K ′ = ∆β + 2γPp

[
1− np

ωp

(
ωs
ns

+ ωi
ni

)]
. As it will be underlined

below, this phase matching condition is influenced by the Optical Kerr Effect, through the term
proportional to γPp. Considering that

np
ωp
' ns

ωs
' ni

ωi
, the phase matching condition can be

simplified in:

K ′ = ∆β + 2γPp

[
1− np

ωp

(
ωs
ns

+
ωi
ni

)]

' ∆β − 2γPp. (5.14)

In the case of a perfect phase matching condition K ′ = 0, the amplification factor reaches its
maximum value for K ′ = 0:

Gmax(z) ' sinh2(γPpz)

' sinh2(ΦNL(z)) (5.15)

since g′ = Γ′. We have assumed that
np
ωp
' ns

ωs
' ni

ωi
.

Comments:

• The phase matching condition is described by a linear term, ∆β the phase mismatch be-
tween the interacted waves, and a nonlinear effect related to the nonlinear phase ΦNL(z) =
γPpz experienced by the pump wave. As it will be explained in the next section, the pump
intensity modifies the refractive index of the material, which directly influenced the phase
matching condition.

• Concerning the phase mismatch ∆β = 2βp−βs−βi between the interacted waves, we show
its relation with the dispersion coefficient β2 of the material (or the waveguide). Indeed,
one can write ωs = ωp − Ω, meaning that ωi = ωp + Ω. if we consider a narrow spectral
interval Ω between the interacted waves, i.e. Ω � ωp, the Taylor’s expansions for βs and
βi show that ∆β ' −β2Ω2.

2The amplification factor depends on the quantity γPp and, one could note that the expression (5.6) for γ
depends on the mode field distribution of the waves.
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Fig. 5.3. Left: Parametric gain g′ accumulated over a length L with the phase mismatch ∆βL for two nonlinear
phase values. Right: Amplification gain for the signal Ps(L)/Ps(0) for nonlinear phase varying between 0 to 1,
for two phase mismatch values.

Fig. 5.4. Amplification gain bandwidth for the signal
for two nonlinear phase shift values.

Neglecting the Optical Kerr Effect, parametric amplification would require the propagation
through a waveguide with a zero dispersion, β2 = 0. However, the phase matching is
fulfilled since K ′ = 0, implying ∆β = 2γPp(z = 0). Now, depending on the sign of

the nonlinear coefficient χ
(3)
eff (equivalently of γ), phase matching can only be fulfilled with

dispersion coefficient β2 which takes an opposite sign. Considering for instance, parametric
amplification in a silica fiber, for which γ > 0, amplification implies the propagation in
anomalous dispersion regime with β2 < 0 3.

• Parametric amplification occurs only if g′2 > 0, or Γ′2 > K ′2/4, which implies the following
condition for the linear phase missmatch: 0 < ∆β < 4γPp. The maximum value for
amplification is reached for ∆β = 2γPp, coinciding with K ′2 = 0.

5.3.3 Optical Parametric Fluorescence Effect

We next consider the FWM depicted in Figure 5.2, but where we suppose that only one pump
beam is incident on the χ(3) material. The solutions (5.11) for the FWM wave equations show

3β2 < 0 coincides with a positive dispersion coefficient D.
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Fig. 5.5. Measured spectra at the out-
put of the photonics crystal fiber (in-
set) injected with 1 ps pulse duration at
850 nm. As the injected pulse power in-
creases, signal and idler side lobes are
generated through an amplified paramet-
ric fluorescence effect. The spectrum of
the injected pulse is shown in black line.
From Margaux Barbier, PhD manuscript
(2014).
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that, with the boundary conditions As(z = 0) = 0 and Ai(z = 0) = 0, the signal and idler power
remains null: Ps(z) = 0 and Pi(z) = 0. However, and similarly to the parametric fluorescence
effect observed in a χ(2) material, signal and idler photons are generated at frequencies which
minimize the phase matching condition for the material (or the waveguide) used in the experi-
ment. A complete description of such an effect requires the optical field quantization at ωs and
ωi, with an approach similar to that of a χ(2) fluorescence effect.

Figure 5.5 illustrates the generation of signal and idlers photons in a photonics crystal fiber
(inset) subject to the injection of 1 ps pulse duration at 850 nm. As the pulse power increases,
the signal and idler side-bands are amplified, corresponding to the amplification by FWM of
photons being initially generated through a parametric fluorescence effect.
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5.4 Optical Kerr Effect

5.4.1 Nonlinear refractive index

We consider the propagation of a monochromatic wave at ω in a χ(3) nonlinear material and
study the consequence of the nonlinear polarization at ω:

P (3)(ω = ω − ω + ω) = ε0χ
(3)(ω;ω,−ω, ω)E(ω)E(−ω)E(ω). (5.16)

The total polarization that is generated inside the material is:

P (ω) = P (1)(ω) + P (3)(ω)

= ε0

[
χ(1)(ω)E(ω) + χ(3)(ω;ω,−ω, ω)E(ω)E(−ω)E(ω)

]
. (5.17)

During its propagation the wave ω will be modified through the effective polarization

e · P (ω) = ε0

[
χeff + χ

(3)
eff |A(ω)|2︸ ︷︷ ︸

]
A(ω)eıkz, (5.18)

which shows a modification of the linear susceptibility proportionally to the wave intensity. The
contribution from the imaginary part χ′′eff of the third order nonlinear susceptibility induces a
modification of either the absorption or the amplification coefficient of the material (depending
on its sign). One can refer to the situation of the two-photon absorption (or emission) that will
be studied later.

Subsequently in this section, we will consider the contribution from the real part χ′eff of
the third order nonlinear susceptibility, which modifies the refractive index of the material
proportionally to the wave intensity. Such an effect refers to as optical Kerr effect. Next, we
assume a lossless material in order to neglect the contribution from the the imaginary part χ′′eff .
One reminds the relation between the linear refractive index and the linear susceptibility for an
isotropic material: n0(ω) =

√
1 + χeff(ω). The modification of the refractive index from optical

Kerr effect follows the relation :

n2(ω) = 1 + χeff(ω) + χ
(3)
eff |A(ω)|2

= n2
0(ω)

[
1 +

χ
(3)
eff

2n3
0(ω)ε0c

I(ω)

]
.

The nonlinear interactions lead to very weak refractive index variation, enabling to write�� ��n(ω) = n0(ω) + n2I(ω), (5.19)

with

n2 =
χ

(3)
eff

4n2
0(ω)ε0c

=

3

(
e · χ(3)eee

)

4n2
0(ω)ε0c

, (5.20)

the nonlinear refractive index. As underlined by the relation (5.19), the nonlinear refractive
index unity is m2/W.

To conclude, we have shown the capability for a wave to modify the refractive index of a
material, proportionally to the wave intensity and a nonlinear refractive index (a characteristic
of the material)4. As an example, the nonlinear refractive index for silica is n2 ' 3 10−20 m2/W.

4A modification of the absorption (or the gain) originates from the χ(3) imaginary part.
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Interestingly, optical Kerr effect can also be induced on a wave ω through its interaction with a
second intense beam at ωp. As the refractive index change is governed by a distinct wave, the
nonlinear polarization at ω is:

P (3)(ω) = ε0χ
(3)(ω;ω,−ω, ω)E(ω)E(−ω)E(ω) + ε0χ

(3)(ω;ωp,−ωp, ω)E(ωp)E(−ωp)E(ω)

' ε0χ(3)(ω;ωp,−ωp, ω)E(ωp)E(−ωp)E(ω),

assuming that |E(ωp)|2 � |E(ω)|2. In such a cross-effect, the nonlinear refractive index differs
by a factor 2 (because of the difference in the degeneracy factor) and we get:

n(ω) = n0(ω) + 2n2I(ωp).

5.4.2 Physical origin of n2

We briefly mention various physical origins that generate a nonlinear refractive index in mate-
rials.

Nonresonant electronic nonlinearities: This contribution arises from the bound electrons
of polarized entities. It coincides with a very fast response time, typically of the order of
10−15 s. As a non resonant effect, it gives rise to a very weak efficiency with n2 of the
order of 10−20 to 10−18 m2/W.

Kerr effect induced by molecular orientation: The interaction between coherent electric
fields from intense laser beams and anisotropic molecules induces an orientation of the
molecules, which exhibits a refractive index variation proportional to |E|2. Despite a
lower response time, 10−11 to 10−12 s, the n2 values are higher (10−18 − 10−17 m2/W).

Electrostriction effect: The modification of the material density under an inhomogeneous
illumination contributes to higher value for n2 (10−18 m2/W), but with a low response
time (about ¬µs).

Thermal effect: In materials with absorption, the absorbed energy contributes to increase the
temperature of the illuminating portion of the material, and leads to a variation of the
refractive index. It may be very efficient but very slow.

5.4.3 Self-phase modulation

The modification of the refractive index necessarily induces a phase shift of the wave, which is
proportional to its intensity. In a case of the wave packet, either a temporal or spatial wave
packet, the respective intensity varies with time or space leading to a spectral broadening. This
time- or space- dependent phase shift induced by an intensity-dependent refractive index change
is called self-phase modulation effect (SPM).

As a first analysis, the linear effects such as dispersion or diffraction, which govern the
propagation of temporal or spatial wave packets in linear regime, will be neglected. The nonlinear
wave equation for a lonely wave packet propagating through an optical Kerr medium is given
by

∂A(ρ, z)

∂z
= ık0n2I(ρ, z)A(ρ, z), (5.21)

where the envelope distribution A(ρ, z) is either described in time (ρ = t) or space (ρ = r)
domain. Prior to further analysis, one can notice that the phase matching condition is automat-
ically fulfilled with SPM effect.



5.4 Optical Kerr Effect 59

Considering the propagation in a lossless material, the nonlinear refractive index n2 is a
purely real quantity, and equation (5.21) shows that the wave intensity is invariant with z. The
wave equation (5.21) can be easily integrated and the solution is:

A(ρ, z) = A(ρ, 0)eık0n2I(ρ)z

= A(ρ, 0)eıΦNL(ρ,z), (5.22)

where ΦNL(ρ, z) = k0n2I(ρ)z describes the accumulated nonlinear phase shift along the prop-
agation distance z. Whereas, the envelope (or the intensity) distribution of the wave-packet
remains unchanged5, optical Kerr effect induces a self-phase modulation effect. The time, or
space, dependent nonlinear phase ΦNL(ρ, z) exhibits a spectral broadening of the pulse.

Taking the example of a temporal pulse, an order of magnitude of the spectral broadening
can be calculated by expanding the phase term related to the wave-packet electric field:

E(t) = eA(t)eı(ω0t−ΦNL(t)) + C.C.

' eA(t)e
ı
(
ω0− dΦNL(t)

dt

)
t
+ C.C.

The self-phase modulation induced spectral broadening can be approximated by:

∆ωNL ' −
dΦNL(t)

dt
= −k0n2

dI(t)

dt
z. (5.23)

For a symmetric temporal evolution of the pulse, one expects a symmetric spectral broadening
since the intensity time variations follow the same variation for the front and tailing edge of the
pulse. However, they differ with their sign. Indeed, dI/dt is positive at the front edge of the
pulse, leading to a negative (resp. positive) frequency shift ∆ωNL for a positive (resp. negative)
nonlinear refractive index n2. During the tailing edge of the pulse, a positive (resp. negative)
frequency shift ∆ωNL is expected for a negative (resp. positive) nonlinear refractive index n2.

Self-phase modulation of a temporal pulse through a positive Kerr material (n2 > 0) is
illustrated in Figure 5.6. Whereas the envelop pulse shape remains unchanged along the prop-
agation, the optical carrier frequencies vary with time with red spectral components coinciding
with the front edge of the pulse, and blue spectral components with the tailing edge. The output
optical spectrum exhibits a broadening respect to the input spectral linewidth.

The evolution of self-phase modulation induced spectral broadening with the accumulated
nonlinear phase is plotted in Figure 5.7 for a gaussian shape pulse and experiencing nonlinear
phase from 0 to 3.5π. The amount of nonlinear phase is evaluated through ΦNL = k0n2I0z,
with I0 the intensity peak power of the pulse. As the nonlinear phase ΦNL increases, the
optical spectrum for the outgoing pulse undertakes a larger symmetric broadening, which is a
characteristic of a self-phase modulation induced spectral broadening.

5.4.4 Nonlinear Schrödinger equation

From the previous section, we have learned that the propagation of a wave packet through a
pure Kerr medium leads to a phase modification proportionally to the wave intensity. A pure
Kerr and lossless medium is then equivalent to a spatial or/and a temporal phase modulator, for
which the phase level is linearly coded with the wave intensity (and the propagation length), and
can be referred to as Kerr lens effect. Since the optical Kerr effect can be equivalently described
by a lens effect, one can easily understand the importance (and the richness) in describing the
propagation of a wave packet in a medium that includes both a nonlinear Kerr term combined
with linear effects, such as diffraction and/or dispersion.

5as |A(ρ, z)| = |A(ρ, 0)| in Eq. (5.22)
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Fig. 5.6. Self-phase modulation effect induced spectral broadening for a pulse propagating through a length of
optical fiber, characterized by positive n2. Whereas the pulse experiences a spectral broadening, the pulse shape
and duration are not altered. [Picture courtesy of Margaux Barbier]
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Fig. 5.7. Spectral broadening of a gaussian pulse through self-phase modulation effect and for nonlinear phase
varying from 0 to 3.5π.
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At this stage, and without any formalism, one can easily anticipate three basic features
that will arise by considering the propagation through a Kerr material taking into account the
diffraction or the dispersion effects:

Self-focusing effect: Whereas the beam would expand along the propagation due to the linear
term (diffraction in space, dispersion in time domains), as the intensity increases and
considering a positive n2 > 0, the accumulated Kerr lens along the propagation will tend
to counter-balance the linear effect and to focus the beam. As it will be shown below,
self-focusing effect for a temporal wave packet requires an anomalous dispersion regime
(β2 < 0).

De-focusing effect: For a spatial beam, a defocusing effect appears once the Kerr lens acts
as a divergent lens for n2 < 0. In the time domain, defocusing arises when the nonlinear
refractive index n2 and the second order dispersion coefficient β2 are similar in signs.

Soliton effect: Finally, one can easily anticipate a situation where the beam expansion, gov-
erned by a linear term, is perfectly counter-balanced by the nonlinear Kerr lens effect,
which leads to an invariance in the beam size along the propagation. Such a specific sit-
uation refers to as a soliton effect, and can be observed either in time or space domain.
While the beam propagates, it records its own Kerr lens that strictly compensates for the
expansion driven by either the diffraction of the dispersion effects. Such a nonlinear prop-
agation regime founds similitudes with the propagation in optical waveguides6. Whereas a
spatial soliton is similar to a two-dimension waveguide, with an index profile self-recorded
by the spatial beam, a temporal soliton is temporal analogue waveguide !

A more accurate description requires to derive a nonlinear equation that includes both a
linear and Kerr terms. Subsequently, the linear effects coincide either to diffraction, which
operates in the spatial domain, or to the second-order dispersion effect, which operates in time.
Using the nonlinear equations (3.26) and (3.28), and substituting the expression for the nonlinear
polarization envelop in case of a pure Kerr effect:

ΠNL(ρ, z) = ε0χ
(3)
eff |A(ρ, z)|2A(ρ, z)e,

yields the derivation of two wave equations in time and space:

∂A(τ, z)

∂z
+
ıβ2

2

∂2A(τ, z)

∂τ2
− ıγ|A(τ, z)|2A(τ, z) = 0, (5.24)

∂A(r, z)

∂z
+

1

2ık
∆TA(r, z)− ıγ|A(r, z)|2A(r, z) = 0, (5.25)

with γ = ω0
2ncχ

(3)
eff . Note that the wave equation in time (5.24) implies to neglect the nonlinear

susceptibility dispersion of the material, such as the effective susceptibility χ
(3)
eff is kept constant

with negligible frequency variation. In an other way, one considers the time response of the
materials much faster than the pulse duration, which is an assumption easily verified for sub
picosecond pulse in dielectric materials.

Normalized Equation - Dispersion and Nonlinear lengths

In order to give physics insight into the derived nonlinear equations and to handle their numerical
simulation, the following unitary variables are introduced:

6A guided mode is a solution of a linear wave equation in an inhomogeneous linear material for which, diffraction
effect is strictly counterbalanced by the refractive index inhomogeneity of the wave guide.
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• Unitary time T = τ
τ0

, with τ0 the pulse duration,

• Unitary transverse coordinate R =
√

2r
w0

, with w0 the beam waist,

• Unitary field envelope u with A(ρ, z) =
√

I0
2ncε0

u(ρ, z), where I0 the peak intensity of the

pulse or beam.

After substitution in (5.24) and (5.25), one gets:�
�

�
�∂u

∂z
+
ısign(β2)

2LD

∂2u

∂T 2
− ı |u|

2u

LNL
= 0 (5.26)

and �
�

�
�∂u

∂z
− ı

2LR

∂2u

∂R2 − ı
|u|2u
LNL

= 0 (5.27)

where the quantities:

• LD =
τ2
0
|β2| refers to the dispersion length,

• LR =
πw2

0
λ refers to the Rayleigh length,

• and LNL = 1
k0n2I0

refers to the nonlinear length or Kerr length.

The similitude between the two wave equations (5.26) and (5.27) is straightforward as they
both describe the envelop distribution u(T, z) or u(R, z) evolution along the propagation distance
z. The propagation is governed by a linear term, the second order dispersion effect for (5.26)
and the diffraction for (5.27), and a nonlinear Kerr term proportional to wave packet intensity
distribution |u(T, z)|2 or |u(R, z)|2.

By priorly calculating an order of magnitude of the linear and nonlinear lengths, one can
easily anticipate the regime of propagation involved in any specific application. Setting the
total propagation distance to L and if L � LR or LD, the diffraction or dispersion effects can
be neglected. Similarly, L � LNL implies a propagation in a linear regime for which the Kerr
effect can be neglected.

Non-Linear Schrödinger Equation (NLSE)

Actually, the wave equations (5.26), (5.27) can be rewritten under unitary parameters by intro-
ducing a normalized distance ξ = z/LD:�

�
�
�ı

∂u

∂ξ
± 1

2

∂2u

∂ρ2
+N2|u|2u = 0, (5.28)

with the parameter N2 = LD/LNL that sets the strength between the linear and nonlinear
effects. This equation corresponds to the well known Non-Linear Schrödinger Equation (NLSE).
Except for some specific cases, solutions for the NLSE can not be derived analytically and their
derivations require a numerical method. The choice for the ± sign in front of the second term
of the NLSE is equal to −sign(β2) for pulses, and + for beam propagation subject to optical
diffraction.
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Fig. 5.8. Split-Step Fourier algorithm
for a numerical simulation of the NLSE
that described the nonlinear propagation
a wave packet (pulse or beam) through a
nonlinear medium along the direction ξ.
The medium is divided in cells of thick-
ness ∆ξ � 1. Within each cell, one suc-
cessively apply the linear and nonlinear
operators.

Numerical simulation: the Split Step Fourier method

In order to illustrate some of the behaviors undergone by a wave packet, one first introduces a
standard numerical recipe for the NLSE. The wave equation (5.28) can be written in a following
symbolic form:

∂u

∂ξ
+ L̂u+ N̂u = 0, (5.29)

with L̂ = +ı sign(β2)
2

∂2

∂T 2 or L̂ = −ı ∂2

∂R2 , a linear operator that accounts for either the second-order

dispersion (in case of a pulse propagation) or the diffraction (in case of a beam propagation),
and N̂ = −ıN2|u|2 a nonlinear operator. A general solution takes the form:

u(ρ, ξ + ∆ξ) = exp
(
(L̂+ N̂)∆ξ

)
u(ρ, ξ).

The operator exp
(
(L̂+N̂)∆ξ

)
takes into account simultaneously the linear and nonlinear effects.

However, one can simplify this operator using the Baker-Hausdorff formula 7:

exp
(
(L̂+ N̂)∆ξ

)
' exp

(
N̂∆ξ

)
exp

(
L̂∆ξ

)
exp

(
− [L̂, N̂ ](∆ξ)2

)
(5.30)

The exponential term [L̂, N̂ ] = L̂N̂ − N̂L̂ can be neglected as it contains a second order term
in (∆ξ)2. The wave equation (5.29) can then be approximated by the relation:

u(ρ, ξ + ∆ξ) ' exp[L̂
∆ξ

2
] exp[N̂∆ξ] exp[L̂

∆ξ

2
]u(ρ, ξ). (5.31)

Whereas the propagation is governed by two simultaneous effects, the linear and optical Kerr
effects, equation (5.31) approximates the propagation by separating these two contributions.
Such an approximation is valid since the propagation distance ∆ξ is kept small. The medium
is then split along ξ in slices with an equal thickness ∆ξ. The numerical resolution follows
the iterative algorithm describes in Fig. (5.8). Within each slice of medium, one first apply
the linear term (diffraction or dispersion) under which the wave packet undergoes an expansion
(in space or time). In general, this calculation step is achieved in the Fourier domain as the
linear operator in the Fourier domain takes the form of a phasor. Following this first step, the
nonlinear operator is applied, symbolically described by a thin lens effect in Fig. (5.8). One
reminds that the Kerr lens effect can be either a convergent or divergent lens depending on the
sign of the nonlinear refractive index n2.

7Approximation used in quantum physics to simplify quantum operators. For instance, refer to chapter 4 of
the book ”Contemporary optical image processing with MathLab” from Poon and Banerjee, Elsevier (2001).
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Fig. 5.9. Nonlinear propagation of a wave packet for various nonlinear strength set by the parameter N . (a)
Self-focusing effect with N = 1.5, (b) De-focusing effect with N = 1.5, (c) Fundamental Soliton solution with
N = 1.

Self-focusing and De-focusing effects

Considering a nonlinear propagation, with N > 1, one can easily understand that the Kerr
lens effect may produce a self-focusing or de-focusing of the wave-packet, which depends on the
signs of the linear and nonlinear coefficients in the NLSE. Figures (5.9)(a) and (b) show the
temporal shape of a pulse along the propagation in a nonlinear regime that is simulated with
the parameters : N = 1.5, anomalous dispersion regime (β2 < 0), and n2 > 0 for (a) and n2 < 0
for (b). In such a nonlinear regime (as LNL < LD) the Kerr lens effect is dominant and the lens
property (converging or diverging) is set by the sign of the nonlinear refractive index n2.

A similar result could have been achieved with the propagation of spatial wave packets
(transverse beams). As the diffraction in standard materials implies a fixed sign for the linear
operator, self-focusing and de-focusing effects respectively requires positive and negative n2

materials.

Soliton effect

A very interesting situation happens once the Kerr nonlinear operator strictly counter-balances
the diffusing like linear operator in the NLSE. Actually, it can be shown with standard gaussian
shape beam (pulse) that a strict compensation of diffraction (2nd order dispersion) by a positive
Kerr lens effect arises since N = 1. Using the graphical representation of the NLSE depicted
in Fig. (5.8), the nonlinear regime N = 1 coincides with a situation where the Kerr Lens in
each elementary slice ∆ξ of material perfectly conjugates the incoming and out-coming wave
packet shapes. In an other word, for every slice the linear expansion of the wave-packet (driven
either by the diffraction or the 2nd order dispersion effects) is strictly compensated by the Kerr
lens ! Under such a condition, and as illustrated in Fig. 5.9(c), the wave-packet shape can be
conserved along the propagation and coincides to a soliton, either a temporal or spatial soliton.

Now, this solution requires to perfectly control the incoming pulse or beam shape, as it will
directly impact on the Kerr lens profile. Actually one type of solution of the NLSE equation
(5.28) for solitons are given by :

u(ρ) = Nsech(ρ),

for which N = 1 coincides to the fundamental soliton shown in Fig. 5.9(c). For further in-
formation about optical soliton, one can refer to Nonlinear Fiber Optics, Ch.5 by Govind P.
Agrawal.

5.4.5 Modulation instability

!!!! WORK AREA !!!
Part to be completed in the next version, sorry !
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Fig. 5.10. Scattered light from a molecular material (gas, liquid) or a solid (amorphous or crystal) with an
incident wave at ωL. The spectrum analysis of the isotropic scattered light shows (b) Stokes and Anti-Stokes
spectral peaks symmetrically located to a strong Rayleigh peak at ωL.

5.4.6 Nonlinear Kerr optical cavity: optical bistability

!!!! WORK AREA !!!

Part to be completed in the next version, sorry !

5.5 Raman Scattering

The so-called Spontaneous Raman Scattering has been first observed experimentally by Sir C.V.
Raman in 19288. As illustrated in Fig. 5.10(a), an incident wave at ωL is focused inside a material
composed of molecules (gas, liquid) or bounded atoms (amorphous or crystal solids) and the
experiment consists in analyzing the spectrum of the scattered light. In addition to a strong peak
at ωL, due to Rayleigh scattering, additional peaks can be observed (see Fig. 5.10(b)) with a
much weaker intensity (several orders of magnitude weaker) than the Rayleigh peak. Moreover,
those additional peaks are symmetrically located respectively to the Rayleigh peak: the spectral
lines with a lower frequency (lower energy) referred to as Stokes Raman lines, whereas the
spectral lines with a higher frequency (higher energy) referred to as Anti-Stokes Raman lines.

Experimental observations show that, for any Stokes peak located at a frequency ωS , one can
observe an Anti-Stokes peak at ωAS = ωL+(ωL−ωS). The equal quantity ωL−ωS = ωAS−ωL is
called the Raman shift and coincides with a vibrational mode of the molecules or bounded atoms

8See, C.V. Raman and K.S. Krishnan, A new type of secondary radiation, Nature 121, 501-502 (1928).
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that compose the materials. Despite a modification of the incident light frequency ωL, the Stokes
and Anti-Stokes peaks move, keeping symmetric respectively to ωL and conserving their related
Raman shifts. As illustrated in Fig. 5.10(b), the spontaneous Raman spectrum is composed
of different Raman shifts, which characterize the material under study. Raman spectroscopy
consists in identifying Stokes peaks, in terms of positions and relative magnitudes, enabling
to identify the compounds of a material. An other important observation concern the relative
magnitude between the Stokes and Anti-Stokes peaks, the latter being always much weaker than
the former. Moreover, the magnitude of the Anti-Stokes peaks varies with temperature and can
be used to realize optical sensing.

In the following, we first introduce a classical description of spontaneous Raman scattering
which originates from the polarizibility fluctuations of molecules due to vibrating modes. We
will show that Raman scattering can be stimulated by through a double excitation at ωL and
ωS , providing that ωL − ωS match with the Raman shift ωv of the molecular material. Under a
stimulated regime, the Stokes beam at ωS is amplified at the expense of the pump beam at at ωL,
leading to a cascading regime with the generation of successive Stokes peaks at ωS1 = ωL − ωv,
ωS2 = ωS1 − ωv, ωS3 = ωS2 − ωv, etc. Such a Raman cascading effect is used in Raman fiber
lasers.

5.5.1 Spontaneous Raman Scattering

Microscopic origin

A classical interpretation of the Raman scattering consists in analyzing the polarizability of a
molecule, for instance a bi-atomic molecule, shown in Fig. 5.10, subjects to a monochromatic
field at ω. The Raman scattering arises from the fact that we consider the vibrating motion of
molecules, characterized by a vibrating mode (elongation, rotation) with an eigen (or resonant)
frequency ωv.

Under this vibrating mode, the distance between the two atoms varies in time and modifies
the polarizability of the molecule following the relation:

α(q) = α0 +
∂α

∂q
(q − q0) + · · · , (5.32)

where q0 and α0 denote respectively the distance between the two atoms, and the linear polar-
izability for the non-vibrating molecule. Considering a vibrating motion at the frequency ωv,
the distance between the two atoms is given by:

δq = q − q0 = q1 cos(ωvt). (5.33)

A monochromatic wave E(t) = E0 cosωt is now interacting with the molecule and the induced
dipole p = αE yields:

p = α0 cosωt+
1

2

∂α

∂q
q1 [cos(ω + ωv)t+ cos(ω − ωv)t] + · · · (5.34)

This relation shows that the interaction between a wave at ω with molecules vibrating at ωv,
which is responsible for a modification of the polarizability of the molecules, leads to an induced
dipole with frequency components at ω (linear regime, related to Rayleigh scattering), and two
components at ω − ωv and ω + ωv, referred respectively to as Stokes and anti-Stokes Raman
scattering spectral components. This classical model gives a simple insight in the origin of the
Stokes and Anti-Stokes Raman lines that are observed, for instance, in Raman spectroscopy
experiments. It justifies that the two lines are symmetrically located respectively to the fre-
quency of the excited field, or pump wave, at ω, the spectral interval being related to the eigen
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Fig. 5.11. Raman scat-
tering energy diagram
related to the generation
of (a) Stokes and (b)
Anti-Stokes spectral
compounds.

frequency of the vibrating mode of the molecule. By conducting such a Raman spectroscopy
and using tabular values for the vibrational mode of molecules, one can identify the compounds
of a material.

However, this model does not account for a systematic asymmetry in the magnitude of
the two lines. The Anti-Stokes Raman components are always weaker than the Stokes Raman
components. Actually, such a Raman type interaction can be described using energy diagrams
shown in Fig. 5.11, where an incident wave at ωL interacts with a vibrational mode at ωv.
The latter coincides with a transition between two molecular states |a〉 and |b〉. As the various
interactions involve the energy conservation relation, the Stokes Raman scattering (Fig. 5.11(a))
coincides with the excitation of a molecule from states |a〉 to |b〉, assisted by two photons at
ωL and ωS . Such a two-photon transition is conducted through the annihilation of one photon
ωL, leading to the creation of one Stokes photon ωS and one optical phonon at ωv. The Anti-
Stokes Raman scattering (Fig. 5.11(b)) originates from the interaction between a wave at ωL
with an excited molecule (on state |b〉) : the simultaneous annihilations of one photon ωL
and one optical phonon at ωv, lead to the generation of one Anti-Stokes photon ωAS . If we
consider the population distribution of molecules respectively on states |a〉 and |b〉, which can be
described through a Boltzmann distribution shown in Fig. 5.11, one can easily understand why
the Anti-Stokes Raman peaks are weaker than the Stokes Raman peaks. Since ~ωv � kBT , the
Anti-Stokes Raman transition rate is smaller as the density population on the excited state |b〉
is lower than that on state |a〉.

5.5.2 Stimulated Raman Scattering

Hereafter we consider the interaction of an intense pump beam at ωL with a weaker signal beam
at ωS through a molecular material (gas, liquid) or a solid (amorphous or crystal) characterized
by at least one vibrational mode at ωv. We will show that a resonant interaction for which
ωS = ωL − ωv leads to a transfer of energy from the pump to the signal beam as illustrated in
Fig. 5.12.

A classical description of a vibrating mode consists in deriving an equation of motion for a
harmonic oscillator characterized by a resonance frequency ωv, equal to that of the vibrational
mode of the molecular material to be considered, and a damping constant γ. From the relation
(5.33), the modification of the distance q(t) between two-bounded atoms of the molecule follows
the equation:

d2q

dt2
+ 2γ

dq

dt
+ ω2

vq =
F (t)

m
(5.35)

with F (t) the force that drives the molecular vibration and m the reduced nuclear mass. Sim-
ilarly to the spontaneous Raman scattering effect, the interaction of an external field E(t) will
polarized each molecule for which the induced dipole is p(t) = αE(t). By expressing the energy
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Fig. 5.12. Stimulated Raman Scattering configuration
that involves the interaction between two waves at ωL
and ωS through a material characterized by a Raman
transition at ωv. A resonant interaction for which ωS =
ωL − ωv leads to an amplification of the Stokes wave at
the expense of the pump wave at ωL.

wS

wL

wS

wL

q(t)

required to drive the induced dipole as

W =
1

2
α〈E2(z, t)〉,

where 〈. . . 〉 stands for an average in time, one can derive a relation for the force applied onto
the dipole:

F (t) =
dW

dq
=

1

2

dα

dq
〈E2(z, t)〉.

In the case of stimulated Raman scattering depicted in Fig. 5.12, the applied field comprised
two frequencies at ωL and ωS and

E(z, t) = ALe
i(kLz−ωLt) +ASe

i(kSz−ωSt) + CC.

As the driven force applied on the dipole is proportional to 〈E2(z, t)〉, a beating term at ωL−ωS
appears on the right hand side term of the equation of motion (5.35) and may match with the
frequency vibration of the molecule at ωv. For a resonant interaction, i.e. for ωL − ωS = ωv,
the molecular vibration is expected to be strengthened inducing a dipole moment related to
each molecule. The collective and coherent excitation of the vibrating molecules generate a
macroscopic polarization term that may modify the optical wave properties as it will be shown
below.

Following the substitution of the expression for the applied electric field, the equation of
motion yields

d2q

dt2
+ 2γ

dq

dt
+ ω2

vq =
1

m

dα

dq
[ALA

∗
Se

i(Kz−Ωt) + CC],

with K = kL − kS and Ω = ωL − ωS , and were we have only retained the beating terms at
frequencies Ω closed to the resonance frequency ωv

9. The driven solution takes the following
form:

q(t) = q(Ω)ei(Kz−Ωt) + CC

where the amplitude q(Ω) is equal to:

q(Ω) =

1
m

(
dα
dq

)
ALA

∗
S

ω2
v − Ω2 − 2iΩγ

.

By assuming that the all the molecules are aligned along the polarization direction of the applied
field, the macroscopic polarization generated inside the molecular material is given by:

P (z, t) = Nα(z, t)E(z, t) = N [α0 +

(
dα

dq

)
q(z, t)]E(z, t),

9The right hand side terms vibrating at 2ωL, 2ωS and 0 do not efficiently contribute to the molecular vibration
as these frequencies are largely detuned from the resonance frequency ωv.
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If the frequencies of the incident electromagnetic waves are detuned from the Raman
frequency, Ω != ΩR, the Raman susceptibility has a non-vanishing real part so that
we can decompose it into its real part and its imaginary part as

χR(ωS) = χ′
R(ωS) + iχ′′

R(ωS) . (2.21)

As can be clearly seen from Eq. (2.18), the nonlinear Stokes polarization PNL(ωS)
is proportional to the Raman susceptibility, and it is consequently also a complex
quantity. Because of the proportionality, the imaginary part of the Raman suscep-
tibility affects the amplitude of the Stokes wave, whereas the real part introduces a
phase shift (see also discussion in section 2.1.2).

By multiplying the definition of the Raman susceptibility given by Eq. (2.19)
with the complex conjugate of its denominator, we find an explicit expression for the
decomposition of the Raman susceptibility, given by

χR(ωS) =
Q0

2Ω Γ

(
∆

1 + ∆2
− i

1 + ∆2

)
, (2.22)

where the parameter ∆ is defined as

∆ ∆ =
Ω2

R − Ω2

2Ω Γ
. (2.23)

Figure 2.3 shows the real and the imaginary part of the Raman susceptibility as a
function of the difference frequency Ω = ωP − ωS. As can be seen from the graph,
the imaginary part of the Raman susceptibility has a resonant lineshape. The center
of the resonance curve is at Ω = ΩR and its full width at half maximum (FWHM) is
given by δΩR.

Near the Raman resonance (i.e., for Ω = ωP − ωS ≈ ΩR) we define the detuning of
the pump wave from the Raman resonance for a given (and fixed) Stokes frequency
ωS as

∆ωP = Ω − ΩR = ωP − ωS − ΩR = ωP − (ωS + ΩR) , (2.24)

so that we can approximate the ∆ parameter as

∆ =
(ΩR − Ω)(ΩR + Ω)

2Ω Γ
≈ (ΩR − Ω) 2ΩR

2ΩRΓ
=

ΩR − Ω

Γ
= − ∆ωP

Γ
. (2.25)

Therefore, the Raman susceptibility can be approximated near the Raman resonance
as

χR(ωS) ≈ − Q0

2ΩR

(
∆ωP

∆ω2
P − Γ2

+ i
Γ

∆ω2
P − Γ2

)
. (2.26)

Fig. 2.3. Real part
χ′

R(ωS) and imaginary part
χ′′

R(ωS) of the Raman sus-
ceptibility as a function
of the difference frequency
Ω = ωP − ωS. As can be
seen from the curves, the
susceptibility shows a reso-
nance for ωS = ωP − ΩR
that has a full width at half
maximum of δΩR. At res-
onance it is purely negative
imaginary.

Fig. 5.13. Real part and imaginary part of the Raman
susceptibility at ωS as a function of the difference fre-
quency Ω = ωP−ωS . The imaginary part of the suscepti-
bility exhibits a Lorentzian shape nearby the vibrational
resonance Ω = ΩR. At resonance, the Raman susceptibil-
ity at ωS is purely negative imaginary. (Picture courtesy
of Felix Kroeger)

which can be expressed as the sum of the linear contribution Nα0E(z, t) plus a perturbative
polarization term:

PNL(z, t) = N

(
dα

dq

)
[q(Ω)ei(Kz−Ωt) + CC].[ALe

i(kLz−ωLt +ASe
i(kSz−ωSt + CC].

The latter contribution contains vibrating terms at ωL and ωS and, conversely to the linear
contribution, their expressions exhibit a nonlinear dependence with the field amplitudes charac-
teristic of a 3rd order nonlinear interaction. Actually, the complexe amplitude of the perturbative
term at ωS is provided by:

PNL(ωS) = N

(
dα

dq

)
q∗(Ω)ALe

ikSz,

as Ω = ωL − ωS , and it can be re-written in the following closed form:

PNL(ωS) = 3ε0χ
(3)
R (ωS ;ωL,−ωL, ωS)|AL|2ASeikSz,

where χ
(3)
R (ωS ;ωL,−ωL, ωS) stands for the Raman susceptibility at ωS that is equal to:

χ
(3)
R (ωS) =

N
3ε0m

(
dα
dq

)2

ω2
v − (ωL − ωS)2 + 2i(ωL − ωS)γ

.

The evolution of the real and imaginary parts of the Raman susceptibility at ωS with the
difference frequency Ω = ωP −ωS is plotted in Fig. 5.13. As expected above, the Raman suscep-
tibility exhibits a resonance nearby Ω equal to the vibrational frequency ωv (denoted ΩR on the
plot), with a purely imaginary contribution exactly at resonance that will consequently explain
the transfer of energy between the pump to the signal throughout the vibrational molecules.
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Appendix A
Model for light-metals interaction

In the following, it is assumed that the electrical and optical properties of a metal can be
represented in a similar manner by those of a free electron gas with a density N . The density of
negative charges is compensated by a positive charge density, which is assumed to be fixed. In
the case of a plasma-gas, the motion of the positive charges, which are heavier, should also be
taken into account. The free electron gas is assumed diluted enough such as the charges interact
with the electromagnetic field separately and independently of each others.

We consider the following electromagnetic wave propagating along the direction z:

E = E0 cos(ωt− kz)x
B = B0 cos(ωt− kz)y, (A.1)

Assuming the case of a dilute gas, the relation between the magnetic and electric field amplitude
is B0 = E0/c, with c the speed of light in vacuum (dilute gas). In order to determine an
expression for the induced polarization P = Np, with p = −er the induced dipole, one can
solve the equation of motion for an electron, with a mass m, which is subject to the Lorentz
force:

m
d2r

dt2
= −e(E + v ×B), (A.2)

where v = dr
dt defines the electron velocity. The previous equation neglects the friction forces.

Substituting the field expressions (A.1), the equation of motion becomes:





m
d2x

dt2
= −eE0 cos(ωt− kz) +

e

c
E0 cos(ωt− kz)dz

dt

m
d2y

dt2
= 0 (A.3)

m
d2z

dt2
= −e

c
E0 cos(ωt− kz)dx

dt

Taking into account that the magnetic part of the Lorentz force can be neglected with respect
to the electrical contribution, the equation of motion (A.3) is solved by means of a perturbative
method, the seeked solution being expressed as:

r(t) = r(0)(t) + r(1)(t) + r(2)(t) + · · · ,

with r(0) the initial position of the electron, without any applied field, and r(1), r(2) the first
and second order perturbative solutions resulting from the application of an external field. The
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first order solution is obtained by neglecting the magnetic contribution of the Lorentz force:

r(1)(t) =
e

mω2
E0 cos(ωt− kz)x +Oy +Oz. (A.4)

The first order solution exhibits a linear relation between the motion of the electron and
the electric field strength, along the direction of the electric field polarization state x. The first
order solution is then substituted in the right hand side of (A.3), enabling the derivation of the
second order solution:

r(2)(t) = 0x + 0y − e2

8m2cω3
E2

0 sin(2(ωt− kz))z. (A.5)

This procedure can be reiterated to calculate the third order solution for the position of the
electron.

Following the motion of the charges, a current density j = −Nedrdt and a polarization
P = −Ner are generated within the free electron gas. The expression for the polarization will
take the following form:

P = P(1)(t) + P(2)(t) + P(3)(t) + · · · .

The first order polarization term P(1)(t) is proportional to the strength of the applied field and
corresponds to the linear polarization. Whereas, the second order polarization P(2)(t), related
to (A.5), vibrates at the frequency 2ω with a direction of polarization aligned along z. This
direction being orthogonal to the polarization states of E and B, the second order polarization
can not radiate in the medium, except in the vicinity of an interface or defects.

Finally, the expression of the third order polarization P(3)(t) is:

P(3)(t) = − Ne4

8m3c2ω4
E3

0

[
cos(ωt− kz) +

1

9
cos 3(ωt− kz)

]
x.

It shows that the medium can radiate a source term at the frequencies 3ω, and ω. The latter,
whose amplitude depends on the square of the field is responsible for a nonlinear self-action of
light in the medium.�

�
�
�

In conclusion, we have shown that the origin of nonlinearities in metals and plasma-
gas comes from the magnetic contribution of the Lorentz force. The ratio between the
strength of the first, second and third order polarizations is given by eE0/mcω.

Note that this model does not account for interactions between the charges that could be
described introducing additional terms in the equation of motion. It does not either account for
variations of the charge density in the electron gas.
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