
UE719
Embedded Systems Tutorials : ARM Part

Lamri NEHAOUA

lamri.nehaoua@univ-evry.fr

November 15, 2022

i

CONTENTS ii

C O N T E N T S

1 P RO C E S S O R A R I T H M E T I C 1

1 P RO C E S S O R A R I T H M E T I C

1. For each operation, indicate the status of the obtained result. Express this state by using the
correspondig flag: Z, C, N, V.

(a) Natural numbers: 0x34FF + 0x1221 and 0x34FF + 0xCB01

(b) Perform the following addition 0x67AB + 0x187F on an 8 bit processor. We consider
an addition instruction without carry flag for the least significant bytes and an addition
instruction with carry flag for the most significant bytes.

(c) Integer numbers: 0x85 + 0xA3, 0xC5 + 0x63, 0x45 + 0x63, 0x5 + 0x23.

2. Represent the two 8 bit integer 0x23 and 0x85 on 32 bit format.

3. Consider the two 8 bit integer 0x20 and 0x80. Apply two logic shift and two arithmetic shift.
Conclude.

A result of an addition of two n-bit integers is correct and hence representable on n bits if:
Rn = Rn−1 and C = Rn−1. For flag V, overflow:

• V = 0 if C = Rn−1

• V = 1 if C ̸= Rn−1

2 B I N A RY M A S K

Consider a register containing the value 0xFA59. Suggest logical operations allowing to:

• To set the 8 most significant bits to ’0’,

• To set the 8 least significant bits to ’1’,

• To highlight only the most significant bit,

• To reset only the least significant bit.

3 M E M O RY M A P P I N G S T M 3 2 F 4 0 7

The following figure is an overview of the memory map from the documentation of the STM32F407
microcontroller. By analyzing it, determine the following:

1. What is the maximum size of the address bus?

4 M OV I N S T RU C T I O N A N D L D R P S E U D O - I N S T RU C T I O N 2

2. Identify the area corresponding to the program memory, give its first and last element adresses
and calculate its size.

3. Identify the areas corresponding to the data memory, give their first and last element adresses
and calculate the total size.

4 M OV I N S T RU C T I O N A N D L D R P S E U D O - I N S T RU C T I O N

1. Indicate the contents of the involved register at the end of the execution of each instruction.

2. Review the generated code by de-assembling the pseudo-instruction LDR R3, =0x40000000.

3. The instruction LDR R5, 0x40000001 was replaced by the assembler by an indirect addressing
instruction using the PC register and an offset (PC + 4). Determine the address of the location
of the constant loaded in R5.

; Main Program
; ***

AREA my_program, CODE, READONLY
value1 EQU 0x23AF
value2 EQU 0xFF23DE62

ENTRY
EXPORT __main

__main
; IMMEDIAT addressing
; *************************
; *************************
MOV R0, #0xEF ;load immediat 8 bit constant
MOV R1, #0x7F32 ;load immediat 16 bit constant
MOV R2, #valeur1 ;load immediat 16 bit constant

; load immediat constant over 16 bit
; ***
LDR R3, =0x40000000 ; 16 bits encoded
MOV.W R4, #0x40000000 ; the same thing
LDR R5, =0x40000001 ; can’t be encoded in 16 bits
NOP

boucle B boucle
END

5 B I T C , B I T V W H AT T O C H O O S E ?

1. Manually perform the operation indicated in the code bellow and set the bits of the status
register CPSR.

6 1 D A R R AY 3

2. Conclude on the quality of the result if we consider that:

Value1 and Value2 are natural

Value1 and Value2 are integer

; Main Program
; ***

AREA my_program, CODE, READONLY
value1 EQU 0xFF000001
value2 EQU 0xFF000002

ENTRY
EXPORT __main

__main
; IMMEDIAT addressing
; *************************
; *************************
MOV R2, #valeur1
MOV R2, #valeur2
ADDS R2, R0, R1
NOP

boucle B boucle
END

6 1 D A R R AY

A one-dimensional array is a contiguous list of elements of the same type, each element is located by
its index I and in memory, it is located by its address. Example of an array of n elements:

A 1D array is implemented in memory in the form of n consecutive locations. This memory area
is defined by a start address (the element with index I = 0). The overall size of the occupied memory
area is dependent on the size of an element and the number of elements.

1. Propose a general formula for calculating the address of an element of index I of the array.
Application: base address = 0x2000 0000, element size 32 bits, nimber of elements 24.

2. Calculate the memory size occupied by the array.

3. Calculate the address of the element with index 10.

4. Calculate the address of the first memory element located just after the previous array.

7 2 D A R R AY

A two-dimensional array is also a contiguous list of elements of the same type row by row or column
by column, the example below illustrates an m × n array and its row/row layout:

8 I N D I R E C T A D D R E S S I N G 4

1. Propose a general formula for calculating the address of an element of index [I, J] of the array.
Application: base address = 0x2000 0000, element size 16 bits, nimber of elements 4 rows and
10 columns.

2. Calculate the memory size occupied by the array.

3. Calculate the address of the element [2, 7].

4. Calculate the address of the first memory element located just after the previous array.

8 I N D I R E C T A D D R E S S I N G

Indicate the contents of the involved register at the end of the execution of each instruction.
; Main Program
; ***

AREA my_constant, CODE, READONLY
desoctets DCB 0x10, 0xFF, 34, 125, ’a’, 0x2F, ’w’, 255
des32bits DCD 0x55AA55AA, 0X10356278, 0x23242526

AREA my_program, CODE, READONLY
ENTRY
EXPORT __main

__main
; INDIRECT addressing
; *************************
; *************************
LDR R0, =desoctets
LDR R1, [R0]
LDRB R2, [R0]
LDRH R3, [R0]
LDRSH R4, [R0]
NOP

; PRE and POST INDEXED addressing
; ***
LDR R0, =des32bits
MOV R1, R0
LDR R2, [R0, #4]!
LDR R3, [R0, #4]!
LDR R4, [R1], #4
LDR R5, [R1], #4

NOP
boucle B boucle

END

	Processor arithmetic
	Binary Mask
	Memory mapping STM32F407
	MOV instruction and LDR pseudo-instruction
	Bit C, bit V what to choose?
	1D array
	2D array
	Indirect addressing

