NONLINEAR OPTICS

Nicolas DUBREUIL nicolas.dubreuil@institutoptique.fr

Benjamin CANUEL (Tutorials) Eliott BERAUD (Tutorials)

7 Lectures (7x1h30) 1 Mini-Project 6 tutorial sessions (including one in numerical simulation)

Optics in nonlinear regime ?

- Introduction to OPTICS in NONLINEAR REGIME
 - Which applications ?
 - Physical origin of the nonlinearities ?

• Introduction to OPTICS in NONLINEAR REGIME

• Which applications ?

• Physical origin of the nonlinearities ?

Introduction to Nonlinear Optics

• Response of a material subject to an incident EM wave at ω

WHAT HAPPENS WHEN increasing the MAGNITUDE of electric field amplitude ?

- Case of a NONLINEAR MEDIUM :

The nonlinear response of the medium can be expressed as

$$P(t) = \varepsilon_0 \chi^{(1)} E(t) + \varepsilon_0 \chi^{(2)} E(t) E(t) + \varepsilon_0 \chi^{(3)} E(t) E(t) E(t)$$

= $\varepsilon_0 \chi^{(1)} E(t) + \varepsilon_0 \chi^{(2)} E^2(t) + \varepsilon_0 \chi^{(3)} E^3(t) + \cdots$
Linear
response Nonlinear Response

(we have assumed that the medium have an instantaneous response - Case of a lossless and a dispersionless medium) :

IMPORTANT COMMENT : Nonlinear interactions are governed by the magnitude of the electric fields

INSTITUT

N. Dubreuil - NONLINEAR OPTICS

Introduction to Nonlinear Optics

- Case of a NONLINEAR MEDIUM

The nonlinear response of the medium can be expressed as

Introduction to Nonlinear Optics

- Case of a NONLINEAR MEDIUM

Example : Optical Kerr Effect

N. Dubreuil - NONLINEAR OPTICS

INSTITUT

d'OPTIQUE

Field notation

We assume that the electric field vector can be expressed as a plane wave (or as a projection of plane waves, i.e through a Fourier transformation) :

$$\mathcal{E}(t) = \mathbf{E}(\omega)e^{i(-\omega t + \mathbf{k} \cdot \mathbf{r})} + \mathbf{E}^{*}(\omega)e^{-i(-\omega t + \mathbf{k} \cdot \mathbf{r})} \quad \text{With}: \quad \mathbf{E}(\omega) = \begin{vmatrix} E_{i}(\omega) \\ E_{j}(\omega) \\ E_{j}(\omega) \end{vmatrix}$$

$$\mathcal{E}(t) = E(\omega)e^{i(-\omega t + \mathbf{k} \cdot \mathbf{r})}e^{i(-\omega t +$$

Optics in nonlinear regime ?

- Introduction to OPTICS in NONLINEAR REGIME
 - Which applications ?
 - Physical origin of the nonlinearities ?

2nd order nonlinear interactions

Second Harmonic Generation

Application: Green Laser Pointer

Optical Parametric Fluorescence & Amplification Optical source with a wide frequency tunability

2nd order nonlinear interactions

2nd order nonlinear interactions

Optical Parametric Fluoresence effect Source of polarization entangled state pairs of photons

Quantum Optics

3rd order nonlinear interactions

Supercontinuum Generation in nonlinear optical fibers

Raman scattering in a hollow-core photonic crystal fibre filled with liquid or gas

Optical Kerr Effect Refractive index variation α Optical Intensity

All-optical swithing in a µcavity with pump energy of 10 fJ !

Hollow-core fibre

InGaAsP slab Photonic-crystal airholes

Raman scattering

N. Dubreuil - NONLINEAR OPTICS

17

3rd order nonlinear interactions

Optical solitons

ADUATE SCHOO

INSTITUT

d'OPTIQUE :

propagation of a wave packet (pulse or spatial beam) through a pure Kerr medium ⇒ *refractive index variation proportional to the wave intensity.* ⇒ *Optical Kerr lens effect (in time or space) !!*

3rd order nonlinear interactions

Optical solitons

propagation of a wave packet (pulse or spatial beam) through a pure Kerr medium ⇒ *refractive index variation proportional to the wave intensity.* ⇒ *Optical Kerr lens effect (in time or space) !!*

SCHOO

3rd order nonlinear interactions

Fig. 3. Microresonator-based frequency combs. (A) Spectrum of an octave-spanning frequency comb generated using a silica microtoroidal resonator (24). (B) An optical frequency comb generated using a crystalline CaF₂ resonator with a mode spacing of 25 GHz (27). (C) Optical Spectrum covering two-thirds of an octave (with a mode spacing of 204 GHz) generated using an integrated SiN resonator (31). (D) Experimental systems in which frequency combs have been generated (from left to right): Silica waveguides on a chip (Hydey glass) (22), chip-based Silicon nitride (SIN) ring resonators (30) and waveguides, ultrahigh Q toroidal microresonators (24) on a silicon chip, and ultrahigh Q millimeter-scale crystalline resonators (27).

From Kippenberg, Science (2011)

- Introduction to OPTICS in NONLINEAR REGIME
 - Which applications ?

Physical origin of the nonlinearities ?

Nonlinear Optics

- First descriptions
 - Expression of the macroscopic polarization in terms of a power series in the field strength :

- Origin of the nonlinearities : classical anharmonic oscillator (classical model)

Classical harmonic oscillator model

Linear polarization

Harmonic oscillator : equation of motion

$$\frac{d^2x}{dt^2} + \alpha \frac{dx}{dt} + \omega_0^2 x = \frac{-e}{m} \left[A(\omega)e^{-i(\omega t - kz)} + A(-\omega)e^{+i(\omega t - kz)} \right] x \cdot x.$$

Driven solution
$$x^{(1)}(z,t) = a(\omega)e^{-i(\omega t - kz)} + a(-\omega)e^{+i(\omega t - kz)}$$

Induced dipole
$$p^{(1)}(z,t) = \alpha^{(1)}(\omega)A(\omega)e^{-\imath(\omega t - kz)}x + CC_{z}$$

$$\alpha^{(1)} = \frac{e^2}{m\mathcal{D}(\omega)}$$
 $\mathcal{D}(\omega) = \omega_0^2 - \omega^2 - i\alpha\omega$

Macroscopic Polarization

Linear susceptibility

$$\mathcal{P}^{(1)}(z,t) = \epsilon_0 \chi^{(1)}(\omega) E(\omega) e^{-i\omega t} + CC_s$$

Linear polarization

Harmonic oscillator : equation of motion

Classical anharmonic oscillator model

Classical anharmonic oscillator - Description

Induced dipole (microscopic quantity): p(z,t) = -ex

Polarization (<u>MACRO</u>scopic quantity) :

$$p(z,t) = -e x(z,t)x$$

 $\mathcal{P}(z,t) = N p(z,t)$

$$\left.\right\} x(z,t) ??$$

• Equation of motion

$$\frac{d^2x}{dt^2} + \alpha \frac{dx}{dt} + \omega_0^2 x + \beta x^2 + \gamma x^3 + \dots = \frac{-e}{m} x \cdot \mathcal{E}(z,t)$$

Classical anharmonic oscillator model

• Equation of motion $\frac{d^2x}{dt^2} + \alpha \frac{dx}{dt} + \omega_0^2 x + \beta x^2 + \gamma x^3 + \dots = \frac{-e}{m} x \cdot \mathcal{E}(z, t)$ Damping term Restoring force Driven Coulomb force

Solution : perturbation method, taking into account $\ \omega_0^2 x \gg \beta x^2 \gg \gamma x^3$

$$x = \lambda x^{(1)} + \lambda^2 x^{(2)} + \lambda^3 x^{(3)} + \dots$$

$$x^{(1)} \gg x^{(2)} \gg x^{(3)}$$

A when we are the second s

N. Dubreuil - NONLINEAR OPTICS

32

2nd Order Nonlinear Polarization

And fmonic oscillator: equation of motion

$$\frac{d^2x}{dt^2} + \alpha \frac{dx}{dt} + \omega_0^2 x + \beta x^2 = \frac{-e}{m} x \cdot \mathcal{E}(z, t)$$

$$\frac{d^2x}{dt^2} + \alpha \frac{dx}{dt} + \omega_0^2 x + \beta x^2(z, t) + \cdots$$

$$\frac{d^2x^{(2)}}{dt^2} + \alpha \frac{dx^{(2)}}{dt} + \omega_0^2 x^{(2)} = -\beta \left(x^{(1)}\right)^2$$

$$x^{(2)}(z, t) = b(0) + b(2\omega)e^{-2i(\omega t - kz)} + b(-2\omega)e^{+2i(\omega t - kz)}$$

$$\begin{cases} b(0) = \frac{-2\beta e^2|A|^2(\omega)}{m^2 \mathcal{D}(0)\mathcal{D}(\omega)\mathcal{D}(-\omega)} \\ b(\pm 2\omega) = \frac{-\beta e^2 A^2(\pm \omega)}{m^2 \mathcal{D}(\pm 2\omega)\mathcal{D}(\pm \omega)\mathcal{D}(\pm \omega)} \end{cases}$$
With :

$$D(\omega) = \omega_0^2 - \omega^2 - i\alpha\omega$$

2nd Order Nonlinear Polarization

Anharmonic oscillator : equation of motion

$$\begin{aligned} \mathcal{P}(z,t) &= \mathcal{P}^{(1)}(z,t) + \mathcal{P}^{(2)}(z,t) \\ &= P^{(2)}(0) + P^{(1)}(\omega)e^{-\imath\omega t} + P^{(2)}(2\omega)e^{-2\imath\omega t} + CC. \\ & \text{Optical RECTIFICATION} \\ & (\text{induces static electric field}) \end{aligned} \\ P^{(2)}(0) &= 2\epsilon_0\chi^{(2)}(\omega, -\omega)E(\omega)E(-\omega)x \\ P^{(2)}(2\omega) &= \epsilon_0\chi^{(2)}(\omega, \omega)E(\omega)E(\omega)x \end{aligned}$$

2nd Order Nonlinear Polarization

Anharmonic oscillator : equation of motion

Conclusion & Comments

• The macroscopic polarization induced inside the material is then given

by the sum :
$$\begin{aligned} \mathbf{P}(z,t) &= \mathbf{P}^{(1)}(z,t) + \mathbf{P}^{(2)}(z,t) \\ &= \mathbf{P}^{(2)}(0) + \mathbf{P}^{(1)}(\omega)e^{-i(\omega t - kz)} + \mathbf{P}^{(2)}(2\omega)e^{-2i(\omega t - kz)} + CC. \end{aligned} \\ \text{With : } \mathbf{P}^{(2)}(0) &= 2\epsilon_0\chi^{(2)}(\omega, -\omega)E(\omega)E(-\omega)\mathbf{x} \\ \mathbf{P}^{(2)}(2\omega) &= \epsilon_0\chi^{(2)}(\omega, \omega)E(\omega)E(\omega)\mathbf{x} \end{aligned}$$
 (Complex amplitudes)

 $\chi^{(2)}(\omega_3;\omega_1,\omega_2) = \frac{N e^3 \beta}{\epsilon_0 m^2 D(\omega_3) D(\omega_1) D(\omega_2)} \quad \text{With} : \begin{array}{c} \omega_3 = \omega_1 + \omega_2 \\ D(\omega) = \omega_0^2 - \omega^2 - i\alpha\omega \end{array}$

• For non-resonant interactions ($\omega \ll \omega_0$) $\Rightarrow \chi^{(2)}$ is real and independent of the frequency

• On the other hand, strong enhancement of the nonlinear susceptibility is expected once ω or 2ω (or both) is close to a material transition ($@\omega_0$) (but with detrimental additional absorption)

• Phase mismatching between the polarization component @ 2ω and the free propagative wave @ $2\omega \Rightarrow$ wavevector related to P(2ω) \neq wavevector of E(2ω)

2k(ω) ≠ k(2ω)

3rd Order Nonlinear Polarization

3rd Order Nonlinear Polarization

Conclusion & Comments

• The macroscopic polarization induced inside the material is then given by the sum :

$$\begin{aligned} \boldsymbol{P}(z,t) &= \boldsymbol{P}^{(1)}(z,t) + \boldsymbol{P}^{(3)}(z,t) \\ &= \boldsymbol{P}(0) + \boldsymbol{P}(\omega)e^{-\imath(\omega t - kz)} + \boldsymbol{P}(3\omega)e^{-3\imath(\omega t - kz)} + CC. \end{aligned}$$

With :
$$P^{(3)}(3\omega) = \epsilon_0 \chi^{(3)}(\omega, \omega, \omega) E(\omega) E(\omega) E(\omega) x$$

(Complex amplitudes)

$$\boldsymbol{P}^{(3)}(\omega) = 3\chi^{(3)}(\omega, -\omega, \omega)E(\omega)E(-\omega)E(\omega)\boldsymbol{x}$$

$$\chi^{(3)}(\omega_1,\omega_2,\omega_3) = \frac{-N\gamma e^4}{\epsilon_0 m^3 \mathcal{D}(\omega_1 + \omega_2 + \omega_3) \mathcal{D}(\omega_1) \mathcal{D}(\omega_2) \mathcal{D}(\omega_3)} \quad \mathcal{D}(\omega) = \omega_0^2 - \omega^2 - i\alpha\omega$$

• For non-resonant interactions ($\omega \ll \omega_0$) $\Rightarrow \chi^{(3)}$ is real and independent of the frequency

• Strong enhancement of the nonlinear susceptibility is expected once ω or 3ω (or both) is close to a material transition ($@\omega_0$)

• Phase mismatching between the polarization component @ 3ω and the free propagative wave @ 3ω : $3k(\omega) \neq k(3\omega)$