

# Lab session n°1 Manchester encoding and decoding

#### Objective:

This lab session deals with a Manchester encoder-decoder for an asynchronous serial link. The system is implemented using the VHDL system description language and simulated using ModelSim software.

#### Needed software before starting:

Before starting, make sure that you installed the following software:

Quartus web edition:

https://drive.google.com/file/d/15qiVYJshO44PTmFX9qh7CSj0n\_6QvCbw/view?usp=sharing

ModelSim:

https://drive.google.com/file/d/1g9sIK2wolsrnOqHnn3Ja843XD9-qiUpj/view?usp=sharing

cyclone III device:

https://drive.google.com/file/d/1qd5EpNJ20hg8O8dx6lb0W\_31Z9MVMNzw/view?usp=sharing

cyclone V device: https://drive.google.com/file/d/1urs77Siz9ZugpXsz2wT8MasC6myIqITC/view?usp=sharing

This tutorial may help you to install Quartus: https://www.youtube.com/watch?v=RVPuHfK-EBM&feature=youtu.be

#### **Development environment:**

- The Notepad++ text editor to write VHDL code (not Altera Quartus).
- Altera ModelSim for the simulations.

- For each part of the lab session, code skeletons (**me.vhd** and **md.vhd**) are provided where certain fields identified by (?) must be filled in. The test benches are also provided and must not be changed (**me\_tb.vhd** and **md\_tb.vhd**).

#### Preliminary questions:

- 1) Present, in two sentences, the OSI (Open System Interconnection) model and its utility.
- 2) Present, in one sentence, the usefulness of each layer of the OSI model.
- 3) Present some protocols of the Layer 2 of the OSI model.



- 4) Present, in two sentences, each of the following IEEE physical layer protocols: 802.3, 802.9, 802.11, 802.15.
- 5) What is the <u>difference</u> between UART, USART and RS-232? (in one sentence).
- 6) Explain the format of the UART frame.
- 7) On the webpage <a href="https://learn.sparkfun.com/tutorials/serial-communication/uarts">https://learn.sparkfun.com/tutorials/serial-communication/uarts</a> you will find a block diagram of a UART interface. Explain in one sentence the function of each block.
- 8) We consider the binary data: 010011100101010011.
  - a. Trace the unipolar and bipolar NRZ coded sequence
  - b. Trace the unipolar and bipolar Manchester coded sequence
  - c. Compare the 4 obtained sequences



## Part A: Encoder

The objective of this part is to develop and simulate a UART encoder using single-pole Manchester coding. We are interested in the physical layer and the link layer of the OSI model.





| din    | 8-bit data input                   |
|--------|------------------------------------|
| rst    | Reset                              |
| wrn    | Write enable                       |
| clk16x | System clock                       |
| mdo    | Manchester Data output             |
| tbre   | Transmission buffer register empty |

Table 1: Definition of I/O signals

The code consists of several *process* designed to implement the various blocks you discussed in the preparation. In the following, we will guide you through the implementation of each of the *process*.

## 1) Process 1 and 2

The objective of the first two processes is the management of the transmission clock. Figure 2 shows the generated RTL (Register Transfer Level) by these two processes.



Figure 2: RTL level of transmission clock management



| clk1x        | Transmission clock            |
|--------------|-------------------------------|
| no_bits_sent | Number of transmitted bits    |
| clk1x_enable | Activation of clk1x           |
| Clkdiv       | Counter for frequency divider |

Table 2: Definition of intermediate signals

Be careful: « 4'h5 » is a literal writing equivalent to a std\_logic\_vector (\* to \*)

| 4'             | h    | 5     |
|----------------|------|-------|
| Number of bits | Base | value |

So, « 4'h5 » means "0101" under the convention std\_logic\_vector (\* to \*) However, our signals use the convention std\_logic\_vector (\* downto \*). Hence, « 4'h5 » means "1010" = 10 !

## 2) Process 3 and 4

The objective of these two processes is the management of the data to be transmitted. First of all, the data received on the parallel bus are put in a transmission buffer register and then serialized. Figure 3 shows the RTL level generated by these two processes.



Figure 3: RTL of transmitted data

| tbr | Transmission buffer register |
|-----|------------------------------|
| tsr | Transmission shift register  |

Table 3: Definition of intermediate signals

## 3) <u>Process 5</u>

The purpose of the last process is to calculate the number of bits sent. Figure 4 shows the RTL level generated by this process.





Figure 4: RTL of transmitted bits' counter

| tbr | Transmission buffer register |
|-----|------------------------------|
| tsr | Transmission shift register  |

Table 4: Definition of intermediate signals

## 4) Questions:

- 1- For figures 2, 3 and 4, write the algorithms to calculate the outputs as functions of the inputs.
- 2- To transmit a 2-bit frame, how many clk16x clock cycles are required?
- 3- What is the purpose of the clk1x and clk1x\_enable signals?
- 4- Propose a simple combinatorial expression to calculate the code Manchester.
- 5- Complete the skeleton file me.vhd
- 6- Download the testbench me\_tb.vhd file and put it in the same directory. This file contains stimuli to run a simulation.
- 7- Launch the ModelSim software, compile in the order me.vhd and me\_tb.vhd. Set the simulation period to 20 ns and start a full simulation with the Run-all button.



- 8- Using the zoom tool, explore the different signals and comment on the results.
- 9- On the Manchester coded signal, we can notice the presence of parasitic impulses ("glitch"). Give an explanation to these interfering signals. Propose a simple solution to filter these parasitic impulses (not to be implemented).



## Part B: Decoder

The objective of this part is to develop and simulate a UART decoder using unipolar Manchester coding. We are interested in the physical layer and the link layer of the OSI model.





| clk16x     | System clock                   |
|------------|--------------------------------|
| mdi        | Unipolar Manchester Data input |
| rdn        | Read enable                    |
| rst        | Reset                          |
| data_ready | Achieved decoding              |
| dout       | Useful data                    |
|            |                                |

Table 5: Definition of I/O signals

The code consists of several *process* designed to implement the various blocks you discussed in the preparation. In the following, we will guide you through the implementation of each of the *process*.

## 1) Process 1, 2 and 3

The objective of the first three processes is the management of the reception clock. Figure 6 shows the generated RTL by these three processes.



Figure 6: RTL level of reception clock management

| clk1x        | Reception clock               |
|--------------|-------------------------------|
| clk1x_enable | Activation of clk1x           |
| mdi1, mdi2   | Last state of mdi             |
| no_bits_rcvd | Number of received bits       |
| Clkdiv       | Counter for frequency divider |

Table 6: Definition of intermediate signals



<u>Note</u>: in your analyses, do not look at mdi1 and mdi2. This is just one way to implement the expression VHDL « wait ... until » which can't be synthetized on FPGA.

## 2) Process 4 and 5

The objective of these two processes is the management of the data received. Figure 7 shows the RTL level generated by these two processes.



Figure 7: RTL of decoded data management

| nrz | NRZ data after Manchester decoding |
|-----|------------------------------------|
| rsr | Reception shift register mdi       |
| rbr | Reception buffer register          |

Table 7: Definition of intermediate signals

## 3) Process 6

The purpose of the last process is to calculate the number of bits received. The RTL level is similar to figure 4.

## 4) Manchester to NRZ decoding

The purpose of this part is to decode the data received, encoded in Manchester, into a single-pole NRZ signal. The figure 8 shows the corresponding RTL level.





Figure 8: RTL of Manchester to NRZ decoder

## 5) <u>Questions:</u>

- 1- For figures 6, 7 and 8, write the algorithms to calculate the outputs as functions of the inputs.
- 2- To transmit a 2-bit frame, how many clk16x clock cycles are required? And for 8-bit frame?
- 3- What is the purpose of the "sample" signal? (this signal is the key for Manchester decoding).
- 4- Propose a simple combinatorial expression to replace the red block in figure 8.
- 5- Complete the skeleton file md.vhd
- 6- Download the testbench md\_tb.vhd file and put it in the same directory. This file contains stimuli to run a simulation.
- 7- Launch the ModelSim software, compile in the order md.vhd and md\_tb.vhd. Set the simulation period to 20 ns and start a full simulation with the Run-all button.



8- Using the zoom tool, explore the different signals and comment on the results.