
ARM architecture
STM32F407µC based on ARM Cortex-M4

Bibliography

ARM®v7-M Architecture
Reference Manual
(free downloadable)

STM32F405xx - STM32F407xx
DS8626 Rev 9
(free downloadable)

RM0041 Reference manual
STM32F100xx advanced ARM®-based
32-bit MCUs
(free downloadable)

ARM architecture

• Architecture: design or programmer’s model:
• Defines Registers, addressing, memory architecture, operations.
• Has several processors using the same basic features.

• Processor: Device.
• Depends on an architecture,
• Adds other not common features (pipeline).
• Then, each processor has a slightly different configuration.

• 1983: ARM project by Acorn Computer, Cambridge,
UK.

• Create an Architecture and not a processor.
• Client build their own chip.
• Hard macro format: cell is provided.
• Synthesizable format: IP is delivered.

IP: intellectual Property

ARM architecture

arch V4-T

arch V5-T

arch V6

arch V6-M

arch V7

arch V7

arch V8

ARM architecture
Every architecture is characterized by its datapath and control
path.
• Bus: instruction/data.
• ID: translates instructions before they are executed.
• ALU: use A and B buses to compute a result.
• RF:

• Store operand and result,
• Can be used to PC for instructions.

• Incrementer: inc/dec the register values independent of
ALU.

• Barrel shifter: pre-process data before ALU.

ARM: registers

General Purpose Register:
• All registers are 32 bits
• Hold either data or address.
• r13, r14, r15 perform special functions.
• r0 to r3: are used to pass arguments to a

function

ARM: registers

Special Purpose Registers:
• CPSR: current program status register,
• SPSR: saved program status register.

ARM: modes
• Abort:

• Failed attemp to access memory,
• IFQ/IRQ:

• Fast Interrupt Request, Interrupt Request,
• Supervisor:

• After reset and OS kernel,
• System:

• Allows full read-write access of CPSR,
• Undefined:

• Undefined instruction.
• User

• Common mode
• 16 GPR and 2 SPR

• Banked registers
• r0 to r7: never banked.
• r8 to r12: banked FIQ mode.
• r13, r14, and r15: unique to each mode.

µP: architecture
µP

Multiplexe
d I/O

Memory

Address Bus

Data Bus

Control Bus

• m bits address bus:
• 2! addresses

• n bits data bus:
• 8, 16, 32, 64 bits

• ARM µC:
• A memory address N: a data byte
• 4 bytes data bus:

• it can access in a single operation the 4 bytes located
at the address N, N+1, N+2, N+3

• endianess:
• 4735 = 0x127F located at @0x1000

Address Little-endian Big-endian
0x1000 7F 12

0x1001 12 7F

• The ARM core supports either format by configuration.
• ARM-based µC are often constrained to a single format

by the manufacturer

ARM: memory
• Static:

• Simple interface, short access time,
• Low integration, high cost

• Dynamic
• High integration, low-cost,
• Complex interface, periodically

refresh
• Nature:

• RAM, ROM,
• Volatile or non-volatile
• NVSRAM: SRAM + Flash

• Timing:
• Read/write access time
• Cycle time (the minimum time

between two accesses).
• Refresh time (DRAM)
• Chronology and compatibility of

control signals, address, data

• Parallel access:
• To address bus, data bus,
• external control bus:

• Read/Write, SC (Select Chip from address
bus)

• Serial access
• Non-volatile memory,
• SPI, I2C

• Add memory?
• Some µC families allow or not,

ARM: instruction
• Architecture CISC/RISC

• Complex/Reduced Instruction Set
Computer,

• Instruction set encoding/decoding,
• Execution speed,
• Internal wiring (inputs to ALU)
• Compiler complexity

• RISC
• Load/Store to register bank
• Reduced instruction set
• Indirect addressing to memory
• Fixed size instruction
• One clock cycle for one instruction (objective, except

load and store)
• More complex compiler (code density)
• AVR8, ARM

• CISC
• Use of Accumulator register,
• Various addressing modes,
• Variable size instruction,
• Complex decoder and sequencer,
• Many clock cycle for one instruction
• 68000, 8086, STM8, 8051

ARM: instruction

Add-on features of ARM:
• Control over ALU and shifter for every data processing operations to maximize their usage,
• Auto-increment and auto-decrement addressing modes to optimize program loops (not very

common with RISC processors),
• Load and Store multiple instructions to maximize data throughput,
• Conditional execution of instruction to maximize execution throughput (Branch instruction can be

used in conjunction with other operations).

• Large uniform register file,
• Load-store architecture. Data processing operates on register contents only and not involves

memory location,
• Uniform and fixed length instructions,
• 32-bit processor and Instructions are 32-bit long,
• Good speed/power consumption ratio,
• High code density.

ARM: instruction
• At minimum :

• Opcode: instruction format and operation
• Can includes:

• One or many operands (registers,
external memory, values)

• Variable/Fixed size instruction

• Intel 8051 (CISC architecture)
• ANL A, Rn (1 byte: 0101 1 nnn)
• ANL A, #const (2 byte: 0101 0100 const)
• ANL adr, #const (3 byte: 01010011 adr const)

• ARM Cortex M3 (RISC architecture)
• Fixed, 4 Byte, ARMv7-M
• AND R1, R1, R0 (0xEA 01 01 00), encoding T2
• AND R1, R1, #0AA (0xF0 01 01 AA) , encoding T1

T2

T1

ARM: instruction - Thumb
• Complex functions:

• Performed in a single instruction in a CISC,
• May require multiple instructions in a RISC.

• Objective Thumb
• In embedded system: the cost of memory is more

critical than the execution speed.
• Reduce the memory costs of these extra instructions,
• ARM7TDMI

• Thumb instruction
• Consists of 16-bit instructions,
• A subset of the 32-bit ARM instructions.

Encodes a subset of the 32 bit
instruction set into a 16-bit subspace.

Code density

ARM: addressing mode
• Immediate addressing

• Does not allow access to the data memory,
• The instruction contains the data,
• 8 bits, 16 bits

• 8051 (CISC)
• MOV A, #0x78

• ARM Cortex M3 (RISC)
• load 32-bit register with 8-bit value

• MOV R0, #0x78
• load 32-bit register with 16-bit value

• MOV R1, #0xF078
• load 32-bit register with 32-bit value

• MOV.W R2, #0x20000000
• Generic instruction to load 32-bit

immediate values
• LDR R2, =0x20000001

• Register addressing
• Designates source and destination register

• 8086 (CISC)
• MOV A, R0

• ARM Cortex M3 (RISC)
• load R0 with the content of R1

• MOV R0, R1
• load R0 with content of R1*256

• MOV R0, R1 LSL #8 (Left Shift Logic)
• load R0 with content of R1*2^R3

• MOV R0, R1 LSL R3
• Arithmetic and Logic operations

• Use only register addressing

MOV R1, #0x20000000 -> instruction is coded on 32 bit -> there is no space to code R1
and opCode

#0x20000000: encoded on 16 bits
#0x20000001: can’t be encoded on 16 bits

ARM: addressing mode
• Direct addressing

• An operand contains the address of the data.
• 8086 (CISC)

• MOV AL, [0x356E] (0x356E is an address)
• Load register AL (8bits) with data in memory at

address 0x356E
• ARM Cortex M3 (RISC)

• Does not exist

• Indirect addressing
• An operand refers to a container having the

address of the data,
• A pointer,

• 8051 (CISC)
• The pointer is a register,
• MOV A, @DPTR

Memory addr Data

0x3570

0x356F

0x356E Data1

0x356D

0x356C

1 byte size
memory

AL = Data1 (1 byte)

A = @DPTR

A = 0x356E

ARM: addressing mode
• Indirect addressing, ARM Cortex M3
• Without offset

• LDR R8, [R0] : pointer = R0
• With offset

• LDR R8, [R0, offset] : pointer = R0 + offset
• LDR R8, [R0, R1] : pointer = R0 + R1
• LDR R8, [R0,R1, LSL #N] : pointer = R0 + R1*2!

20 21 20+i 20+N

ele1 ele2 ele3 ele4 ele5 … ele i eleN

0 1 i N

Absolute index

Relative index:
offset

20: base addr
Base addr +
offset

LDR R8, [R0]: (no offset)
R8 = ele1, ele2, ele3, ele4

LDR R8, [R0+2] -> R8=ele3..ele6 (with offset)

R0=20

LDR R8, [R0+4] -> R8=ele5..ele8
LDR R8, [R0, R1 LSL #2] R1= i (loop iteration)

ARM: addressing mode
• Indirect addressing, ARM Cortex M3
• Pre-indexed

• LDR R8, [R0, offset]!
• Pointer = R0 + offset and next R0 = R0 + offset

• Post-indexed
• LDR R8, [R0] , offset
• Pointer = R0 and next R0 = R0 + offset

0x2000 0000 0x36

0x2000 0001 0xAF

0x2000 0002 0x21

0x2000 0003 0x12

0x2000 0004 0xAA

0x2000 0005 0x32

0x2000 0006 0x0D

0x2000 0007 0x22

LDR R8, [R0] , #4
Pointer = 0x2000 0000
R8 = 0x1221AF36
R0 = 0x2000 0004

R0 = 0x2000 0000

LDR R8, [R0, #4]!
Pointer = 0x2000 0004
R8 = 0x220D32AA
R0 = 0x2000 0008

ARM: addressing mode

0x00 0x00 0x00 0x06
Sign extension

LDRSB

0x06: 0000 0110
S

0xFF 0xFF 0xFF 0xE1
0xE1: 1110 0000

S

ARM: addressing mode
• Indirect addressing, ARM Cortex M3
• PC-relative addressing

• 32-bit constant is considered as literal set (label)
• Literal set: constants stored after program in code area

• LDR R2, 0x2000 0001
• Takes two instructions to access data in memory:

1. LDR R3, [PC, #offset]
2. Literal pool: DCW 0x0800 0001
3. LDR R2, [R3]

0x080001B0 LDR R2, [PC,#0x38]

0x080001B4 ….

…

…

0x080001EC 0x0001

0X080001EE 0x2000

Pointer = PC + offset (offset=0x38)
= 0x080001B4 + 0x38 = 0x080001EC

R2 = 0x2000 0001

ROM Space

• LDR R2, =0x20 (pseudo-op)
• MOV r2, #0x20 (Asm-op)

• LDR R2, 0x20000000 (pseudo-op)
• MOV R2, #0x20000000 (Asm-op)
• We say that the 32 bits constant #0x20000000

can be encoded on 8 bits (0x20) by Shifting left
24 bits.

• LDR R2, 0x20000001 (pseudo-op)
• Can’t be encoded
• Too large for MOV

RAM Space

ARM: memory map

Contact

Contact
mapping

Processor
Ex Memory

UART BUS

ADC

Memory
map

ARM: memory map
• 32-bit memory address

• 2"# bytes of memory space (4 GB)

ARM Cortex M4

ARM: memory map – bit banding
• Context

• CPU core cannot write to individual bits of a register.
Instead it must write entire bytes or even words at a
time.

• If a CPU needs to change the value of a bit
1. Read the current value into a temporary

register,
2. Modify that value with a logic operation,
3. Write the final result.

• Three step process named Read-Modify-Write:
• Works fine when doing one thing at a time,
• Problems when doing concurrent tasks
• Example: what happens if an interrupt occurs

between the read and modify operations that
changes the value in the register? The new value
will get overwritten.

• Bit banding
• Maps each bit in the Bit-band region to an entire

word in the Bit-band Alias Region,
• ARM Cortex M3/M4
• Write/Read a word in the alias region performs a

write/Read the corresponding bit in the Bit-band
region.

• Single machine instruction.

• Write/Read a byte at the address
0x2000 0000

• Write/Read bit 1 of 0x2000 0000
by writing/reading at the address
0x2200 0004

ARM: memory map – bit banding

ARM: branch
• Sequential execution

• Thanks to the implicit increment of the PC register
• Conditional execution

Instructions are placed consecutively in memory

branch

Unconditional Branch

Conditional Branch
ARM: branch

B

Unconditional Branch
• Implicit modification of PC (Programm Counter)
• Absolute branch

• JMP 0x3024 (8051)
• LDR PC,=0x10203456 (ARM Cortex)

• Relative branch
• B label (ARM Cortex M3)

• Indirect branch
• JMP @A + DPTR (8051: PC = Register DPTR + Acc

Register)
• BX R0 (Cortex M3: PC = R0 register content)

Conditional Branch
• Explicit modification of PC when a condition is TRUE
• Use also CPSR flags: C, V, N, Z
• ARM architecture:

• Use of branch suffix
• BEQ label (Branch if Z = 1)
• BLE label (Branch if Z=1 or N! = V)

ARM: branch

B[suffix]
BEQ: Branch when Equal
BLE: Branch Less/equal

Conditional Branch
• Code Operation: ADD, AND, MOV
• S: optional suffix to update CPSR flags

• ADDS, ANDS, MOVS
• C: optional suffix for conditional branch

• ADDSEQ, ANDSNE, MOVSLO

Example:
R0 = R0 + 1
IF R0 = 0 THEN R1 = R1 + R2

ADDS R0, #1: signed addition
BNE label
ADDS R1, R1, R2

label

ADDS R0, #1
ADDSEQ R1, R1, R2

Branch execution Conditional execution

ARM: branch

ARM: stack pointer
• Reserved memory area to store data,
• LIFO : Last In First Out
• SP: Stack Pointer

• Designates the address of the last
pushed data

Ascending
stack

Descending stack

push pop

push
pop

BL: Branch Link
To move between sub-programs

Stack: memory area
PC register Track instruction address in the program memory
SP register Track instruction address in the stack

address1 instruction1

address2 instruction1

Program memory
(ROM, Flash) data memory

(RAM, SRAM)

address1 data1

address2 data2

PC register

address1 Instruction address1

address2 data1

Instruction address2

Instruction address3

data2

Stack

SP register

• 8051: ascending stack
• PUSH A

• A → (++SP) : pre-increment SP
• POP A

• (SP--) → A : post-decrement of SP

Ascending stack

0x84

0x83

0x82

0x81

0x80 0x38 TOP

0x6E Bottom

SP = 0x80
(SP) = 0x38

0x84

0x83

0x82

0x81 0x12 TOP

0x80 0x38

0x6E Bottom

SP = 0x81
(SP) = 0x12

Push A

• STM8: descending stack
• PUSH A

• A → (SP--) : post-decrement SP
• POP A

• (++SP) → A : pre-increment SP

0x84 0x6E Bottom

0x83 0x36

0x82 0xAF TOP

0x81

0x80

SP = 0x82
(SP) = 0xAF

0x84 0x6E Bottom

0x83 0x36

0x82 0xAF

0x81 0x21 TOP

0x80

Push A

SP = 0x81
(SP) = 0x21

ARM: stack pointer SP point to last pushed data (TOP of the stack)

descending stack

• Cortex M3: descending stack
• SP: register R13
• PUSH A

• A → (SP--) : post-decrement SP
• POP A

• (++SP) → A : pre-increment SP 0x2000 101C 0x6E Bottom

0x2000 1018 0x36

0x2000 1014 0xAF TOP

0x2000 1010

0x2000 100C

0x2000 1008

0x2000 1004

0x2000 1000

0x2000 0FFC

0x2000 0FF8

Push {R0, R4-R7, R9}

0x2000 101C 0x6E Bottom

0x2000 1018 0x36

0x2000 1014 0xAF

0x2000 1010 R9

0x2000 100C R7

0x2000 1008 R6

0x2000 1004 R5

0x2000 1000 R4

0x2000 0FFC R0 TOP

0x2000 0FF8

ARM: stack pointer

• Sub-routines
• Functions/procedures

• Sub-routine call
• Address branch from the principal program
• How to return back to the principal program?

main (void)
{

instructions A;
var1 = factorial (var2);
instructions B;
var1 = factorial (var3);
instructions C;

}

unsigned int factorial (unsigned int value)
{

instructions of sub-routine;
}

call

return

• Call instruction
• Branch to an address by modifying the PC,
• With prior backup of the PC.

• Return instruction
• Recover the PC,
• Return to the next address following the

call instruction.
• 8051:

• CALL, RET

ARM: stack pointer

• ARM Cortex M3
• BL <C>

• Branch and Link
• Store PC in register R14 (LR)

…

BL SubR LR =0x1456 AF00
PC =SubR

0x1456 AF00 …

…

SubR …

…

MOV PC,LR LR =0x1456 AF00
PC =0x1456 AF00

Leaf Routine: no call in the sub-routine

…

BL SubR1 LR =0x1456 AF00
PC =SubR1

0x1456 AF00 …

…

SubR1 …

…

BL SubR2 LR =0x1566 0100
PC =0x1566 0100

0x1566 0100 …

MOV PC,LR

SubR2 …

…

MOV PC,LR LR =0x1566 0100
PC =0x1566 0100

…

calls in the sub-routine: nested call

Pb

ARM: stack pointer

call

return

call 1

call 2

return 2

• ARM Cortex M3
• BL <C>
• Use stack:

• PUSH to store LR register
• POP to recover LR register

…

BL SubR1 LR =0x1456 AF00
PC =SubR1

0x1456 AF00 …

…

SubR1 PUSH LR Stack =0x1456 AF00

…

BL SubR2 LR =0x1566 0100
PC =SubR2

0x1566 0100 …

POP SP PC = 0x1456 AF00

SubR2 …

…

MOV PC,LR LR =0x1566 0100
PC =0x1566 0100

…

calls in the sub-routineARM: stack pointer

call 1

call 2

return 2

return 1

@MI1 instr1
@MI2 instr2
@MI3 instr3

BL subP1
@MI4 instr4
@MI5 instr5

ARM: stack pointer
Main program

PUSH LR
@SI1_1 instr1
@SI1_2 instr2
@SI1_3 instr3
@SI1_4 BL subP2
@SI1_5 instr5
@SI1_6 instr6

POP SP
@SI1_7 MOV PC,LR

subP1

PC= @MI4

LR= @MI4

SP=@SP1

@SP1

@SP2

@SP3

@SP4

@SP5

@SI2_1 instr1
@SI2_2 instr2
@SI2_3 instr3
@SI2_4 instr4
@SI_5 instr5
@SI_6 MOV PC,LR

subP2

STM32F407/Cortex-04: GPIO
• General Purpose Input Output
• Port

• I/O pins are grouped into Ports
• Ports are registers inside the µC

• Control the state of a pin
• Read/Write the state of/to a pin,

STM32F405xx datasheet

GPIO
RM0090 Reference manual

GPIO: input/Output mode

• Input
• Schmitt Trigger: off
• Floating, Pull-up, Pull-down.

• Output
• Schmitt Trigger: off
• Pull-up, Pull-down: off
• P-MOS, N-MOS: Open-drain, Push-pull

‘0’: N-MOS on, ‘1’: port ‘Z’
Sink current

‘0’: N-MOS on, ‘1’: P-MOS on
Source/Sink current

GPIO: alternate function

GPIO: alternate function
• AF:

• Open drain or Push-pull
• Schmitt Trigger: on
• Pull-up/Pull-down: off

GPIO: analog input

• Analog:
• Schmitt Trigger: off
• Pull-up/Pull-down: off

GPIO: registers
• Each I/O port bit is freely programmed
• However the I/O port registers have to be accessed as 32-bit words.
• Data registers:

• IDR (Input Data register) and ODR (Output Data register)
• Atomic read/modify accesses (bit-banding)

• BSRR (Bit Set/Reset Register)
• Configuration registers:

• MODER: Mode Register (input, output, alternate, analog)
• OTYPER: Output Type Register (push-pull, open drain)
• OSPEEDR: Output Speed Register (low, medium, fast, high)
• PUPDR: Pull-Up/Pull-Down Register
• AFRL, AFRH: Alternate Function Register (64 bits)

• Configure port Clock:
• RCC_AHB1ENR

• Register notation:
• GPIOx_RegisterName, x=A..G,
• Exemple: GPIOx_IDR

GPIO: registers
• Data

• IDR, ODR,
• BSRR.

• Configuration
• MODER,
• OTYPER,
• OSPEEDR,
• PUPDR,
• AFRL,
• AFRH.
• RCC_AHB1ENR

PUPDR

MODER

OTYPER

For programmer:
• Use memory mapping of each port.
• Write/Read in memory map ↔ Write/Read to

port registers.

rack
number 7

offset: 5
rack
number 1

offset: 3

box 5
box 51

Base Address GPIOx

0x4002 2800 GPIOK

0x4002 2400 GPIOJ

0x4002 2000 GPIOI

0x4002 1C00 GPIOH

0x4002 1800 GPIOG

0x4002 1400 GPIOF

0x4002 1000 GPIOE

0x4002 0C00 GPIOD

0x4002 0800 GPIOC

0x4002 04000 GPIOB

0x4002 0000 GPIOA

STM32F405xx datasheet GPIO: registers

For programmer:
• Use memory mapping of each port.
• Write/Read in memory map ↔ Write/Read to

port registers.

rack
number 7

offset: 5
rack
number 1

offset: 3

box 5
box 51

GPIO: registers

Offset Register

0x00 MODER

0x04 OTYPER

0x08 OSPEEDR

0x0C PUPDR

0x10 IDR

0x14 ODR

0x18 BSRR

0x1C LCKR

0x20 AFRL

0x24 AFRH

RM0090 Reference manual

Timers
• Timers types:

• SysTick: common for all Cortex-M
• Basic : for interrupts and DMA request (TIM6, TIM7)
• General Purpose : basic, compare, capture, sensor fast

interrupt (TIM2-5, TIM9-14)
• Advanced: TIM1 and TIM8

Timers: Time-base unit
Main block:
• CNT: Counter register,
• PSC: Prescaler register,
• ARR: Auto-Reload register

• Upcounting mode:
• Counts from 0 to the auto-reload value,
• Generates an overflow event.

• Downcounting mode:
• Counts from the auto-reload value to 0,
• Generates an underflow event.

• Center-aligned mode
• Counts from 0 to the auto-reload value,
• Generates an overflow event,
• Counts from the auto-reload value down to 1,
• Generates a counter underflow event.

Timers: Input Capture
Input Capture channel:
• Measure the input frequency,
• When an input signal is received

• A timestamp in memory is recorded,
• A flag is set to indicate that an input is captured,
• We can read out the capture value through interrupt or

event polling.
• Each Capture channel:

• Capture/compare register: to latch the counter value.
• Input stage: TI1 input is sampled, filtered (TI1F), used to

generate trigger signal TI1FP1. T1FP1 (or prescaled signal
IC1PS1) is used as the capture command.

• Output stage: generates the reference waveform.

Ex: time base = 1KHz, time resolution = 1ms. Each time the CAPTURE is triggered, an Interrupt
is generated which to save the value contained in the register: CAPTURE (1). The next time the
CAPTURE input is triggered, we will do the same procedure again, saving the new value
contained in the CAPTURE register (2).
Calculate the Time Period: timer value difference 61-54 = 7 x 1ms = 7ms.

Timers: Output Compare
Output compare:
• Used to control an output waveform for example,

• Connect timer output channel to a GPIO pin,
• Compare CNT to value in CCR. When CNT = CCR:

• The corresponding output pin is assigned to the
programmable mode: set, reset, toggle, unchanged.

• Set a flag in the interrupt status register.
• May generate an interrupt,
• May sends a DMA request

Timers: PWM
• Frequency: ARR, duty cycle: CCR, The PWM mode can be

selected independently on each channel:
• PWM mode 1: OCxM = 110, PWM mode 2: OCxM = 111 in

CCMR.
• The user must enable the corresponding preload register:

OCxPE bit in CCMR
• Polarity: CCER[CCxP]
• Output enable: CCER[CCxE]

• The user has to initialize all the registers by setting:
• UG bit in EGR.

Timers: registers TIMx, x=10/11/12/14

CR: Control Register.
DIER: Interrupt Enable Register

CEN: Counter Enable

UIE: Update Interrupt Enable

SR: Status Register
UIF: Update Interrupt Flag

CCMR1: Capture/Compare Mode Register

OC1M: Output Compare Mode (PWM 1, 2)

CCER: Capture/Compare Enable Register

CC1E: Capture/Compare Ch1 output Enable

CCR1: Capture/Compare Register 1

Timers: registers TIMx, x=10/11/12/14

CNT: Counter

ARR: Auto-Reload Register

PSC: Prescaler

Timer frequency:

𝐹"#$ =
𝐹"%

𝑃𝑆𝐶 + 1
→ 𝑇"#$ = 𝑇"%(1 + 𝑃𝑆𝐶)

16-bit counter: overflow occurs at (65535+1) 𝑇!"#
By using ARR:

𝑇&'()*+&, = 𝑇"#$(1 + 𝐴𝑅𝑅)

Example: 1 second counter, 𝐹!$=16 MHz
With PSC = 16000-1 → 𝑇!"#= 1ms
With ARR = 1000-1 → 𝑇%&'()*%+= 1s

Example: 1 second counter, 𝐹!$=16 MHz
With PSC = 16-1 → 𝑇!"#= 1µs
With ARR = 1000000-1 → 𝑇%&'()*%+= 1s (not on 16-bits Timer)

