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Preface

This second edition of Digital Communications: Fundamentals and Applications
represents an update of the original publication. The key features that have been
updated are:

» The error-correction coding chapters have been expanded, particularly in
the areas of Reed-Solomon codes, turbo codes, and trellis-coded modula-
tion.

* A new chapter on fading channels and how to mitigate the degrading ef-
fects of fading has been introduced.

» Explanations and descriptions of essential digital communication concepts
have been amplified.

» End-of-chapter problem sets have been expanded. Also, end-of-chapter
question sets (and where to find the answers), as well as end-of-chapter
CD exercises have been added.

» A compact disc (CD) containing an educational version of the design soft-
ware System View by ELANIX® accompanies the textbook. The CD con-
tains a workbook with over 200 exercises, aswell as a concise tutorial on
digital signal processing (DSP). CD exercises in the workbook reinforce
material in the textbook; concepts can be explored by viewing waveforms
with awindows-based PC and by changing parameters to see the effects on
the overall system. Some of the exercises provide basic training in using
System View; others provide additional training in DSP techniques.

XiX



The teaching of a one-semester university course proceeds in a very different
manner compared with that of a short-course in the same subject. At the university,
one has the luxury of time—time to develop the needed skills and mathematical tools,
timeto practice theideas with homework exercises. In ashort-course, thetreatmentis
amost backwards compared with the university. Because of the time factor, ashort-
course teacher must "jump in" early with essentia concepts and applications. One of
thevehiclesthat | found useful in structuring ashort coursewasto start by handing out
acheck list. Thiswas not merely an outline of the curriculum. It represented acollec-
tion of concepts and nomenclature that are not clearly documented, and are often mis-
understood. The short-course students were thus initiated into the course by being
challenged. | promised them that once they felt comfortable describing each issue, or
answering each question on the list, they would be well on their way toward becoming
knowledgeableinthefield of digital communications. | have learned that thislist of es-
sential conceptsisjust as valuable for teaching full-semester courses asit isfor short
courses. Herethen ismy "check list" for digital communications.

1. What mathematical dilemmais the cause for there being severa definitions
of bandwidth? (See Section 1.7.2)

2. Why isthe ratio of bit energy-to-noise power spectral density, E,/N,, anat-
ural figure-to-merit for digital communication systems? (See Section 3.1.5.)

3. When representing timed events, what dilemma can easily result in confusing
the most-significant bit (MSB) and the least-significant bit (LSB)? (See Sec-
tion 3.23.1)

4. The error performance of digital signaling suffers primarily from two degra
dation types. a) loss in signal-to-noise ratio, b) distortion resulting in anirre-
ducible bit-error probability. How do they differ? (See Section 3.3.2)

5. Often times, providing more E,/N will not mitigate the degradation due to
intersymbol interference (ISI). Explain why. (See Section 3.3.2)

6. At what location in the systemis E,/N jdefined? (See Section 4.3.2))

7. Digital modulation schemes fall into one of two classes with opposite behav-
ior characteristics. 8) orthogonal signaling, b) phase/amplitude signaling. De-
scribe the behavior of each class. (See Sections 4.8.2 and 9.7.)

8. Why do binary phase shift keying (BPSK) and quaternary phase shift keying
(QPSK) manifest the same hit-error-probability relationship? Does the same
hold true for -ary  pulse amplitude modulation (M-PAM) and M?-ary quad-
rature amplitude modulation (M*-QAM) bit-error probability? (See Sections
484and9.831)

9. Inorthogonal signaling, why does error-performance improve with higher di-
mensional signaling? (See Section 4.8.5.)

10. Why isfree-spaceloss afunction of wavelength? (See Section 5.3.3)

11. What is the relationship between received signa to noise (S/Nyatio and car-
rier to noise (C/N)ratio? (See Section 5.4.)

12. Describe four types of trade-offs that can be accomplished by using an error-
correcting code. (See Section 6.34.)
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13. Why do traditional error-correcting codes yield error-performance degrada-
tion at low values of /N,? (See Section 6.3.4.)

14. Of what use is the standard array in understanding a block code, and in eval-
uating its capability? (See Section 6.6.5.)

15. Why is the Shannon limit of -1.6 dB not auseful goal in the design of real sys-
tems? (See Section 84.5.2))

16. What are the conseguences of the fact that the Viterbi decoding algorithm
does not yield a posteriori probabilities? What is a more descriptive name for
the Viterbi algorithm? (See Section 8.4.6.)

17. Why do binary and 4-ary orthogonal frequency shift keying (FSK) manifest
the same bandwidth-efficiency relationship? (See Section 9.5.1.)

18, Describe the subtle energy and rate transformations of received signals: from
data-bits to channel-bits to symbols to chips. (See Section 9.7.7.)

19. Define the following terms: Baud, State, Communications Resource, Chip,
Robust Signal. (See Sections 113 and 7.2.2, Chapter 11, and Sections 12.3.2
and 124.2)

20. In afading channel, why is signal dispersion independent of fading rapidity?
(See Section 151.1.1)

| hope you find it useful to be challenged in thisway. Now, let us describe the
purpose of the book in a more methodical way. This second edition is intended
to provide a comprehensive coverage of digital communication systems for se-
nior level undergraduates, first year graduate students, and practicing engineers.
Though the emphasisis on digital communications, necessary analog fundamentals
are included since analog waveforms are used for the radio transmission of digital
signals. The key feature of adigital communication system isthat it deals with afi-
nite set of discrete messages, in contrast to an analog communication system in
which messages are defined on a continuum. The objective at the receiver of the
digital system is not to reproduce a waveform with precision; it is instead to deter-
mine from a noise-perturbed signal, which of the finite set of waveforms had been
sent by the transmitter. In fulfillment of this objective, there has arisen an impres-
Sve assortment of signal processing techniques.

The book devel ops these techniques in the context of a unified structure. The
structure, inblock diagramform, appears at the beginning of each chapter; blocksin
the diagram are emphasized, when appropriate, to correspond to the subject of that
chapter. Major purposes of the book are to add organization and structure to afield
that has grown and continues to grow rapidly, and to insure awareness of the "big
picture" even while delving into the details. Signals and key processing steps are
traced from the information source through the transmitter, channel, receiver, and
ultimately totheinformation sink. Signal transformations are organized according to
nine functional classes. Formatting and source coding, Baseband signaling, Band-
pass signaling, Equalization, Channel coding, Muliplexing and multiple access,
Spreading, Encryption, and Synchronization. Throughout the book, emphasis is
placed on system goals and the need to trade off basic system parameters such as
signal-to-noiseratio, probability of error, and bandwidth expenditure.
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ORGANIZATION OF THE BOOK

Chapter 1 introduces the overal digital communication system and the basic signal
transformations that are highlighted in subsequent chapters. Some basic ideas of
random variables and the additive white Gaussian noise (AWGN) model are re-
viewed. Also, the relationship between power spectral density and autocorrelation,
and the basics of signal transmission through linear systems are established. Chap-
ter 2 covers the signal processing step, known asformatting, in order to render an
information signal compatible with a digital system. Chapter 3 emphasizes base-
band signaling, the detection of signals in Gaussian noise, and receiver optimiza-
tion. Chapter 4 deals with bandpass signaling and its associated modulation and
demodul ation/detection techniques. Chapter 5 deals with link analysis, an im-
portant subject for providing overall system insight; it considers some subtleties
that are often missed. Chapters 6, 7, and 8 dea with channd coding—a cost-
effective way of providing a variety of system performance trade-offs. Chapter 6
emphasizes linear block codes, Chapter 7 dealswith convolutional codes, and Chap-
ter 8 deals with Reed-Solomon codes and concatenated codes such as turbo codes.

Chapter 9 considers various modul ation/coding system trade-offs dealing with
probability of bit-error performance, bandwidth efficiency, and signal-to-noise
ratio. It dso treatstheimportant area of coded modulation, particularly trellis-coded
modulation. Chapter 10 deals with synchronization for digital systems. It covers
phase-locked loop implementation for achieving carrier synchronization. It covers
bit synchronization, frame synchronization, and network synchronization, and it
introduces some ways of performing synchronization using digital methods.

Chapter 11 treats multiplexing and multiple access. It explores techniques that
are availablefor utilizing the communication resource efficiently. Chapter 12 intro-
duces spread spectrum techniques and their application in such areas as multiple
access, ranging, and interference rejection. This technology is important for both
military and commercid applications. Chapter 13 deals with source coding which is
aspecia class of dataformatting. Both formatting and source coding involve digiti-
zation of data; the main difference between them is that source coding additionally
involves data redundancy reduction. Rather than considering source coding imme-
diately after formatting, it is purposely treated in alater chapter so as not to inter-
rupt the presentation flow of the basic processing steps. Chapter 14 covers basic
encryption/decryptiorideas. It includes some classical concepts, aswell as a class of
systems called public key cryptosystems, and the widely used E-mail encryption
software known as Pretty Good Privacy (PGP). Chapter 15 deals with fading chan-
nels. Here, we deal with applications, such as mobile radios, where characteriza-
tion of the channel is much more involved than that of a nonfading one. The design
of acommunication system that will withstand the degradation effects of fading can
be much more challenging than the design of its nonfading counterpart. In this
chapter, we describe avariety of techniques that can mitigate the effects of fading,
and we show some successful designs that have been implemented.

It is assumed that the reader is familiar with Fourier methods and convolu-
tion. Appendix A reviews these techniques, emphasizing those properties that are

XXii Preface



particularly useful in the study of communication theory. It also assumed that the
reader has a knowledge of basic probability and has some familiarity with random
variables. Appendix B builds on these disciplines for a short treatment on statistical
decision theory with emphasis on hypothesis testing—so important in the under-
standing of detection theory. A new section, Appendix E, has been added to serve
as a short tutorial on s-domain, z-domain, and digital filtering. A concise DSP tu-
torial also appears on the CD that accompanies the book.

If the book is used for a two-term course, a Simple partitioning is suggested;
the first seven chapters can be taught in the first term, and the last eight chapters
in the second term. If the book is used for a one-term introductory course, it is sug-
gested that the course material be selected from the following chapters. 1, 2, 3, 4,
5 6 7,9 10, 12.
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(1.62)

where sinc x is as defined in Equation (1.39). The impulse response shown in
Figure 1.12 is noncausal, which means that it has a nonzero output prior to the
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Figure 1.11 Ideal filter transfer function. (a) Ideal bandpass filter.

(b) Ideal low-pass filter. (c) Ideal high-pass filter.
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1.6.3.2 Realizable Filters

The very simplest example of a realizable Inw—pa&:ﬁ filter 1s made up of resis-
tance (91) and capacitance (C), as shown in Figure 1.13a; it is called an R C filter,
and its transfer function can be expressed as 7]

1 i
1+ 2afRC  \/1 + 2nfRC)

H(f) = e M) (1.63)

where B(f) = tan™' 2af9 C. The magnitude characteristic |H(f)| and the phase char-
acteristic 6(f) are plotted in Figures 1.13b and c, respectively. The low-pass filter
bandwidth is defined to be its half-power point; this point is the frequency at which
the output signal power has fallen to one-half of its peak value, or the frequency at
which the magnitude of the output voltage has fallen to 1/V2 of its peak value.
The half-power point is generally expressed in decibel (dB) units as the —3-dB
point, or the point that is 3 dB down from the peak. where the decibel is defined as
the ratio of two amounts of power, P; and P,, existing at two points. By definition,

|H(f) |
R
O— Wy 1 o) 1
Input C == Output . 0.707 . Half-power point
o, Lo Ii }
1 0 W — 1 f
(a) e A Te
(b)
B(f)
e B 2
I 2
' n
; 4
|
1
- 2naC

MIA RIS

|

2

Figure 1.13 RC fiter and its transfer function. (a) RC filter.
(b) Magnitude characteristic of the R C filter. (c) Phase characteristic
of the %A C filter.
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P, Vi/R,
number of dB = 10 log,, — = 10 log;g —— (1.64a)
Py Vi/R,y
where V, and V, are voltages and R, and %, are resistances. For communication
systems, normalized power is generally used for analysis; in this case, &, and %, are
set equal to 1 £}, so that

P, V3
number of dB = 10 log, - = mmgmﬁ (1.64b)
1 |

The amplitude response can be expressed in decibels by

V,
|H(f) |4 = 20 logy, V- = 20.log,, |H(f)] (1.64¢)
l

where V and V, are the input and output voltages, respectively, and where the
input and output resistances have been assumed equal.

From Equation (1.63) it is easy to verify that the half-power point of the low-
pass AC filter corresponds to w = 1/RC radians per second or f= 1/(27RC) hertz.
Thus the bandwidth W;in hertz is 1/(2w9C). The filter shape factor is a measure of
how well a realizable filter approximates the ideal filter. It is typically defined as the
ratio of the filter bandwidths at the —60-dB and —6-dB amplitude response points. A
sharp-cutoff bandpass filter can be made with a shape factor as low as about 2. By
comparison, the shape factor of the simple RC low-pass filter is almost 600.

There are several useful approximations to the ideal low-pass filter character-
istic. One of these, the Butterworth filter, approximates the ideal low-pass filter
with the function

|H(f)] = : n=1 (1.65)

VT P

where f, is the upper —3-db cutoff frequency and n is referred to as the order of
the filter. The higher the order, the greater will be the complexity and the cost to
implement the filter. The magnitude function, |H(f)|, is sketched (single sided) for
several values of n in Figure 1.14. Note that as n gets larger, the magnitude charac-
teristics approach that of the ideal filter. Butterworth filters are popular because
they are the best approximation to the ideal, in the sense of maximal flatness in the
filter passband.

Example 1.3 Effect of an JiC Filter on White Noise

White noise with spectral density G,(f) = Ny2, shown in Figure 1.8a, forms the input
to the SRC filter shown in Figure 1.13a. Find the power spectral density Gy(f) and the
autocorrelation function Ry(t) of the output signal.

Solution
G(f) = G(f) H(f)I?
44} 1
T2 1+ QufRC)
Ry(t) = F YG/S )}
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Figure 1.15 Spectral characteristics of the input signal and the circuit
contribute to the spectral characteristics of the output signal. (a) Case 1:
Output bandwidth is constrained by input signal bandwidth. (b) Case 2;
Output bandwidth is constrained by filter bandwidth.

The effect of a filter on a waveform can also be viewed in the time domain.
The output y(f) resulting from convolving an ideal input pulse x(¢) (having ampli-
tude V,, and pulse width T) with the impulse response of a low-pass RC filter can
be written as [§]

SO oy A B e ek (1.66)
where
Vi, =V, - e TR (1.67)
Let us define the pulse bandwidth as
W, = £ (1.68)
T
and the AC filter bandwidth, as
W, = — (1.69)
2nRC
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Figure 1.16 (a) ldeal pulse. (b) Magni-
(b) tude spectrum of the ideal pulse.

The ideal input pulse x(t) and its magnitude spectrum |X(f)| are shown in Figure
1.16. The RC filter and its magnitude characteristic |[H(f)| are shown in Figures
1.13a and b, respectively. Following Equations (1.66) to (1.69), three cases are illus-
trated in Figure 1.17. Example 1 illustrates the case where W, << W, Notice that
the output response y(r) is a reasonably good approximation of the input pulse x(r),
shown in dashed lines. This represents an example of good fidelity. In example 2,
where W, = W, we can still recognize that a pulse had been transmitted from the
output y(r). Finally, example 3 illustrates the case in which W, >> W, Here the
presence of the pulse is barely perceptible from y(r). Can you think of an applica-
tion where the large filter bandwidth or good fidelity of example 1 is called for? A
precise ranging application, perhaps, where the pulse time of arrival translates into
distance, necessitates a pulse with a steep rise time. Which example characterizes
the binary digital communications application? It is example 2. As we pointed out
earlier regarding Figure 1.1, one of the principal features of binary digital commu-
nications is that each received pulse need only be accurately perceived as being in
one of its two states; a high-fidelity signal need not be maintained. Example 3 has
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Figure 1.17 Three examples of filtering an ideal pulse. (a) Example 1:
Good-fidelity output. (b) Example 2: Good-recognition output. (c) Exam-
ple 3: Poor-recognition output.

been included for completeness; it would not be used as a design criterion for a
practical system.

.7 BANDWIDTH OF DIGITAL DATA
1.7.1 Baseband versus Bandpass

An easy way to translate the spectrum of a low-pass or baseband signal x(¢) to a
higher frequency is to multiply or heterodyne the baseband signal with a carrier
wave cos 2mft, as shown in Figure 1.18. The resulting waveform, x (1), is called a
double-sideband (DSB) modulated signal and is expressed as

x.(t) = x(t) cos 27f, ¢ (1.70)

From the frequency shifting theorem (see Section A.3.2), the spectrum of the DSB
signal x(¢) is given by

X(f) =3[X(f—f)+ X(f + £.)] (1.71)

The magnitude spectrum |X(f)| of the baseband signal x(¢) having a bandwidth f,,
and the magnitude spectrum |X,(f)| of the DSB signal x.(¢) having a bandwidth
Whpsg are shown in Figure 1.18b and c, respectively. In the plot of | X (f)|, spectral
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Figure 1.18 Comparison of baseband and double-sideband spectra.
(a) Heterodyning. (b) Baseband spectrum. (c) Double-sideband spectrum.

components corresponding to positive baseband frequencies appear in the range f,
to (f. + f,,). This part of the DSB spectrum is called the upper sideband (USB).
Spectral components corresponding to negative baseband frequencies appear in
the range (f. — f,,) to f.. This part of the DSB spectrum is called the lower sideband
(LSB). Mirror images of the USB and LSB spectra appear in the negative-
frequency half of the plot. The carrier wave is sometimes referred to as a local oscil-
lator (LO) signal, a mixing signal, or a heterodyne signal. Generally, the carrier
wave frequency is much higher than the bandwidth of the baseband signal; that is,

fe > fn

From Figure 1.18, we can readily compare the bandwidth f,, required to transmit
the baseband signal with the bandwidth W required to transmit the DSB signal,;
we see that
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Wpss = 21, (1.72)

That is, we need twice as much transmission bandwidth to transmit a DSB version
of the signal than we do to transmit its baseband counterpart.

1.7.2 The Bandwidth Dilemma

Many important theorems of communication and information theory are based on
the assumption of strictly bandlimited channels, which means that no signal power
whatever is allowed outside the defined band. We are faced with the dilemma that
strictly bandlimited signals, as depicted by the spectrum |X(f)| in Figure 1.19b, are
not realizable, because they imply signals with infinite duration, as seen by x,(¢) in
Figure 1.19a (the inverse Fourier transform of X(f). Duration-limited signals, as
seen by x,(7) in Figure 1.19¢, can clearly be realized. However, such signals are just
as unreasonable, since their Fourier transforms contain energy at arbitrarily high
frequencies as depicted by the spectrum |X,(f)| in Figure 1.19d. In summary, for all
bandlimited spectra, the waveforms are not realizable, and for all realizable wave-
forms, the absolute bandwidth is infinite. The mathematical description of a real
signal does not permit the signal to be strictly duration limited and strictly bandlim-
ited. Hence, the mathematical models are abstractions; it is no wonder that there is
no single universal definition of bandwidth.

All bandwidth criteria have in common the attempt to specify a measure of
the width, W, of a nonnegative real-valued spectral density defined for all frequen-

x1(t) | X4(f) |

5 f
(b)
x9(t) | Xo(f) |
t
0 0 f
(c) (d)

Figure 1.19 (a) Strictly bandlimited signal in the time domain. (b) In
the frequency domain. (c) Strictly time limited signal in the time domain.
(d) In the frequency domain.
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cies |f| < o, Figure 1.20 illustrates some of the most common definitions of band-
width; in general, the various criteria are not interchangeable. The single-sided
power spectral density for a single heterodyned pulse x (1) takes the analytical form

sin w(f — fc)Tr
w(f — f)T
where £, is the carrier wave frequency and 7 is the pulse duration. This power spec-
tral density, whose general appearance is sketched in Figure 1.20, also charactenizes
a random pulse sequence, assuming that the averaging time is long relative to the
pulse duration. The plot consists of a main lobe and smaller symmetrical sidelobes.
The general shape of the plot is valid for most digital modulation formats; some

formats, however, do not have well-defined lobes. The bandwidth criteria depicted
in Figure 1.20 are as follows:

Glf) = T[ (1.73)

(a) Half-power bandwidth. This is the interval between frequencies at which
G (f) has dropped to half-power, or 3 dB below the peak value.

(b) Equivalent rectangular or noise equivalent bandwidth. The noise equivalent
bandwidth was originally conceived to permit rapid computation of output
noise power from an amplifier with a wideband noise input; the concept can
similarly be applied to a signal bandwidth. The noise equivalent bandwidth

sin n{f—ﬁ,}T 2
General shape of Gy(f) = T|: =TT }
power spectral  —----— g —-----
density (PSD)

A
s
Y

(d)
(e) 35 dB
-t (e) 50 dB -

Y

A

i

T

Figure 1.20 Bandwidth of digital data. (a) Half-power. (b) Noise equiv-
alent. (c) Null to null. (d) 99% of power. (e) Bounded PSD (defines atten-
tuation outside bandwidth) at 35 and 50 dB.
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W, of a signal is defined by the relationship Wy = P, /G (f,), where P, is the
total signal power over all frequencies and G (f,) is the value of G (f) at the
band center (assumed to be the maximum value over all frequencies).

(¢) Null-to-null bandwidrh. The most popular measure of bandwidth for digital
communications is the width of the main spectral lobe, where most of the
signal power is contained. This criterion lacks complete generality since some
modulation formats lack well-defined lobes.

(d) Fractional power containment bandwidth. This bandwidth criterion has been
adopted by the Federal Communications Commission (FCC Rules and Regu-
lations Section 2.202) and states that the occupied bandwidth 1s the band that
leaves exactly 0.5% of the signal power above the upper band limit and
exactly (1.5% of the signal power below the lower band limit. Thus 99% of the
signal power is inside the occupied band.

(e) Bounded power spectral density. A popular method of specifying bandwidth is
to state that everywhere outside the specified band, G (f) must have fallen at
least to a certain stated level below that found at the band center. Typical
attenuation levels might be 35 or 50 dB.

(f) Absolute bandwidth. This is the interval between frequencies, outside of
which the spectrum is zero. This is a useful abstraction. However, for all
realizable waveforms, the absolute bandwidth is infinite.

Example 1.4 Strictly Bandlimited Signals

The concept of a signal that is strictly limited to a band of frequencies is not realizable.
Prove this by showing that a strictly bandlimited signal must also be a signal of infinite
time duration.

Solution

Let x(f) be a signal with Fourier transform X(f) that is strictly limited to the band of
frequencies centered at + f. and of width 2W. We may express X(f) in terms of an
ideal filter transfer function H(f). illustrated in Figure 1.21a, as

X(f) = X(fIH(f) (1.74)

where X’(f) is the Fourier transform of a signal x'(z), not necessarily bandlimited, and

H(f) = rect (rz—_wr) + rect ('f 2%) (1.75)
in which
t(i)_{l for—-W<f<W
M aw/ T o forlfl > w

We can express X(f) in terms of X" (f) as

_x(f)y for(f,-W)s|fls(f+W)
X = {U otherwise
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H(f)

Fo-W e A+ W fo-W  fo LW

W]

(a)

h(t)
2W

(b)

Figure 1.21 Transfer function and impulse response for a strictly
bandlimited signal. (a) Ideal bandpass filter. (b) Ideal bandpass impulse
response.

Multiplication in the frequency domain, as seen in Equation (1.74), transforms to
convolution in the time domain as

x(t) = x'(t) = h(r) (1.76)

where A(r), the inverse Fourier transform of H(f), can be written as (see Tables A.l
and A.2)

h(t) = 2W (sinc 2Wt) cos 2nf.t

and 1s illustrated in Figure 1.21b. We note that k(1) is of infinite duration. It follows,
therefore, that x(f) obtained in Equation (1.76) by convolving x'(¢) with A(r) is also of
infinite duration and therefore is not realizable.

Signals and Spectra Chap. 1



1.8 CONCLUSION

In this chapter, the goals of the book have been outlined and the basic nomencla-
ture has been defined. The fundamental concepts of time-varying signals, such as
classification, spectral density, and autocorrelation, have been reviewed. Also, ran-
dom signals have been considered, and white Gaussian noise, the primary noise
model in most communication systems, has been characterized, statistically and
spectrally. Finally, we have treated the important area of signal transmission
through linear systems and have examined some of the realizable approximations
to the ideal case. We have also established that the concept of an absolute band-
width i1s an abstraction, and that in the real world we are faced with the need to
choose a definition of bandwidth that is useful for our particular application. In the
remainder of the book, each of the signal processing steps introduced in this chap-
ter will be explored in the context of the typical system block diagram appearing at
the beginning of each chapter.
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PROBLEMS

1.1. Classify the following signals as energy signals or power signals. Find the normalized
energy or normalized power of each.

(a) x(t)=A cos 2ufyt for—-w<t< oo

A cos 2w fyt for —Ty/2 =t = Ty/2, where T, = 1/f,
(b) x(t) =

0 elsewhere

| Aexp(—at) fort > 0,a >0
r ——

(€) x(1) {D elsewhere
(d) x(t)=cost+5cos2t for—-w<t<m
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1.2.

1.3.

1.4,

L.5.
1.6.

1.7‘

1.8.

1.9.

1.10.

1.11.

1.12.

1.13.

52

Determine the energy spectral density of a square pulse x(r) = rect (¢/T), where
rect (¢/T) equals 1, for — 7/2 <t < T/2, and equals 0, elsewhere. Calculate the normal-
ized energy E, in the pulse.

Find an expression for the average normalized power in a periodic signal in terms of
its complex Fourier series coefficients.

Using time averaging, find the average normalized power in the waveform x(r) =
10 cos 10t + 20 cos 20t.

Repeat Problem 1.4 using the summation of spectral coefficients.

Determine which, if any, of the following functions have the properties of autocorre-
lation functions. Justify your determination. [Note: F{R(7)} must be a nonnegative
function. Why?]

1 for-1=1=1
{8) xir)= {-‘J otherwise
(b) x(t)=23(7)+ sin 2mfyT

() x(r)=exp (|7))

(d) x(7)=1-11 for—1<71<1,0 elsewhere

Determine which, if any, of the following functions have the properties of power
spectral density functions. Justify your determination.

(@) X(f)=3() + cos* 2nf
(b) X()=10+8(f- 10)
(©) X() = exp (=2 |f - 10])

(d) X(f)=exp[-2m(f*-10)]

Find the autocorrelation function of x(¢) = A cos (2ufyf + &) in terms of its period,

T, = 1/f,. Find the average normalized power of x(¢), using P, = R(0).

(a) Use the results of Problem 1.8 to find the autocorrelation function R(t) of wave-
form x(t) = 10 cos 10¢ + 20 cos 20t

(b) Use the relationship P, R(0) to find the average normalized power in x(r).
Compare the answer with the answers to Problems 1.4 and 1.5.

For the function x(t) = 1 + cos 2wfy, calculate (a) the average value of x(r); (b) the ac

power of x(¢); (¢) the rms value of x(r).

Consider a random process given by X(1) = A cos (2nfyt + ). where A and f; are

constants and & is a random variable that is uniformly distributed over (0, 2w). If

X(1) is an ergodic process, the time averages of X(¢) in the limit as t — = are equal to

the corresponding ensemble averages of X(t).

(a) Use time averaging over an integer number of periods to calculate the approxi-
mations to the first and second moments of X(¢).

(b) Use Equations (1.26) and (1.28) to calculate the ensemble-average approxima-
tions to the first and second moments of X(r). Compare the results with your
answers in part (a).

The Fourier transform of a signal x(r) is defined by X(f) = sinc f, where the sinc func-

tion is as defined in Equation (1.39). Find the autocorrelation function, R,(7), of the

signal x(t).

Use the sampling property of the unit impulse function to evaluate the following

integrals.

Signals and Spectra Chap. 1



(a) J' cos 6d(t — 3) dt
(b) f 108(0)(1 + 1) ' dt
(¢) f (t + 4)(t2 + 6t + 1) dt

(d) J- exp (—t2)d(t — 2) dt

1.14. Find X,(f) = X,(f) for the spectra shown in Figure P1.1.

X4(f)

~fo fo
Xa(f)
DI . . I
! t
—fo fo
Figure P1.1

1.15. The two-sided power spectral density, G,(f) = 107 f?, of a waveform x(1) is shown in

Figure P1.2.

Gz(f)

-10 kHz 0

Figure P1.2

(a) Find the normalized average power in x(f) over the frequency band from 0 to

10 kHz.

(b) Find the normalized average power contained in the frequency band from 5 to

6 kHz.

Problems
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1.16. Decibels are logarithmic measures of power ratios, as described in Equation (1.64a).
Sometimes, a similar formulation is used to express nonpower measurements in
decibels (referenced to some designated unit). As an example, calculate how many
decibels of hamburger meat you would buy to feed 2 hamburgers each to a group of
100 people. Assume that you and the butcher have agreed on the umt of “¥2 pound
of meat” (the amount in one hamburger) as a reference unit.

1.17. Consider the Butterworth low-pass amplitude response given in Equation (1.65).
(a) Find the value of n so that |H(f)[* is constant to within + 1 dB over the range

| f1=0.9f,
(b) Show that as n approaches infinity, the amplitude response approaches that of an

ideal low-pass filter.

1.18. Consider the network in Figure 1.9, whose frequency transfer function is H(f). An
impulse &(¢) is applied at the input. Show that the response y(r) at the output is the
inverse Fourier transform of H(f).

1.19. An example of a holding circuit, commonly used in pulse systems, is shown in Figure
P1.3. Determine the impulse response of this circuit.

1.20. Given the spectrum

x(2) g(t) y(t)
O :4—- "E"' Integrator ——o0
Input - Qutput
Delay & Figure P1.3
sin — 10910747} 2
G(f) = 10+ { Ll L ]}
w(f — 10°)10

find the value of the signal bandwidth using the following bandwidth definitions:
(a) Half-power bandwidth.

(b) Noise equivalent bandwidth.

(c) Null-to-null bandwidth.

(d) 99% of power bandwidth. (Hint: Use numerical methods.)

(e) Bandwidth beyond which the attenuation is 35 dB.

(f) Absolute bandwidth.

QUESTIONS

1.1. How does the plot of a signal’s autocorrelation function reveal its bandwidth occu-
pancy? (See Section 1.5.4.)

1.2. What two requirements must be fulfilled in order to insure distortionless transmis-
sion through a linear system? (See Section 1.6.3.)

1.3. Define the parameter envelope delay or group delay. (See Section 1.6.3.)

1.4. What mathematical dilemma is the cause for there being several different definitions
of bandwidth? (See Section 1.7.2.)

EXERCISES

Using the Companion CD, run the exercises associated with Chapter 1.
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The goal of the first essential signal processing step, formatting, is to insure that the
message (or source signal) is compatible with digital processing. Transmit format-
ting 1s a transformation from source information to digital symbols. (It is the re-
verse transformation in the receive chain.) When data compression in addition to
formatting is employed, the process is termed source coding. Some authors
consider formatting a special case of source coding. We treat formatting (and base-
band modulation) in this chapter, and treat source coding as a special case of the
efficient description of source information in Chapter 13.

In Figure 2.1, the highlighted block labeled “formatting” contains a list of
topics that deal with transforming information to digital messages. The digital mes-
sages are considered to be in the logical format of binary ones and zeros until they
are transformed by the next essential step, called pulse modulation, into baseband
(pulse) waveforms. Such waveforms can then be transmitted over a cable. In Figure
2.1, the highlighted block labeled “baseband signaling”™ contains a list of pulse mod-
ulating waveforms that are described in this chapter. The term baseband refers to a
signal whose spectrum extends from (or near) dc up to some finite value, usually
less than a few megahertz. In Chapter 3, the subject of baseband signaling is contin-
ued with emphasis on demodulation and detection.

2.1 BASEBAND SYSTEMS

In Figure 1.2 we presented a block diagram of a typical digital communication sys-
tem. A version of this functional diagram, focusing primarily on the formatting and
transmission of baseband signals, is shown in Figure 2.2. Data already in a digital

56 Formatting and Baseband Modulation Chap. 2
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Figure 2.2 Formatting and transmission of baseband signals.

format would bypass the formatting function. Textual information is transformed
into binary digits by use of a coder. Analog information is formatted using three
separate processes: sampling, quantization, and coding. In all cases, the formatting
step results in a sequence of binary digits.

These digits are to be transmitted through a baseband channel, such as a pair
of wires or a coaxial cable. However, no channel can be used for the transmission
of binary digits without first transforming the digits to waveforms that are compati-
ble with the channel. For baseband channels, compatible waveforms are pulses.

In Figure 2.2, the conversion from a bit stream to a sequence of pulse wave-
forms takes place in the block labeled pulse modulate. The output of the modula-
tor is typically a sequence of pulses with characteristics that correspond to the
digits being sent. After transmission through the channel, the pulse waveforms are
recovered (demodulated) and detected to produce an estimate of the transmitted
digits; the final step, (reverse) formatting, recovers an estimate of the source
information.

2.2 FORMATTING TEXTUAL DATA (CHARACTER CODING)

The original form of most communicated data (except for computer-to-computer
transmissions) is either textual or analog. If the data consist of alphanumeric text,
they will be character encoded with one of several standard formats; examples
include the American Standard Code for Information Interchange (ASCII), the
Extended Binary Coded Decimal Interchange Code (EBCDIC), Baudot, and
Hollerith. The textual material is thereby transformed into a digital format. The
ASCII format is shown in Figure 2.3; the EBCDIC format is shown in Figure 2.4.
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The bit numbers signify the order of serial transmission, where bit number 1 is the
first signaling element. Character coding, then, is the step that transforms text into
binary digits (bits). Sometimes existing character codes are modified to meet spe-
cialized needs. For example, the 7-bit ASCII code (Figure 2.3) can be modified to
include an added bit for error detection purposes. (See Chapter 6.) On the other
hand, sometimes the code is truncated to a 6-bit ASCII version, which provides ca-
pability for only 64 characters instead of the 128 characters allowed by 7-bit ASCII.

2.3 MESSAGES, CHARACTERS, AND SYMBOLS

Textual messages comprise a sequence of alphanumeric characters. When digitally
transmitted, the characters are first encoded into a sequence of bits, called a bir
stream or baseband signal. Groups of k bits can then be combined to form new
digits, or symbols, from a finite symbol set or alphabet of M = 2% such symbols. A
system using a symbol set size of M is referred to as an M-ary system. The value of
k or M represents an important initial choice in the design of any digital communi-
cation system. For k = 1, the system is termed binary, the size of the symbol set 1s
M =2, and the modulator uses one of the two different waveforms to represent the
binary “one” and the other to represent the binary “zero.” For this special case, the
symbol and the bit are the same. For k = 2, the system is termed quaternary or 4-ary
(M = 4). At each symbol time, the modulator uses one of the four different wave-
forms that represents the symbol. The partitioning of the sequence of message bits
is determined by the specification of the symbol set size, M. The following example
should help clarify the relationship between the following terms: “message,” “char-
acter,” “symbol,” “bit,” and “digital waveform.”

2.3.1 Example of Messages, Characters, and Symbols

Figure 2.5 shows examples of bit stream partitioning, based on the system specifica-
tion for the values of k and M. The textual message in the figure is the word
“THINK.” Using 6-bit ASCII character coding (bit numbers 1 to 6 from Figure 2.3)
yields a bit stream comprising 30 bits. In Figure 2.5a, the symbol set size, M, has
been chosen to be 8 (each symbol represents an 8-ary digit). The bits are therefore
partitioned into groups of three (k = log, 8); the resulting 10 numbers represent the
10 octal symbols to be transmitted. The transmitter must have a repertoire of eight
waveforms s,(t), where i = 1, ..., 8, to represent the possible symbols, any one of
which may be transmitted during a symbol time. The final row of Figure 2.5a lists
the 10 waveforms that an 8-ary modulating system transmits to represent the tex-
tual message “THINK.”

In Figure 2.5b, the symbol set size, M, has been chosen to be 32 (each symbol
represents a 32-ary digit). The bits are therefore taken five at a time, and the result-
ing group of six numbers represent the six 32-ary symbols to be transmitted. Notice
that there is no need for the symbol boundaries and the character boundaries to co-
incide. The first symbol represents 2 of the first character, “T.” The second symbol
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Message (text): "THINK"

T H | N K

A A, A A

Character coding - - o » “ - \
(6-bit ASCII): 0010100001001001000117100110100

e e e e e e e e e N N

8-ary digits * + } {’ + } J’ ¢ 4 +

(symbols): 1 2 0 4 4 4 3 4 6 4

8-ary waveforms:  s1(t) so(f) so(t) sa(t) salt) sa(t) s3(t) sa(t) sglt) salt)

(a)
T H | N K

Character coding ‘ e - He - e - Ve * "
(6-bit ASCH): 00101700001700100171000171T1T1700110100
32-ary digits } + } * {' *
(symbols): 5 1 4 17 25 20
32-ary waveforms:  ssg(t) 51(2) s4(t) s97(t) s25(t) s20(t)

(b)

Figure 2.5 Messages, characters, and symbols. (a) 8-ary example.
(b} 32-ary example.

represents the remaining ¢ of the character “T” and £ of the next character, “H,”
and so on. It is not necessary that the characters be partitioned more aesthetically.
The system sees the characters as a string of digits to be transmitted; only the end
user (or the user’s teleprinter machine) ascribes textual meaning to the final deliv-
ered sequence of bits. In this 32-ary case, a transmitter needs a repertoire of 32
waveforms s(r), where i =1, ..., 32, one for each possible symbol that may be
transmitted. The final row of the figure lists the six waveforms that a 32-ary modu-
lating system transmits to represent the textual message “THINK.”

2.4 FORMATTING ANALOG INFORMATION
If the information is analog, it cannot be character encoded as in the case of textual
data; the information must first be transformed into a digital format. The process of

transforming an analog waveform into a form that is compatible with a digital com-
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munication system starts with sampling the waveform to produce a discrete pulse-
amplitude-modulated waveform, as described below.

2.4.1 The Sampling Theorem

The link between an analog waveform and its sampled version is provided by what
is known as the sampling process. This process can be implemented in several ways,
the most popular being the sample-and-hold operation. In this operation, a switch
and storage mechanism (such as a transistor and a capacitor, or a shutter and a
filmstrip) form a sequence of samples of the continuous input waveform. The out-
put of the sampling process is called pulse amplitude modulation (PAM) because
the successive output intervals can be described as a sequence of pulses with ampli-
tudes derived from the input waveform samples. The analog waveform can be
approximately retrieved from a PAM waveform by simple low-pass filtering. An
important question: how closely can a filtered PAM waveform approximate the
original input waveform? This question can be answered by reviewing the sampling
theorem, which states the following [1]: A bandlimited signal having no spectral
components above f,, hertz can be determined uniquely by values sampled at
uniform intervals of

T, = l
T,
This particular statement is also known as the uniform sampling theorem. Stated
another way, the upper limit on T, can be expressed in terms of the sampling rate,
denoted f, = 1/T,. The restriction, stated in terms of the sampling rate, is known as
the Nyquist criterion. The statement is

f, = 2f, (2.2)

The sampling rate f, = 2f,, is also called the Nyquist rate. The Nyquist criterion is a
theoretically sufficient condition to allow an analog signal to be reconstructed com-
pletely from a set of uniformly spaced discrete-time samples. In the sections that
follow, the validity of the sampling theorem is demonstrated using different sam-
pling approaches.

sec (2.1)

2.4.1.1 Impulse Sampling

Here we demonstrate the validity of the sampling theorem using the fre-
quency convolution property of the Fourier transform. Let us first examine the
case of ideal sampling with a sequence of unit impulse functions. Assume an analog
waveform, x(7), as shown in Figure 2.6a, with a Fourier transform, X(f), which is
zero outside the interval (— f,, < f < f,,), as shown in Figure 2.6b. The sampling of
x(1) can be viewed as the product of x(f) with a periodic train of unit impulse func-
tions x;(¢), shown in Figure 2.6¢ and defined as

o

x() = S 8(t - nTy) (23)

n=—5"
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Figure 2.6 Sampling theorem using the frequency convolution prop-
erty of the Fourier transform.

where T, is the sampling period and &(¢) is the unit impulse or Dirac delta function
defined in Section 1.2.5. Let us choose T, = 1/2f,,, so that the Nyquist criterion 1s

just satisfied.
The sifting property of the impulse function (see Section A.4.1) states that

x(1)d(t — ty) = x(15)d(t — 1) (2.4)

Using this property, we can see that x,(7), the sampled version of x(r) shown in
Figure 2.6e, is given by

x,(t) = x(t)xs(t) = i x(1)d(t — nT,)
e (2.5)

a

= 3 x(nT.)s(t - nT,)

n=-—u9,

Using the frequency convolution property of the Fourier transform (see Section
A .5.3), we can transform the time-domain product x(¢)xs(f) of Equation (2.5) to the
frequency-domain convolution X(f) * X;(f), where
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X(f) =7 3 8/~ nf) 2:6)
is the Fourier transform of the impulse train x;(f) and where f, = 1/T, is the sam-
pling frequency. Notice that the Fourier transform of an impulse train is another
impulse train; the values of the periods of the two trains are reciprocally related to
one another. Figures 2.6c and d illustrate the impulse train x4(¢) and its Fourier
transform X;( f), respectively,

Convolution with an impulse function simply shifts the original function as
follows:

X(f)*d(f — nfy) = X(f — nfy) (2.7)
We can now solve for the transform X ( f) of the sampled waveform:
1 = =]
X(f) = X(f) = X(f) = X(f)* | o 2 8(f = nf.)
e (2.8)

-] b 4]
-7 3 X/ nf)
We therefore conclude that within the original bandwidth, the spectrum X,(f) of
the sampled signal x,(r) is, to within a constant factor (1/7,), exactly the same as
that of x(r). In addition, the spectrum repeats itself periodically in frequency every
f; hertz. The sifting property of an impulse function makes the convolving of an im-
pulse train with another function easy to visualize. The impulses act as sampling
functions. Hence, convolution can be performed graphically by sweeping the im-
pulse train X;(f) in Figure 2.6d past the transform |X(f)| in Figure 2.6b. This sam-
pling of |X(f)| at each step in the sweep replicates |X(f)| at each of the frequency
positions of the impulse train, resulting in | X(f)|, shown in Figure 2.6f.

When the sampling rate is chosen, as it has been here, such that f, = 2f,, each
spectral replicate is separated from each of its neighbors by a frequency band ex-
actly equal to f; hertz, and the analog waveform can theoretically be completely re-
covered from the samples, by the use of filtering. However, a filter with infinitely
steep sides would be required. It should be clear that if f, > 2f,,, the replications will
move farther apart in frequency, as shown in Figure 2.7a, making it easier to per-
form the filtering operation. A typical low-pass filter characteristic that might be
used to separate the baseband spectrum from those at higher frequencies is shown
in the figure. When the sampling rate is reduced, such that f, < 2f,,, the replications
will overlap, as shown in Figure 2.7b, and some information will be lost. The
phenomenon, the result of undersampling (sampling at too low a rate), is called
aliasing. The Nyquist rate, f, = 2f,,, is the sampling rate below which aliasing occurs;
to avoid aliasing, the Nyquist criterion, f, > 2f,,, must be satisfied.

As a matter of practical consideration, neither waveforms of engineering in-
terest nor realizable bandlimiting filters are strictly bandlimited. Perfectly bandlim-
ited signals do not occur in nature (see Section 1.7.2); thus, realizable signals, even
though we may think of them as bandlimited, always contain some aliasing. These
signals and filters can, however, be considered to be “essentially” bandlimited. By
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Figure 2.7 Spectra for various sampling rates. (a) Sampled spectrum
(f, > 2f,). (b) Sampled spectrum (f; < 2f,).

this we mean that a bandwidth can be determined beyond which the spectral com-
ponents are attenuated to a level that is considered negligible.

2.4.1.2 Natural Sampling

Here we demonstrate the validity of the sampling theorem using the fre-
quency shifting property of the Fourier transform. Although instantaneous sam-
pling is a convenient model, a more practical way of accomplishing the sampling of
a bandlimited analog signal x(¢) is to multiply x(¢), shown in Figure 2.8a, by the
pulse train or switching waveform x,(r), shown in Figure 2.8c. Each pulse in x,(r)
has width 7 and amplitude 1/7. Multiplication by x,(f) can be viewed as the open-
ing and closing of a switch. As before, the sampling frequency is designated f,, and
its reciprocal, the time period between samples, is designated 7,. The resulting
sampled-data sequence, x,(¢), is illustrated in Figure 2.8e and 1s expressed as

x(t) = x(0)x,(1) (2.9)

The sampling here is termed natural sampling, since the top of each pulse in the
x,(t) sequence retains the shape of its corresponding analog segment during the
pulse interval. Using Equation (A.13), we can express the periodic pulse train as a
Fourier series in the form

n=—9%

x,(t) = D c,el ™ (2.10)
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Figure 2.8 Sampling theorem using the frequency shifting property of the Fourier
transform.

where the sampling rate, f, = 1/, is chosen equal to 2f,,, so that the Nyquist
criterion is just satisfied. From Equation (A.24), ¢, = (1/T,) sinc (nT/T,), where T is
the pulse width, 1/T is the pulse amplitude, and
sin Ty
Yy

sincy =

The envelope of the magnitude spectrum of the pulse train, seen as a dashed line in
Figure 2.8d, has the characteristic sinc shape. Combining Equations (2.9) and (2.10)
yields

o
.I_,..(f) = X(f) 2 ,[:”Ef.z’ﬂ'ﬂfqr

(2.11)
The transform X (f) of the sampled waveform is found as follows:
X,(f) = @{x(;) S cpel E“Hfff} (2.12)
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For linear systems, we can interchange the operations of summation and Fourier
transformation. Therefore, we can write

X.(f)= X c.F{x(r)e ™} (2.13)
Using the frequency translation property of the Fourier transform (see Section
A.3.2), we solve for X,(f) as follows:

X (f) = zzm c X(f = nfs) (2.14)

Similar to the unit impulse sampling case, Equation (2.14) and Figure 2.8f illustrate
that X,(f) is a replication of X(f), periodically repeated in frequency every f, hertz.
In this natural-sampled case, however, we see that X(f) is weighted by the Fourier
series coefficients of the pulse train, compared with a constant value in the
impulse-sampled case. It is satisfying to note that in the limit, as the pulse width, 7,
approaches zero, ¢, approaches 1/7, for all n (see the example that follows), and
Equation (2.14) converges to Equation (2.8).

Example 2.1 Comparison of Impulse Sampling and Natural Sampling

Consider a given waveform x(f) with Fourier transform X(f). Let X,(f) be the
spectrum of x,,(f), which is the result of sampling x(r) with a unit impulse train x;(t).
Let X,(f) be the spectrum of x(f), the result of sampling x(¢) with a pulse train x,(f)
with pulse width 7, amplitude 1/7, and period 7. Show that in the limit, as T
approaches zero, X (f) = X(f).

Solution

From Equation (2.8),

and from Equation (2.14),
st{f} = E C.er(.f_ ”.fﬂ'}

As the pulse with T — 0, and the pulse amplitude approaches infinity (the area of the
pulse remains unity), x,(t) — x;(t). Using Equation (A.14), we can solve for ¢, in the
limit as follows:

l Ty /2 .
Cp = llm N f IP{I)F _ja'?rﬂ_f!.-fdt
=l Tj‘ T 2
P

1 T /2
= ? f x;(t)e jzmnst
s o

Since, within the range of integration, ~7,/2 to T,/2, the only contribution of x5(t) 18
that due to the impulse at the origin, we can write
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1 (B
T T, f d(t)e /i dr = —
I ~T 2

Therefore, in the limit, X,(f) = X,,(f) for all n.

2.4.1.3 Sample-and-Hold Operation

The simplest and thus most popular sampling method, sample and hold, can
be described by the convolution of the sampled pulse train, [x(£)x;(f)], shown in
Figure 2.6e, with a unity amplitude rectangular pulse p(t) of pulse width T,. This
time, convolution results in the flattop sampled sequence

xo(t) = p(t) * [x(t)xs(t) ]
= p(t) * [X(f) >, ¥(t—nT,)

frl=—"

(2.15)
|

The Fourier transform, X (f), of the time convolution in Equation (2.15) is the
frequency-domain product of the transform P(f) of the rectangular pulse and the
periodic spectrum, shown in Figure 2.6f, of the impulse-sampled data:

X() = #0386 - ) |

=—0s

(f){X(f [ S —ﬂfs” - @16)

.!. n=—%
o

(f} T 2 Xf-nf)

Here, P(f) is of the form 7| sinc fT,. The effect of this product operation results in
a spectrum similar in appearance to the natural-sampled example presented in Fig-
ure 2.8f. The most obvious effect of the hold operation is the significant attenuation
of the higher-frequency spectral replicates (compare Figure 2.8f to Figure 2.6f),
which is a desired effect. Additional analog postfiltering is usually required to fin-
ish the filtering process by further attenuating the residual spectral components lo-
cated at the multiples of the sample rate. A secondary effect of the hold operation
is the nonuniform spectral gain P(f) applied to the desired baseband spectrum
shown in Equation (2.16). The postfiltering operation can compensate for this
attenuation by incorporating the inverse of P(f) over the signal passband.

2.4.2 Aliasing

Figure 2.9 is a detailed view of the positive half of the baseband spectrum and one
of the replicates from Figure 2.7b. It illustrates aliasing in the frequency domain.
The overlapped region, shown in Figure 2.9b, contains that part of the spectrum
which is aliased due to undersampling. The aliased spectral components represent
ambiguous data that appear in the frequency band between (f, — f,,) and f,,. Figure
2.10 illustrates that a higher sampling rate f',, can eliminate the aliasing by separat-
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Figure 2.9 Aliasing in the frequency domain. (a) Continuous signal
spectrum. (b) Sampled signal spectrum.
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Figure 2.10 Higher sampling rate eliminates aliasing. (a) Continuous

signal spectrum. (b) Sampled signal spectrum.
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ing the spectral replicates; the resulting spectrum in Figure 2.10b corresponds to
the case in Figure 2.7a. Figures 2.11 and 2.12 illustrate two ways of eliminating
aliasing using antialiasing filters. In Figure 2.11 the analog signal is prefiltered so
that the new maximum frequency, f’,,, is reduced to f,/2 or less. Thus there are no
aliased components seen in Figure 2.11b, since f, > 2f’,,. Eliminating the aliasing
terms prior to sampling is good engineering practice. When the signal structure is
well known, the aliased terms can be eliminated after sampling, with a low-pass
filter operating on the sampled data [2]. In Figure 2.12 the aliased components are
removed by posifiltering after sampling; the filter cutoff frequency, f”,,, removes
the aliased components; f”,, needs to be less than (f, — f,,). Notice that the filtering
techniques for eliminating the aliased portion of the spectrum in Figures 2.11 and
2.12 will result in a loss of some of the signal information. For this reason, the sam-
ple rate, cutoff bandwidth, and filter type selected for a particular signal bandwidth
are all interrelated.

Realizable filters require a nonzero bandwidth for the transition between the
passband and the required out-of-band attenuation. This is called the transition
bandwidrh. To minimize the system sample rate, we desire that the antialiasing
filter have a small transition bandwidth. Filter complexity and cost rise sharply with
narrower transition bandwidth, so a trade-off is required between the cost of a
small transition bandwidth and the costs of the higher sampling rate, which are
those of more storage and higher transmission rates. In many systems the answer
has been to make the transition bandwidth between 10 and 20% of the signal band-

| X(f) ]
: f
0 fs
(a)
| X(f) |
) >|\ 1 " f
0 fs = Fm ﬁv s fo+fm fo+fm
Fu” 2 Nf—f
(b)

Figure 2.11 Sharper-cutoff filters eliminate aliasing. (a) Continuous
signal spectrum. (b) Sampled signal spectrum.
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Figure 2.12 Postfilter eliminates aliased portion of spectrum. (a) Con-
tinuous signal spectrum. (b) Sampled signal spectrum.

width. If we account for the 20% transition bandwidth of the antialiasing filter, we
have an engineer’s version of the Nyquist sampling rate:

fe = 2.2f, (2.17)

Figure 2.13 provides some insight into aliasing as seen in the time domain.
The sampling instants of the solid-line sinusoid have been chosen so that the sinus-
oidal signal is undersampled. Notice that the resulting ambiguity allows one to
draw a totally different (dashed-line) sinusoid, following the undersampled points.

Example 2.2 Sampling Rate for a High-Quality Music System

We wish to produce a high-quality digitization of a 20-kHz bandwidth music source.
We are to determine a reasonable sample rate for this source. By the engineer’s
version of the Nyquist rate, in Equation (2.17), the sampling rate should be greater
than 44.0 ksamples/s. As a matter of comparison, the standard sampling rate for the
compact disc digital audio player is 44.1 ksamples/s, and the standard sampling rate for
studio-quality audio is 48.0 ksamples/s.

2.4.3 Why Oversample?
Oversampling is the most economic solution for the task of transforming an analog

signal to a digital signal, or the reverse, transforming a digital signal to an analog
signal. This is so because signal processing performed with high performance ana-
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Figure 2.13 Alias frequency generated by sub-Nyquist sampling rate.

log equipment is typically much more costly than using digital signal processing
equipment to perform the same task. Consider the task of transforming analog
signals to digital signals. When this task is performed without the benefit of over-
sampling, the process is characterized by three simple steps, performed in the order
that follows.

Without Oversampling

1. The signal passes through a high performance analog lowpass filter to limit its
bandwidth.

2. The filtered signal is sampled at the Nyquist rate for the (approximated)
bandlimited signal. As described in Section 1.7.2, a strictly bandlimited signal
Is not realizable.

3. The samples are processed by an analog-to-digital converter that maps the
continuous-valued samples to a finite list of discrete output levels.

When this task is performed with the benefit of over-sampling, the process is best
described as five simple steps, performed in the order that follows.

|
With Oversampling
1. The signal is passed through a low performance (less costly) analog low-pass
filter (prefilter) to limit its bandwidth.

2. The pre-filtered signal is sampled at the (now higher) Nyquist rate for the
(approximated) bandlimited signal.

3. The samples are processed by an analog-to-digital converter that maps the
continuous-valued samples to a finite list of discrete output levels.

4. The digital samples are then processed by a high performance digital filter to
reduce the bandwidth of the digital samples.

S. The sample rate at the output of the digital filter is reduced in proportion to
the bandwidth reduction obtained by this digital filter.

The next two sections examine the benefits of over-sampling.
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2.4.3.1 Analog Filtering, Sampling, and Analog to Digital Conversion

The analog filter that limits the bandwidth of an input signal has a passband fre-
quency equal to the signal bandwidth, followed by a transition to a stop band. The
bandwidth of the transition region results in an increase in bandwidth of the output
signal by some amount f.. The Nyquist rate f; for the filtered output, nominally equal
to 2f,, (twice the highest frequency in the sampled signal) must now be increased to
2f.. + f.. The transition bandwidth of the filter represents an overhead in the sampling
process. This additional spectral interval does not represent useful signal bandwidth
but rather protects the signal bandwidth by reserving a spectral region for the aliased
spectrum due to the sampling process. The aliasing stems from the fact that real sig-
nals cannot be strictly bandlimited. Typical transition bandwidths represent a 10- to
20-percent increase of the sample rate relative to that dictated by the Nyquist crite-
rion. Examples of this overhead are seen in the compact disc (CD) digital audio sys-
tem, for which the two-sided bandwidth is 40 kHz and the sample rate is 44.1 kHz, and
also in the digital audio tape (DAT) system, which also has a two-sided bandwidth of
40 kHz with a sample rate of 48.0 kHz.

Our intuition and initial impulse is to keep the sample rate as low as possible by
building analog filters with narrow transition bandwidths. However, analog filters
can exhibit two undesirable characteristics. First, they can exhibit distortion (nonlin-
ear phase versus frequency) due to narrow transition bandwidths. Second, the cost
can be high because narrow transition bandwidths dictate high-order filters (see
Section 1.6.3.2) requiring a large number of high-quality components. Our quandary
is that we wish to operate the sampler at the lowest possible rate to reduce the data-
storage cost. To meet this goal we might build a sophisticated analog filter with a nar-
row transition bandwidth. But such a filter is not only expensive, it also distorts the
very signal it has been designed to protect (from undesired aliasing).

The solution (oversampling) is elegant—having been given a problem that we
can’t solve, we convert it to one that we can solve. We elect to use a low-cost, less
sophisticated analog prefilter to limit the bandwidth of the input signal. This analog
filter has been simplified by choosing a wider transition bandwidth. With a wider
transition bandwidth, the required sample rate must now be increased to accom-
modate this larger spectrum. We typically start by selecting the higher sample rate
to be 4 times the original sample rate, and then we design the analog filter to have a
transition bandwidth that matches the increased sample rate. As an example,
rather than sampling a CD signal at 44.1 kHz with a transition bandwidth of 4.1
kHz implemented with a sophisticated 10th order elliptic filter (implying that the .
filter includes 10 energy storage elements, such as capacitors and inductors), we
might choose the option to employ oversampling. In that case, we could operate
the sampler at 176.4 kHz with a transition bandwidth of 136.4 kHz implemented
with a simpler 4th-order elliptic filter (having only 4 energy storage elements).

2.4.3.2 Digital Filtering and Resampling

Now that we have the sampled data, with its higher-than-desired sample rate,
we pass the sampled data through a high-performance, low-cost, digital filter to
perform the desired anti-alias filtering. The digital filter can realize the narrow
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transition bandwidth without the distortion associated with analog filters, and it
can operate at low cost. We next reduce the sample rate of the signal (resample)
after the digital filtering operation that had reduced the transition bandwidth.
Good digital signal processing techniques combine the filtering and the resampling
in a single structure.

Now we address a system consideration to further improve the quality of the
data collection process. The analog prefilter induces some amplitude and phase dis-
tortion. We know precisely what this distortion is, and we design the digital filter so
that it not only completes the anti-aliasing task of the analog prefilter, but also
compensates for its gain and phase distortion. The composite response can be
made as good as we want it to be. Thus we obtain a collected signal of higher qual-
ity (less distortion) at reduced cost. Digital signal processing hardware, an exten-
sion of the computer industry, is characterized by significantly lower prices each
year, which has not been the case with analog processing.

In a similar fashion, oversampling is employed in the process of converting
the digital signal to an analog signal (DAC). The analog filter following the DAC
suffers from distortion if it has a sharp transition bandwidth. But the transition
bandwidth will not be narrow if the output data presented to the DAC has been
digitally oversampled.

2.4.4 Signal Interface for a Digital System

Let us examine four ways in which analog source information can be described.
Figure 2.14 illustrates the choices. Let us refer to the waveform in Figure 2.14a
as the original analog waveform. Figure 2.14b represents a sampled version of
the original waveform, typically referred to as natural-sampled data or PAM
(pulse amplitude modulation). Do you suppose that the sampled data in Fig-
ure 2.14b are compatible with a digital system? No, they are not, because the
amplitude of each natural sample still has an infinite number of possible values; a
digital system deals with a finite number of values. Even if the sampling is flat-
top sampling, the possible pulse values form an infinite set, since they reflect all the
possible values of the continuous analog waveform. Figure 2.14¢ illustrates
the original waveform represented by discrete pulses. Here the pulses have flat
tops and the pulse amplitude values are limited to a finite set. Each pulse is ex-
pressed as a level from a finite number of predetermined levels; each such
level can be represented by a symbol from a finite alphabet. The pulses in Figure
2.14c are referred to as quantized samples; such a format is the obvious choice for
interfacing with a digital system. The format in Figure 2.14d may be construed as
the output of a sample-and-hold circuit. When the sample values are quantized to
a finite set, this format can also interface with a digital system. After quantization,
the analog waveform can still be recovered, but not precisely; improved re-
construction fidelity of the analog waveform can be achieved by increasing the
number of quantization levels (requiring increased system bandwidth). Signal
distortion due to quantization is treated in the following sections (and later in
Chapter 13).
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Figure 2.14 Amplitude and time coordinates of source data. (a) Origi-
nal analog waveform. (b) Natural-sampled data. (c) Quantized samples.
(d) Sample and hold.

2.5 SOURCES OF CORRUPTION

The analog signal recovered from the sampled, quantized, and transmitted pulses
will contain corruption from several sources. The sources of corruption are related
to (1) sampling and quantizing effects, and (2) channel effects. These effects are
considered in the sections that follow.

2.5.1 Sampling and Quantizing Effects

2.5.1.1 Quantization Noise

The distortion inherent in quantization is a round-off or truncation error. The
process of encoding the PAM signal into a quantized PAM signal involves discard-
ing some of the original analog information. This distortion, introduced by the -
need to approximate the analog waveform with quantized samples, is referred to as
quantization noise; the amount of such noise is inversely proportional to the num-
ber of levels employed in the quantization process. (The signal-to-noise ratio of
quantized pulses is treated in Sections 2.5.3 and 13.2.)

2.5.1.2 Quantizer Saturation

The quantizer (or analog-to-digital converter) allocates L levels to the task of
approximating the continuous range of inputs with a finite set of outputs. The
range of inputs for which the difference between the input and output is small is
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called the operating range of the converter. If the input exceeds this range. the
difference between the input and the output becomes large, and we say that the
converter is operating in saturation. Saturation errors, being large, are more ob-
jectionable than quantizing noise. Generally, saturation is avoided by the use of
automatic gain control (AGC), which effectively extends the operating range of the
converter. (Chapter 13 covers quantizer saturation in greater detail.)

2.5.1.3 Timing Jitter

Our analysis of the sampling theorem predicted precise reconstruction of the
signal based on uniformly spaced samples of the signal. If there is a slight jitter in
the position of the sample, the sampling is no longer uniform. Although exact re-
construction is still possible if the sample positions are accurately known, the jitter
is usually a random process and thus the sample positions are not accurately
known. The effect of the jitter is equivalent to frequency modulation (FM) of the
baseband signal. If the jitter is random, a low-level wideband spectral contribution
is induced whose properties are very close to those of the quantizing noise. If the
jitter exhibits periodic components, as might be found in data extracted from a tape
recorder, the periodic FM will induce low-level spectral lines in the data. Timing
jitter can be controlled with very good power supply isolation and stable clock
references.

2.5.2 Channel Effects

2.5.2.1 Channel Noise

Thermal noise, interference from other users, and interference from circuit
switching transients can cause errors in detecting the pulses carrying the digitized
samples. Channel-induced errors can degrade the reconstructed signal quality quite
quickly. This rapid degradation of output signal quality with channel-induced
errors 1s called a threshold effect. If the channel noise is small, there will be no
problem detecting the presence of the waveforms. Thus, small noise does not
corrupt the reconstruct signals. In this case, the only noise present in the recon-
struction is the quantization noise. On the other hand, if the channel noise is large
enough to affect our ability to detect the waveforms, the resulting detection error
causes reconstruction errors. A large difference in behavior can occur for very
small changes in channel noise level.

2.5.2.2 Intersymbol Interference

The channel is always bandlimited. A bandlimited channel disperses or
spreads a pulse waveform passing through it (see Section 1.6.4). When the channel
bandwidth is much greater than the pulse bandwidth, the spreading of the pulse
will be slight. When the channel bandwidth is close to the signal bandwidth, the
spreading will exceed a symbol duration and cause signal pulses to overlap. This
overlapping is called intersymbol interference (ISI). Like any other source of
interference, ISI causes system degradation (higher error rates); it is a particularly
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insidious form of interference because raising the signal power to overcome the in-
terference will not always improve the error performance. (Details of how ISI 1s
handled are presented in the next chapter, in Sections 3.3 and 3.4.)

2.5.3 Signal-to-Noise Ratio for Quantized Pulses

Figure 2.15 illustrates an L-level linear quantizer for an analog signal with a peak-
to-peak voltage range of V,, =V, - (-V,) =2V, volts. The quantized pulses assume
positive and negative values, as shown in the figure. The step size between quanti-
zation levels, called the quantile interval, is denoted g volts. When the quantization
levels are uniformly distributed over the full range, the quantizer is called a uni-
form or linear quantizer. Each sample value of the analog waveform is approxi-
mated with a quantized pulse; the approximation will result in an error no larger
than ¢/2 in the positive direction or —g/2 in the negative direction. The degradation
of the signal due to quantization is therefore limited to half a quantile interval,
+ q/2 volts.

A useful figure of merit for the uniform quantizer is the quantizer variance
(mean-square error assuming zero mean). If we assume that the quantization error,
e, is uniformly distributed over a single quantile interval g-wide (i.e., the analog
input takes on all values with equal probability), the quantizer error variance is
found to be '

Ve . __
V. —al? A A
p—4 § g volts
V, - 3¢/2
5g/2
3q/2
Quantized /2
ﬂ:?u::s 3 _E_IZ_' ————————— L levels Vop
-3q/2
—5q/2
-V, + 3q/2
& _::”ffff _____________ {1
—Vp

Figure 2.15 Quantization levels.
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where p(e) = 1/g is the (uniform) probability density function of the quantization
error. The variance, o”, corresponds to the average quantization noise power. The
peak power of the analog signal (normalized to 1 (1) can be expressed as

Vn 2 Lg Z qul
P ( 2 2 4 (2.19)

where L is the number of quantization levels. Equations (2.18) and (2.19) com-
bined yield the ratio of peak signal power to average quantization noise power
(S/N),, assuming that there are no errors due to ISI or channel noise:

1’q°/4
(E) L WagYs (2.20)
N/, q-/12

It is intuitively satisfying to see that (S/N), improves as a function of the number of
quantization levels squared. In the limit (as L — ), the signal approaches the
PAM format (with no quantization), and the signal-to-quantization noise ratio is
infinite; in other words, with an infinite number of quantization levels, there is zero
quantization noise.

2.6 PULSE CODE MODULATION

Pulse code modulation (PCM) is the name given to the class of baseband signals
obtained from the quantized PAM signals by encoding each quantized sample into
a digital word [3]. The source information is sampled and quantized to one of L
levels; then each quantized sample is digitally encoded into an €-bit (¢ = log, L)
codeword. For baseband transmission, the codeword bits will then be transformed
to pulse waveforms. The essential features of binary PCM are shown in Figure 2.16.
Assume that an analog signal x(f) is limited in its excursions to the range —4 to
+4 V. The step size between quantization levels has been set at 1 V. Thus, eight
quantization levels are employed; these are located at -3.5, -2.5, ..., +3.5 V. We
assign the code number 0 to the level at -3.5 V, the code number 1 to the level at
—2.5 V, and so on, until the level at 3.5 V, which is assigned the code number 7.
Each code number has its representation in binary arithmetic, ranging from 000 for
code number 0 to 111 for code number 7. Why have the voltage levels been chosen
in this manner, compared with using a sequence of consecutive integers, 1, 2,
3, ... 7 The choice of voltage levels is guided by two constraints. First, the quantile
intervals between the levels should be equal; and second, it is convenient for the
levels to be symmetrical about zero.
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PCM sequence 101 111 110 100 011 001 000

Figure 2.16 Natural samples, quantized samples, and pulse code modulation.
(Reprinted with permission from Taub and Schilling, Principles of Communications
Systems, McGraw-Hill Book Company, New York, 1971, Fig. 6.5-1, p. 205.)

The ordinate in Figure 2.16 1s labeled with quantization levels and their code
numbers. Each sample of the analog signal is assigned to the quantization level
closest to the value of the sample. Beneath the analog waveform x(¢) are seen four
representations of x(¢), as follows: the natural sample values, the quantized sample
values, the code numbers, and the PCM sequence.

Note, that in the example of Figure 2.16, each sample is assigned to one of
eight levels or a three-bit PCM sequence. Suppose that the analog signal is a musi-
cal passage, which is sampled at the Nyquist rate. And, suppose that when we listen
to the music in digital form, it sounds terrible. What could we do to improve the fi-
delity? Recall that the process of quantization replaces the true signal with an ap-
proximation (i.e., adds quantization noise). Thus, increasing the number of levels
will reduce the quantization noise. If we double the number of levels to 16, what
are the consequences? In that case, each analog sample will be represented as a
four-bit PCM sequence. Will that cost anything? In a real-time communication sys-
tem, the messages must not be delayed. Hence, the transmission time for each sam-
ple must be the same, regardless of how many bits represent the sample. Hence,
when there are more bits per sample, the bits must move faster; in other words,
they must be replaced by “skinnier” bits. The data rate is thus increased, and the
cost is a greater transmission bandwidth. This explains how one can generally ob-
tain better fidelity at the cost of more transmission bandwidth. Be aware, however,
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that there are some communication applications where delay 1s permissible. For ex-
ample, consider the transmission of planetary images from a spacecraft. The
Galileo project, launched in 1989, was on such a mission to photograph and trans-
mit images of the planet Jupiter. The Galileo spacecraft arrived at its Jupiter desti-
nation in 1995. The journey took several years; therefore, any excess signal delay of
several minutes (or hours or days) would certainly not be a problem. In such cases,
the cost of more quantization levels and greater fidelity need not be bandwidth; it
can be time delay.

In Figure 2.1, the term “PCM™ appears in two places. First, it is a formatting
topic, since the process of analog-to-digital (A/D) conversion involves sampling,
quantization, and ultimately yields binary digits via the conversion of quantized
PAM to PCM. Here, PCM digits are just binary numbers—a baseband carrier wave
has not yet been discussed. The second appearance of PCM in Figure 2.1 is under
the heading Baseband Signaling. Here, we list various PCM waveforms (line codes)
that can be used to “carry” the PCM digits. Therefore, note that the difference be-
tween PCM and a PCM waveform is that the former represents a bit sequence, and
the latter represents a particular waveform conveyance of that sequence.

2.7 UNIFORM AND NONUNIFORM QUANTIZATION
2.7.1 Statistics of Speech Amplitudes

Speech communication is a very important and specialized area of digital commu-
nications. Human speech is characterized by unique statistical properties; one such
property is illustrated in Figure 2.17. The abscissa represents speech signal magni-
tudes, normalized to the root-mean-square (rms) value of such magnitudes through
a typical communication channel, and the ordinate is probability. For most voice

0 06 1.0 165 20 25 3.0 35 4.0

Speech signal magnitudes relative
to the rms of such magnitudes

Probability that abscissa value is exceeded

Figure 2.17 Statistical distribution of
single-talker speech signal magnitudes.
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communication channels, very low speech volumes predominate; 50% of the time,
the voltage characterizing detected speech energy is less than one-fourth of the rms
value. Large amplitude values are relatively rare; only 15% of the time does the
voltage exceed the rms value. We see from Equation (2.18b) that the quantization
noise depends on the step size (size of the quantile interval). When the steps are
uniform in size the quantization is known as uniform quantization. Such a system
would be wasteful for speech signals; many of the quantizing steps would rarely be
used. In a system that uses equally spaced quantization levels, the quantization
noise is the same for all signal magnitudes. Therefore, with uniform quantization,
the signal-to-noise (SNR) is worse for low-level signals than for high-level signals.
Nonuniform quantization can provide fine quantization of the weak signals and
coarse quantization of the strong signals. Thus in the case of nonuniform quantiza-
tion, quantization noise can be made proportional to signal size. The effect is to im-
prove the overall SNR by reducing the noise for the predominant weak signals, at
the expense of an increase in noise for the rarely occurring strong signals. Figure
2.18 compares the quantization of a strong versus a weak signal for uniform and
nonuniform quantization. The staircase-like waveforms represent the approxima-
tions to the analog waveforms (after quantization distortion has been introduced).
The SNR improvement that nonuniform quantization provides for the weak signal
should be apparent. Nonuniform quantization can be used to make the SNR a con-
stant for all signals within the input range. For voice signals, the typical input signal
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Figure 2.18 Uniform and nonuniform quantization of signals.
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dynamic range is 40 decibels (dB), where a decibel is defined in terms of the ratio
of power P, to power Py:

P
number of dB = 10 log,, Fz (2.21)
1

With a uniform quantizer, weak signals would experience a 40-dB-poorer SNR
than that of strong signals. The standard telephone technique of handling the large
range of possible input signal levels is to use a logarithmic-compressed quantizer
instead of a uniform one. With such a nonuniform compressor the output SNR is
independent of the distribution of input signal levels.

2.7.2 Nonuniform Quantization

One way of achieving nonuniform quantization is to use a nonuniform quantizer
characteristic, shown in Figure 2.19a. More often, nonuniform quantization is
achieved by first distorting the original signal with a logarithmic compression char-
acteristic, as shown in Figure 2.19b, and then using a uniform quantizer. For small
magnitude signals the compression characteristic has a much steeper slope than for
large magnitude signals. Thus, a given signal change at small magnitudes will carry
the uniform quantizer through more steps than the same change at large magni-
tudes. The compression characteristic effectively changes the distribution of the

Output

Input
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Qutput Output

.-~ “Compression
-
s No compression _I—I_I_

Input Input
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rJ_

Figure 2.19 (a) Nonuniform quantizer characteristic. (b) Compression
characteristic. (c) Uniform quantizer characteristic.
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input signal magnitudes so that there is not a preponderance of low magnitude sig-
nals at the output of the compressor. After compression, the distorted signal is used
as the input to a uniform (linear) quantizer characteristic, shown in Figure 2.19c,
At the receiver, an inverse compression characteristic, called expansion, is applied
so that the overall transmission is not distorted. The processing pair (compression
and expansion) is usually referred to as companding.

2.7.3 Companding Characteristics

The early PCM systems implemented a smooth logarithmic compression function.
Today, most PCM systems use a piecewise linear approximation to the logarithmic
compression characteristic. In North America, a p.-law compression characteristic

log,[1 + i-'-(|-r| [Xmax) ]

log,(1 + p) (2.22)

.}I - ymax

is used, where

{+1 forx = ()
Sen X =
gn x -1 forx < 0

and where . 1s a positive constant, x and y represent input and output voltages, and
Xmax and y,., are the maximum positive excursions of the input and output voltages,
respectively. The compression characteristic is shown in Figure 2.20a for several
values of p. In North America, the standard value for p is 255. Notice that p =0
corresponds to linear amplification (uniform quantization).

Another compression characteristic, used mainly in Europe, is the A-law
characteristic, defined as

1.0
0.8
% %
E E
= = 06
= =
2 2 0.4
g 5
© 92
0 0.2 0.4 06 08 1.0 0 0.2 04 06 08 1.0
Input, |x|fxmax |ﬁl3'u’[, |I I-}Ixmax

(a) (b)

Figure 2.20 Compression characteristics. (a) u-law characteristic.
(b) A-law characteristic.
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where A is a positive constant and x and y are as defined in Equation (2.22). The
A-law compression characteristic is shown in Figure 2.20b for several values of A.
A standard value for A is 87.6. (The subjects of uniform and nonuniform quantiza-
tion are treated further in Chapter 13, Section 13.2.)

2.8 BASEBAND TRANSMISSION
2.8.1 Waveform Representation of Binary Digits

In Section 2.6, it was shown how analog waveforms are transformed into binary
digits via the use of PCM. There is nothing “physical” about the digits resulting
from this process. Digits are just abstractions—a way to describe the message infor-
mation. Thus, we need something physical that will represent or “carry” the digits.

We will represent the binary digits with electrical pulses in order to transmit
them through a baseband channel. Such a representation is shown in Figure 2.21.
Codeword time slots are shown in Figure 2.21a, where the codeword is a 4-bit rep-
resentation of each quantized sample. In Figure 2.21b, each binary one is repre-
sented by a pulse and each binary zero is represented by the absence of a pulse.
Thus a sequence of electrical pulses having the pattern shown in Figure 2.21b can
be used to transmit the information in the PCM bit stream, and hence the informa-
tion in the quantized samples of a message.

Al the receiver, a determination must be made as to the presence or absence
of a pulse in each bit time slot. It will be shown in Section 2.9 that the likelihood of
correctly detecting the presence of a pulse is a function of the received pulse energy
(or area under the pulse). Thus there is an advantage in making the pulse width 7"
in Figure 2.21b as wide as possible. If we increase the pulse width to the maximum
possible (equal to the bit time T), we have the waveform shown in Figure 2.21c.
Rather than describe this waveform as a sequence of present or absent pulses, we
can describe it as a sequence of transitions between two levels. When the waveform
occupies the upper voltage level it represents a binary one; when it occupies the
lower voltage level it represents a binary zero.

2.8.2 PCM Waveform Types

When pulse modulation is applied to a binary symbol, the resulting binary wave-
form is called a pulse-code modulation (PCM) waveform. There are several types
of PCM waveforms that are described below and illustrated in Figure 2.22; in tele-
phony applications, these waveforms are often called /ine codes. When pulse modu-
lation is applied to a nonbinary symbol, the resulting waveform is called an M-ary

28  Baseband Transmission 85



170 1 1]1 0 0 1

—{ T = Bit time slot

— o
= = |

Codeword time slot (a)

e -
e e ———

——— —— ——— .

0 T 2T 3T 4T 5T 6T 7T 8T 9T 10T 11T 12T
(c)

Figure 2.21 Example of waveform representation of binary digits.
(a) PCM sequence. (b) Pulse representation of PCM. (c) Pulse wave-
form (transition between two levels).

pulse-modulation waveform, of which there are several types. They are described
in Section 2.8.5, where one of them, called pulse-amplitude modulation (PAM), is
emphasized. In Figure 2.1, the highlighted block, labeled Baseband Signaling,
shows the basic classification of the PCM waveforms and the M-ary pulse wave-
forms. The PCM waveforms fall into the following four groups.

1. Nonreturn-to-zero (NRZ)
2. Return-to-zero (RZ)

3. Phase encoded

4. Multilevel binary

The NRZ group is probably the most commonly used PCM waveform. It can

be partitioned into the following subgroups: NRZ-L (L for level), NRZ-M (M for
mark), and NRZ-S (S for space). NRZ-L is used extensively in digital logic circuits.
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Figure 2.22 Various PCM
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A binary one is represented by one voltage level and a binary zero is represented
by another voltage level. There is a change in level whenever the data change from
a one to a zero or from a zero to a one. With NRZ-M, the one, or mark, is repre-
sented by a change in level, and the zero, or space, is represented by no change in
level. This is often referred to as differential encoding. NRZ-M i1s used primarily in

2.8 Baseband Transmission

87



magnetic tape recording. NRZ-S is the complement of NRZ-M: A one is repre-
sented by no change in level, and a zero is represented by a change in level.

The RZ waveforms consist of unipolar-RZ, bipolar-RZ, and RZ-AMI. These
codes find application in baseband data transmission and in magnetic recording.
With unipolar-RZ, a one is represented by a half-bit-wide pulse, and a zero is rep-
resented by the absence of a pulse. With bipolar-RZ, the ones and zeros are repre-
sented by opposite-level pulses that are one-half bit wide. There is a pulse present
in each bit interval. RZ-AMI (AMI for “alternate mark inversion™) is a signaling
scheme used in telephone systems. The ones are represented by equal-amplitude
alternating pulses. The zeros are represented by the absence of pulses.

The phase-encoded group consists of bi-db-L (bi-phase-level), better known as
Manchester coding; bi-b-M (bi-phase-mark); bi-$-S (bi-phase-space); and delay
modulation (DM), or Miller coding. The phase-encoding schemes are used in mag-
netic recording systems and optical communications and in some satellite telemetry
links. With bi-d-L, a one is represented by a half-bit-wide pulse positioned during
the first half of the bit interval; a zero is represented by a half-bit-wide pulse posi-
tioned during the second half of the bit interval. With bi-b-M, a transition occurs at
the beginning of every bit interval. A one is represented by a second transition one-
half bit interval later; a zero is represented by no second transition. With bi-$-S, a
transition also occurs at the beginning of every bit interval. A one is represented by
no second transition; a zero is represented by a second transition one-half bit inter-
val later. With delay modulation [4], a one is represented by a transition at the mid-
point of the bit interval. A zero is represented by no transition, unless it is followed
by another zero. In this case, a transition is placed at the end of the bit interval of
the first zero. Reference to the illustration in Figure 2.22 should help to make these
descriptions clear.

Many binary waveforms use three levels, instead of two, to encode the binary
data. Bipolar RZ and RZ-AMI belong to this group. The group also contains for-
mats called dicode and duobinary. With dicode-NRZ, the one-to-zero or zero-to-
one data transition changes the pulse polarity; without a data transition, the zero
level is sent. With dicode-RZ, the one-to-zero or zero-to-one transition produces
a half-duration polarity change; otherwise, a zero level is sent. The three-level duo-
binary signaling scheme is treated in Section 2.9,

One might ask why there are so many PCM waveforms. Are there really so
many unique applications necessitating such a variety of waveforms to represent
digits? The reason for the large selection relates to the differences in performance
that characterize each waveform [5]. In choosing a PCM waveform for a particular
application, some of the parameters worth examining are the following;

L. Dc component. Eliminating the dc energy from the signal’s power spectrum
enables the system to be ac coupled. Magnetic recording systems, or systems
using transformer coupling, have little sensitivity to very low frequency signal
components. Thus low-frequency information could be lost.

2. Self-Clocking. Symbol or bit synchronization is required for any digital com-
munication system. Some PCM coding schemes have inherent synchronizing
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or clocking features that aid in the recovery of the clock signal. For example,
the Manchester code has a transition in the middle of every bit interval
whether a one or a zero is being sent. This guaranteed transition provides a
clocking signal.

3. Error detection. Some schemes, such as duobinary, provide the means of de-
tecting data errors without introducing additional error-detection bits into the
data sequence.

4. Bandwidth compression. Some schemes, such as multilevel codes, increase
the efficiency of bandwidth utilization by allowing a reduction in required
bandwidth for a given data rate; thus there is more information transmitted
per unit bandwidth.

5. Differential encoding. This technique is useful because it allows the polarity of
differentially encoded waveforms to be inverted without affecting the data
detection. In communication systems where waveforms sometimes experi-

. ence inversion, this is a great advantage. (Differential encoding is treated in
greater detail in Chapter 4, Section 4.5.2.)

6. Noise immunity. The various PCM waveform types can be further character-
ized by probability of bit error versus signal-to-noise ratio. Some of the
schemes are more immune than others to noise. For example, the NRZ wave-
forms have better error performance than does the unipolar RZ waveform.

2.8.3 Spectral Attributes of PCM Waveforms

The most common criteria used for comparing PCM waveforms and for selecting
one waveform type from the many available are spectral characteristics, bit syn-
chronization capabilities, error-detecting capabilities, interference and noise immu-
nity, and cost and complexity of implementation. Figure 2.23 shows the spectral
characteristics of some of the most popular PCM waveforms. The figure plots
power spectral density in watts/hertz versus normalized bandwidth, WT, where W
is bandwidth, and T is the duration of the pulse. WT is often referred to as the rime-
bandwidth product, of the signal. Since the pulse or symbol rate R; is the reciprocal
of T, normalized bandwidth can also be expressed as W/R,. From this latter expres-
sion, we see that the units of normalized bandwidth are hertz/(pulse/s) or
hertz/(symbol/s). This is a relative measure of bandwidth; it is valuable because it
describes how efficiently the transmission bandwidth is being utilized for each
waveform of interest. Any waveform type that requires less than 1.0 Hz for sending
1 symbol/s is relatively bandwidth efficient. Examples would be delay modulation
and duobinary (see Section 2.9). By comparison, any waveform type that requires
more than 1.0 Hz for sending 1 symbol/s is relatively bandwidth inefficient. An
example of this would be bi-phase (Manchester) signaling. From Figure 2.23, we
can also see the spectral concentration of signaling energy for each waveform type.
For example, NRZ and duobinary schemes have large spectral components at dc
and low frequency, while bi-phase has no energy at dc.

An important parameter for measuring bandwidth efficiency is R/W having
units of bits/s/hz. This measure involves data rate rather than symbol rate. For a
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Figure 2.23 Spectral densities of various PCM waveforms.

given signaling scheme, R/W describes how much data throughput can be transmit-
ted for each Hertz of available bandwidth. (Bandwidth efficiency is treated in
greater detail in Chapter 9.)

2.8.4 Bits per PCM Word and Bits per Symbol

Throughout Chapters 1 and 2, the idea of binary partitioning (M = 2%) is used to
relate the grouping of bits to form symbols for the purpose of signal processing and
transmission. We now examine an analogous application where the M = 2* concept
is also applicable. Consider the process of formatting analog information into a
bit steam via sampling, quantization, and coding. Each analog sample is trans-
formed into a PCM word made up of groups of bits. The PCM word size can be
described by the number of quantization levels allowed for each sample; this is
identical to the number of values that the PCM word can assume. Or, the quanti-
zation can be described by the number of bits required to identify that set of lev-
els. The relationship between the number of levels per sample and the number of
bits needed to represent those levels is the same as the M = 2* relationship between
the size of a set of message symbols and the number of bits needed to represent
the symbol. To distinguish between the two applications, the notation is changed
for the PCM case. Instead of M = 2%, we use L =2¢, where L is the number of quan-
tization levels in the PCM word, and € is the number of bits needed to represent
those levels.
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2.8.4.1 PCM Word Size

How many bits shall we assign to each analog sample? For digital telephone
channels, each speerh sample is PCM encoded using 8 bits, yielding 2% or 256 levels
per sample. The choice of the number of levels, or bits per sample, depends on how
much cuantization distortion we are willing to tolerate with the PCM format. It is
useful to develop a general relationship between the required number of bits per
analog sample (the PCM word size), and the allowable quantization distortion. Let
the magnitude of the quantization distortion error, |e|, be specified as a fraction p of
the peak-to-peak analog voltage V, as follows:

le| =pV,, (2.24)

Since the quantization error can be no larger than g/2, where g is the quantile inter-
val, we can write
g Vv v

_ 1 _ PP — PP
|€ |max - 2 2{L — 1 ) 27, (2‘25)

where L 1s the number of quantization levels. For most applications the number of
levels is large enough so that L — 1 can be replaced by L, as was done above. Then,
from Equations (2.24) and (2.25), we can write

Ve =pV (2.26)
2L PP

1
26=L=— |levels (2.27)

2p

and

1

{ = log, E bits (2.28)

It is important that we do not confuse the idea of bits per PCM word, denoted by ¢
in Equation (2.28), with the M-level transmission concept of k data bits per symbol.
(Example 2.3, presented shortly, should clarify the distinction.)

2.8.5 M-ary Pulse-Modulation Waveforms

There are three basic ways to modulate information on to a sequence of pulses: we
can vary the pulse’s amplitude, position, or duration, which leads to the names
pulse-amplitude modulation (PAM), pulse-position modulation (PPM), and pulse-
duration modulation (PDM), respectively. PDM is sometimes called pulse-width
modulation (PWM). When information samples without any quantization are mod-
ulated on to pulses, the resulting pulse modulation can be called analog pulse mod-
ulation. When the information samples are first quantized, vielding symbols from
an M-ary alphabet set, and then modulated on to pulses, the resulting pulse modu-
lation is digital and we refer to it as M-ary pulse modulation. In the case of M-ary
PAM, one of M allowable amplitude levels are assigned to each of the M possible
symbol values. Earlier we described PCM waveforms as binary waveforms having
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two amplitude values (e.g., NRZ, RZ). Note that such PCM waveforms requiring
only two levels represent the special case (M = 2) of the general M-ary PAM that
requires M levels. In this book, the PCM waveforms are grouped separately (see
Figure 2.1 and Section 2.8.2) and are emphasized because they are the most popu-
lar of the pulse-modulation schemes.

In the case of M-ary PPM waveforms, modulation is effected by delaying (or
advancing) a pulse occurrence, by an amount that corresponds to the value of the
information symbols. In the case of M-ary PDM waveforms, modulation is effected
by varying the pulse width by an amount that corresponds to the value of the sym-
bols. For both PPM and PDM, the pulse amplitude is held constant. Baseband
modulation with pulses have analogous counterparts in the area of bandpass modu-
lation. PAM is similar to amplitude modulation, while PPM and PDM are similar
to phase and frequency modulation respectively. In this section, we only address
M-ary PAM waveforms as they compare to PCM waveforms.

The transmission bandwidth required for binary digital waveforms such as
PCM may be very large. What might we do to reduce the required bandwidth? One
possibility is to use multilevel signaling. Consider a bit stream with data rate, R bits
per second. Instead of transmitting a pulse waveform for each bit, we might first
partition the data into k-bit groups, and then use (M = 2*)-level pulses for transmis-
sion. With such multilevel signaling or M-ary PAM, each pulse waveform can now
represent a k-bit symbol in a symbol stream moving at the rate of R’k symbols per
second (a factor k slower than the bit stream). Thus for a given data rate, multilevel
signaling, where M > 2, can be used to reduce the number of symbols transmitted
per second; or, in other words, M-ary PAM as opposed to binary PCM can be used
to reduce the transmission bandwidth requirements of the channel. Is there a price
to be paid for such bandwidth reduction? Of course, and that is discussed below.

Consider the task that the pulse receiver must perform: It must distinguish
between the possible levels of each pulse. Can the receiver distinguish among the
eight possible levels of each octal pulse in Figure 2.24a as easily as it can distinguish
between the two possible levels of each binary pulse in Figure 2.24b? The transmis-
sion of an 8-level (compared with a 2-level) pulse requires a greater amount of
energy for equivalent detection performance. (It is the amount of received E,/N,
that determines how reliably a signal will be detected). For equal average power in
the binary and the octal pulses, it is easier to detect the binary pulses because the
detector has more signal energy per level for making a binary decision that an
8-level decision. What price does a system designer pay if he or she chooses the
transmission waveform to be the easier-to-detect binary PCM rather than the
8-level PAM? The engineer pays the price of needing three times as much trans-
mission bandwidth for a given data rate, compared with the octal pulses, since each
octal pulse must be replaced with three binary pulses (each one-third as wide as the
octal pulses). One might ask, Why not use binary pulses with the same pulse
duration as the original octal pulses and suffer the information delay? For some
cases, this might be appropriate, but for real-time communication systems, such
an increase in delay cannot be tolerated—the 6 o’clock news must be received at
6 o-clock. (In Chapter 9, we examine in detail the trade-off between signal power
and transmission bandwidth.)
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Figure 2.24 Pulse code modulation signaling. (a) Eighi-level signaling.
(b) Two-level signaling.

Example 2.3 Quantization Levels and Multilevel Signaling

2.8

The information in an analog waveform, with maximum frequency f,, = 3 kHz, is to be
transmitted over an M-ary PAM system, where the number of pulse levels is M = 16.
The quantization distortion is specified not to exceed + 1% of the peak-to-peak analog
signal.

(a) What is the minimum number of bits/sample, or bits/PCM word that should be
used in digitizing the analog waveform?

(b) What is the minimum required sampling rate, and what is the resulting bit trans-
mission rate?

(c) What is the PAM pulse or symbol transmission rate?

(d) If the transmission bandwidth (including filtering) cquals 12 kHz, determine the
bandwidth efficiency for this system.

In this example we are concerned with two types of levels: the number of quanti-

zation levels for fulfilling the distortion requirement and the 16 levels of the multilevel
PAM pulses.
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- Solution

(a) Using Equation (2.28), we calculate
1
{ = log, —— = log, 50 = 5.6.
8002 O

Therefore, use € = 6 bits/sample to meet the distortion requirement.

(b) Using the Nyquist sampling criterion, the minimum sampling rate f; = 2f,, = 6000
samples/second. From part (a), each sample will give rise to a PCM word com-
posed of 6 bits. Therefore the bit transmission rare R = £f, = 36,000 bits/sec.

(c) Since multilevel pulses are to be used with M = 2% = 16 levels, then k = log, 16 =4
bits/symbol. Therefore, the bit stream will be partitioned into groups of 4 bits to
form the new 16-level PAM digits, and the resulting symbol transmission rate R, is
R/k = 36,000/4 = 9000 symbols/s.

(d) Bandwidth efficiency 1s described by data lhmughput per hertz, R/W. Since
R = 36,000 bits/s, and W =12 kHz, then R/W =3 bits/s/hz.

2.9 CORRELATIVE CODING

In 1963, Adam Lender [6, 7] showed that it is possible to transmit 2W symbols/s
with zero ISI, using the theoretical minimum bandwidth of W hertz, without infi-
nitely sharp filters. Lender used a technique called duobinary signaling, also re-
ferred to as correlative coding and partial response signaling. The basic idea behind
the duobinary technique is to introduce some controlled amount of ISI into the
data stream rather than trying to eliminate it completely. By introducing correlated
interference between the pulses, and by changing the detection procedure, Lender,
in effect, “canceled out” the interference at the detector and thereby achieved the
ideal symbol-rate packing of 2 symbols/s/Hz, an amount that had been considered
unrealizable.

2.9.1 Duobinary Signaling

To understand how duobinary signaling introduces controlled ISI, let us look at a
model of the process. We can think of the duobinary coding operation as if it were
implemented as shown in Figure 2.25. Assume that a sequence of binary symbols
{x.} is to be transmitted at the rate of R symbols/s over a system having an ideal
rectangular spectrum of bandwidth W = R/2 = 1/2T hertz. You might ask: How is
this rectangular spectrum, in Figure 2.25, different from the unrealizable Nyquist
characteristic? It has the same ideal characteristic; but we are not trying to imple-
ment the ideal rectangular filter. It is only the part of our equivalent model that is
used for developing a filter that is easier to approximate. Before being shaped by
the ideal filter, the pulses pass through a simple digital filter, as shown in the figure.
The digital filter incorporates a one-digit delay; to each incoming pulse, the filter
adds the value of the previous pulse. In other words, for every pulse into the digital
filter, we get the summation of two pulses out. Each pulse of the sequence {y,} out
of the digital filter can be expressed as

Vi = X, + X (2.29)
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Figure 2.25 Duobinary signaling.

Hence, the {y,} amplitudes are not independent; each y, digit carries with it the
memory of the prior digit. The ISI introduced to each y, digit comes only from the
preceding x, _, digit. This correlation between the pulse amplitudes of {y,} can be
thought of as the controlled ISI introduced by the duobinary coding. Controlled in-
terference is the essence of this novel technique because at the detector, such con-
trolled interference can be removed as easily as it was added. The {y,} sequence is
followed by the ideal Nyquist filter that does not introduce any ISI. In Figure 2.25,
at the receiver sampler, we would expect to recover the sequence {y,} exactly in the
absence of noise. Since all systems experience noise contamination, we shall refer
to the received {y,} as the estimate of {y;} and denote it {y,}. Removing the con-
trolled interference with the duobinary decoder yields an estimate of {x,} which we
shall denote as {x,}.

2.9.2 Duobinary Decoding

If the binary digit x; is equal to + 1, then using Equation (2.29), v, has one of three
possible values: + 2, 0, or —2. The duobinary code results in a three-level output: in
general, for M-ary transmission, partial response signaling results in 2M — 1 output
levels. The decoding procedure involves the inverse of the coding procedure,
namely, subtracting the x, _, decision from the y, digit. Consider the following
coding/decoding example.,

Example 2.4 Duobinary Coding and Decoding

Use Equation (2.29) to demonstrate duobinary coding and decoding for the following
sequence: {x,} =001 011 0. Consider the first bit of the sequence to be a startup digit,
not part of the data.

Solution

Binary digit sequence |x.}: 0 0 1 0 1 1 0
Bipolar amplitudes {x,}: -1 -1 +1 -1 +1 +1 -1
Coding rule: y, =x, + x;, _: -2 0 0 0 2 0
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Decoding decision rule: If y, = 2, decide that x, = +1 (or binary one).

If y, = -2, decide that x, = -1 (or binary zero).

[f y, = 0, decide opposite of the previous decision.
Decoded bipolar sequence {x,}: -1 +1 -1 +1 41 -1
Decoded binary sequence [x,): o 1 0 1 1 o0

The decision rule simply implements the subtraction of each x; _, decision from each
¥ One drawback of this detection technique is that once an error is made, it tends to
propagate, causing further errors, since present decisions depend on prior decisions. A
means of avoiding this error propagation is known as precoding.

2.9.3 Precoding

Precoding is accomplished by first differentially encoding the {x,} binary sequence
into a new {w,} binary sequence by means of the equation:

Wi = X @ wiy / (2.30)

where the symbol @ represents modulo-2 addition (equivalent to the logical
exclusive-or operation) of the binary digits. The rules of modulo-2 addition are as
follows:

00 =0
0D1 =1
1@ =1
1@®1=0

The {w,] binary sequence is then converted to a bipolar pulse sequence, and the
coding operation proceeds in the same way as it did in Example 2.4, However, with
precoding, the detection process is quite different from the detection of ordinary
duobinary, as shown below in Example 2.5: The precoding model is shown in
Figure 2.26; in this figure it is implicit that the modulo-2 addition producing the
precoded {w,} sequence is performed on the binary digits, while the digital filtering
producing the {y,} sequence is performed on the bipolar pulses.

Example 2.5 Duobinary Precoding

[lustrate the duobinary coding and decoding rules when using the differential precod-
ing of Equation (2.30). Assume the same [x;} sequence as that given in Example 2.4.

Solution

Binary digit sequence {x,}: o 0 1 0 1 1 0
Precoded sequence wy = x;, (B w2 0 0 1 1 0 1 1
Bipolar sequence {w,}: -1 -1 +1 +1 -1 +1 +1
Coding rule: vy, = w, + w,_: -2 0 +2 0 0 42
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Figure 2.26 Precoded duobinary signaling.

Decoding decision rule: If y, = 42, decide that X, = binary zero.
If y, = 0, decide that ¥, = binary one.

Decoded binary sequence {x,): 0 1 0 1 1 0

The differential precoding enables us to decode the [} sequence by making a
decision on each received sample singly, without resorting to prior decisions that could
be in error. The major advantage is that in the event of a digit error due to noise, such
an error does not propagate to other digits. Notice that the first bit in the differentially
precoded binary sequence |{w,} is an arbitrary choice. If the startup bit in {w,) had
been chosen to be a binary one instead of a binary zero, the decoded result would
have been the same.

2.9.4 Duobinary Equivalent Transfer Function

In Section 2.9.1, we described the duobinary transfer function as a digital filter in-
corporating a one-digit delay followed by an ideal rectangular transfer function.
Let us now examine an equivalent model. The Fourier transform of a delay can be
described as e /*"" (see Section A.3.1); therefore, the input digital filter of Figure
2.25 can be characterized as the frequency transfer function

H(f)=1+e 7?7 (2.31)
The transfer function of the ideal rectangular filter, is

1

I <
T forlfl <57 (2.32)

Hy(f) =

0 elsewhere

The overall equivalent transfer function of the digital filter cascaded with the ideal
rectangular filter is then given by
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1
H(f) = H(N)H(f)  for | f] <

= (1 +ePNT (2.33)
= 7‘(3,%"?" + e —_a'n,.f'T)E—jwa

so that

1
2T cos wfT  for | f| < ——

|Hf)| = 2T (2.34)

0 elsewhere

Thus H.(f), the composite transfer function for the cascaded digital and rectangu-
lar filters, has a gradual roll-off to the band edge, as can be seen in Figure 2.27a.
The transfer function can be approximated by using realizable analog filtering; a
separate digital filter is not needed. The duobinary equivalent H,(f) is called a
cosine filter [8]. The cosine filter should not be confused with the raised cosine filter
(described in Chapter 3, Section 3.3.1). The corresponding impulse response A.(1),
found by taking the inverse Fourier transform of H,(f) in Equation (2.33) is

h,(f) = sinc (%) + sinc (’ ;T) (2.35)

and is plotted in Figure 2.27b. For every impulse 8(¢) at the input of Figure 2.25, the
output is A,(f) with an appropriate polarity. Notice that there are only two nonzero
samples at T-second intervals, giving rise to controlled ISI from the adjacent bit.
The introduced ISI is eliminated by use of the decoding procedure discussed in
Section 2.9.2. Although the cosine filter is noncausal and therefore nonrealizable, it
can be easily approximated. The implementation of the precoded duobinary tech-
nique described in Section 2.9.3 can be accomplished by first differentially encod-
ing the binary sequence {x,} into the sequence {w;} (see Example 2.5). The pulse
sequence {w,} is then filtered by the equivalent cosine characteristic described in
Equation (2.34).

2.9.5 Comparison of Binary with Duobinary Signaling

The duobinary technique introduces correlation between pulse amplitudes,
whereas the more restrictive Nyquist criterion assumes that the transmitted pulse
amplitudes are independent of one another. We have shown that duobinary signal-
ing can exploit this introduced correlation to achieve zero ISI signal transmission,
using a smaller system bandwidth than is otherwise possible. Do we get this perfor-
mance improvement without paying a price? No, such is rarely the case with
engineering design options—there is almost always a trade-off involved. We saw
that duobinary coding requires three levels, compared with the usual two levels for
binary coding. Recall our discussion in Section 2.8.5, where we compared the
performance and the required signal power for making eight-level PAM decisions
versus two-level (PCM) decisions. For a fixed amount of signal power, the ease of
making reliable decisions is inversely related to the number of levels that must be
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Figure 2.27 Duobinary transfer function and pulse shape. (a) Cosine
filter. (b) Impulse response of the cosine filter.

distinguished in each waveform. Therefore, it should be no surprise that although
duobinary signaling accomplishes the zero ISI requirement with minimum band-
width, duobinary signaling also requires more power than binary signaling, for
equivalent performance against noise. For a given probability of bit error (Pj),
duobinary signaling requires approximately 2.5 dB greater SNR than binary signal-
ing, while using only 1/(1 + r) the bandwidth that binary signaling requires [7],
where r is the filter roll-off.

2.9.6 Polybinary Signaling

Duobinary signaling can be extended to more than three digits or levels, resulting
in greater bandwidth efficiency; such systems are called polybinary [7, 9]. Consider
that a binary message with two signaling levels is transformed into a signal with j
signaling levels numbered consecutively from zero to (j — 1). The transformation
from binary to polybinary takes place in two steps. First, the original sequence [x;},
consisting of binary ones and zeros, is converted into another binary sequence {y,}.
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as follows. The present binary digit of sequence {y,} is formed from the modulo-2
addition of the (j — 2) immediately preceding digits of sequence {y,} and the pres-
ent digit x,. For example, let

Vi =X D Vi1 D Vi @ Vi3 (2.36)

Here x, represents the input binary digit and y, the kth encoded digit. Since the ex-
pression involves (j — 2) = 3 bits preceding y,, there are j = 5 signaling levels. Next,
the binary sequence {y,} is transformed into a polybinary pulse train {z,} by adding
algebraically the present bit of sequence {y,} to the (j — 2) preceding bits of {y}.
Therefore, z;, modulo-2 = x;, and the binary elements one and zero are mapped
into even- and odd-valued pulses in the sequence {z;}. Note that each digit in {z;}
can be independently detected despite the strong correlation between bits. The
primary advantage of such a signaling scheme is the redistribution of the spectral
density of the original sequence |x,}, so as to favor the low frequencies, thus
improving system bandwidth efficiency.

2.10 CONCLUSION

In this chapter we have considered the first important step in any digital communi-
cation system, transforming the source information (both textual and analog) to a
form that is compatible with a digital system. We treated various aspects of sam-
pling, quantization (both uniform and nonuniform), and pulse code modulation
(PCM). We considered the selection of pulse waveforms for the transmission of
baseband signals through the channel. We also introduced the duobinary concept
of adding a controlled amount of ISI to achieve an improvement in bandwidth effi-
ciency at the expense of an increase in power.
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PROBLEMS

2.1. You want to transmit the word *HOW?" using an 8-ary system.

(a) Encode the word “HOW?™ into a sequence of bits, using 7-bit ASCII coding,
followed by an eighth bit for error detection, per character. The eighth bit is
chosen so that the number of ones in the 8 bits is an even number. How many
total bits are there in the message?

(b) Partition the bit stream into k = 3 bit segments. Represent each of the 3-bit
scgments as an octal number (symbol). How many octal symbols are there in the
message?

(c) If the system were designed with 16-ary modulation, how many symbols would
be used to represent the word “HOW™?

(d) If the system were designed with 256-ary modulation, how many symbols would
be used to represent the word “HOW™?

2.2, We want to transmit 800 characters/s, where each character is represented by its 7-bit
ASCII codeword, followed by an eighth bit for error detection, per character, as in
Problem 2.1. A multilevel PAM waveform with M = 16 levels is used.

(a) What 1s the effective transmitted bit rate?
(b) What is the symbol rate?

2.3. We wish to transmit a 100-character alphanumeric message in 2 s, using 7-bit ASCII
coding. followed by an eighth bit for error detection, per character, as in Problem
2.1. A multilevel PAM waveform with M =32 levels is used.

(a) Calculate the effective transmitted bit rate and the symbol rate.
(b) Repeat part (a) for 16-level PAM, eight-level PAM, four-level PAM, and PCM
(binary) waveforms.

2.4. Given an analog waveform that has been sampled at its Nyquist rate, f;, using natural
sampling, prove that a waveform (proportional to the original waveform) can be
recovered from the samples, using the recovery techniques shown in Figure P2.1.
The parameter mf, is the frequency of the local oscillator, where m is an integer.

x1(t)
xglt) LPF —— x0(?)
Naturally
sampled PAM H(p)
1
cos (2mmft) | | p
Local _fs fs
oscillator 2 2

Figure P2.1
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An analog signal is sampled at its Nyquist rate 1/7}, and quantized using L quantiza-

tion levels. The derived digital signal is then transmitted on some channel.

(a) Show that the time duration, 7, of one bit of the transmitted binary encoded
signal must satisfy 7' < T /(log, L).

(b) When is the equality sign valid?

Determine the number of quantization levels that are implied if the number of bits

per sample in a given PCM code is (a) 5; (b) 8: (¢) x.

Determine the minimum sampling rate necessary to sample and perfectly recon-

struct the signal x(r) = sin (62801)/(6280r).

Consider an audio signal with spectral components limited to the frequency band

300 to 3300 Hz. Assume that a sampling rate of 8000 samples/s will be used to gener-

ate a PCM signal. Assume that the ratio of peak signal power to average quantiza-

tion noise power at the output needs to be 30 dB.

(a) What is the minimum number of uniform quantization levels needed, and what 1s
the minimum number of bits per sample needed?

(b) Calculate the system bandwidth (as specified by the main spectral lobe of the
signal) required for the detection of such a PCM signal.

A waveform, x(r) = 10 cos (1000¢ + w/3) + 20 cos (2000¢ + 7/6) is to be uniformly

sampled for digital transmission.

(a) What is the maximum allowable time interval between sample values that will
ensure perfect signal reproduction?

(b) If we want to reproduce 1 hour of this waveform, how many sample values need
to be stored?

(a) A waveform that is bandlimited to 50 kHz is sampled every 10 ps. Show graphi-
cally that these samples uniquely characterize the waveform. (Use a sinusoidal ex-
ample for simplicity. Avoid sampling at points where the waveform equals zero.)

(b) If samples are taken 30 ps apart instead of 10 ps, show graphically that wave-
forms other than the original can be characterized by the samples.

Use the method of convolution to illustrate the effect of undersampling the wave-

form x(t) = cos 2wfyt for a sampling rate of f, =3 f;.

Aliasing will not occur if the sampling rate is greater than twice the signal band-

width. However, perfectly bandlimited signals do not occur in nature. Hence, there is

always some aliasing present.

(a) Suppose that a filtered signal has a spectrum described by a Butterworth filter
with order n = 6, and upper cutoff frequency f, = 1000 Hz. What sampling rate is
required so that aliasing is reduced to the —50 dB point in the power spectrum?

(b) Repeat for a Butterworth filter with order n =12.

(a) Sketch the complete p = 10 compression characteristic that will handle input
voltages in the range -5to +5 V.

(b) Plot the corresponding expansion characteristic.

(¢) Draw a 16-level nonuniform quantizer characteristic that corresponds to the
p = 10 compression characteristic.

The information in an analog waveform, whose maximum frequency f,, = 4000 Hz, is

to be transmitted using a 16-level PAM system. The quantization distortion must not

exceed + 1% of the peak-to-peak analog signal.

(a) What is the minimum number of bits per sample or bits per PCM word that
should be used in this PAM transmission system?

(b) What is the minimum required sampling rate, and what is the resulting bit rate?

(¢) What is the 16-ary PAM symbol transmission rate?
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2.15. A signal in the frequency range 300 to 3300 Hz is limited to a peak-to-peak swing of
10 V. It is sampled at 8000 samples/s and the samples are quantized to 64 evenly
spaced levels. Calculate and compare the bandwidths and ratio of peak signal power
to rms quantization noise if the quantized samples are transmitted either as binary
pulses or as four-level pulses. Assume that the system bandwidth is defined by the
main spectral lobe of the signal.

2.16. In the compact disc (CD) digital audio system, an analog signal is digitized so that
the ratio of the peak-signal power to the peak-quantization noise power is at least 96
dB. The sampling rate is 44.1 kilosamples/s.

(a) How many quantization levels of the analog signal arc needed for (S/Ny)pear =
96 dB?

(b) How many bits per sample are needed for the number of levels found in part (a)?

(¢) What is the data rate in bits/s? :

2.17. Calculate the difference in required signal power between two PCM waveforms,
NRZ and RZ, assuming that each signaling scheme has the same requirements for
data-rate and bit-error probability. Also assume equally likely signaling, and that the
difference between the high-voltage and low-voltage levels is the same for both the
NRZ and RZ schemes. If there is a power advantage in using one of the signaling
schemes, what, if any, is the disadvantage in using it?

2.18. In the year 1962, AT&T first offered digital telephone transmission referred to as T
service. With this service, each T1 frame is partitioned into 24 channels or time slots.
Each time slot contains 8 bits (one speech sample), and there is one additional bit
per frame for alignment. The frame is sampled at the Nyquist rate of 8000 samples/s,
and the bandwidth used for transmitting the composite signal is 386 kHz. Find the
bandwidth efficiency (bits/s/Hz) for this signaling scheme.

2.19. (a) Consider that you desire a digital transmission system, such that the quantization
distortion of any audio source does not exceed + 2% of the peak-to-peak analog
signal voltage. If the audio signal bandwidth and the allowable transmission
bandwidth are each 4000 Hz, and sampling takes place at the Nyquist rate, what
value of bandwidth efficiency (bits/s/Hz) is required?

(b) Repeat part (a) except that the audio signal bandwidth is 20 kHz (high fidelity),
yet the available transmission bandwidth is still 4000 Hz.

QUESTIONS

2.1 What are the similarities and differences between the terms “formatting” and
“source coding”? (See Chapter 2, introduction. )

2.2 In the process of formaiting information, why is it often desirable to perform over-
sampling? (See Section 2.4.3.)

2.3 In using pulse code modulation (PCM) for digitizing analog information, explain
how the parameters fidelity, bandwidth, and time delay can be traded off. (See Sec-
tion 2.6.)

2.4 Why is it often preferred to use units of normalized bandwidth, WT (or time-
bandwidth product), compared with bandwidth alone? (See Section 2.8.3.)

EXERCISES

Using the Companion CD, run the exercises associated with Chapter 2.
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In the case of baseband signaling, the received waveforms are already in a pulse-
like form. One might ask, why then, is a demodulator needed to recover the pulse
waveforms? The answer is that the arriving baseband pulses are not in the form of
ideal pulse shapes, each one occupying its own symbol interval. The filtering at the
transmitter and the channel typically cause the received pulse sequence to suffer
from intersymbol interference (ISI) and thus appear as an amorphous “smeared”
signal, not quite ready for sampling and detection. The goal of the demodulator
(receiving filter) is to recover a baseband pulse with the best possible signal-to-
noise ration (SNR), free of any ISI. Equalization, covered in this chapter. is a
technique used to help accomplish this goal. The equahzation process is not
required for every type of communication channel. However. since equalization
embodies a sophisticated set of signal-processing techniques, making it possible to
compensate for channel-induced interference, it is an important area for many
systems.

The bandpass model of the detection process, covered in Chapter 4, is virtu-
ally identical to the baseband model considered in this chapter. That is because a
received bandpass waveform is first transformed to a baseband waveform before
the final detection step takes place. For linear systems, the mathematics of de-
tection is unaffected by a shift in frequency. In fact, we can define an equivalence
theorem as follows: Performing bandpass linear signal processing followed by
heterodyning the signal to baseband, yields the same results as heterodyning the
bandpass signal to baseband. followed by baseband linear signal processing. The
term “heterodyning” refers to a frequency conversion or mixing process that yields
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a spectral shift in the signal. As a result of this equivalence theorem, all linear
signal-processing simulations can take place at baseband (which is preferred for
simplicity) with the same results as at bandpass. This means that the performance
of most digital communication systems will often be described and analyzed as if
the transmission channel is a baseband channel.

3.1 SIGNALS AND NOISE
3.1.1 Error-Performance Degradation in Communication Systems

The task of the detector is to retrieve the bit stream from the received waveform,
as error free as possible, notwithstanding the impairments to which the signal may
have been subjected. There are two primary causes for error-performance degrada-
tion. The first is the effect of filtering at the transmitter, channel, and receiver, dis-
cussed in Section 3.3, below. As described there, a nonideal system transfer
function causes symbol “smearing” or intersvmbol interference (1S1).

Another cause for error-performance degradation is electrical noise and in-
terference produced by a variety of sources, such as galaxy and atmospheric noise,
switching transients, intermodulation noise, as well as interfering signals from other
sources. (These are discussed in Chapter 5.) With proper precautions, much of the
noise and interference entering a receiver can be reduced in intensity or even elim-
inated. However, there is one noise source that cannot be eliminated. and that is
the noise caused by the thermal motion of electrons in any conducting media. This
motion produces thermal noise in amplifiers and circuits, and corrupts the signal in
an additive fashion. The statistics of thermal noise have been developed using
quantum mechanics, and are well known [1].

The primary statistical characteristic of thermal noise is that the noise ampli-
tudes are distributed according to a normal or Gaussian distribution, discussed in
Section 1.5.5, and shown in Figure 1.7. In this figure, it can be seen that the most
probable noise amplitudes are those with small positive or negative values. In
theory, the noise can be infinitely large, but very large noise amplitudes are rare.
The primary spectral characteristic of thermal noise in communication systems, is
that its two-sided power spectral density G,(f) = N2 is flat for all frequencies of
interest. In other words, the thermal noise, on the average, has just as much power
per hertz in low-frequency fluctuations as in high-frequency fluctuations—up to a
frequency of about 10" hertz. When the noise power is characterized by such a
constant-power spectral density, we refer to it as white noise. Since thermal noise is
present in all communication systems and is the predominant noise source for
many systems, the thermal noise characteristics (additive, white, and Gaussian,
giving rise to the name AWGN) are most often used to model the noise in the
detection process and in the design of receivers. Whenever a channel is designated
as an AWGN channel (with no other impairments specified), we are in effect being
told that its impairments are limited to the degradation caused by this unavoidable
thermal noise.
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3.1.2 Demodulation and Detection

During a given signaling interval 7, a binary baseband system will transmit one of
two waveforms, denoted g,(r) and g,(r). Similarly, a binary bandpass system will
transmit one of two waveforms, denoted s,(f) and s,(¢). Since the general treatment
of demodulation and detection are essentially the same for baseband and bandpass
systems, we use s,(f) here as a generic designation for a transmitted waveform,
whether the system is baseband or bandpass. This allows much of the baseband
demodulation/detection treatment in this chapter to be consistent with similar
bandpass descriptions in Chapter 4. Then, for any binary channel, the transmitted
signal over a symbol interval (0, T') is represented by

t =T  forabinary 1
S5(1) U=g=T for a binary 0

The received signal r(r) degraded by noise n(r) and possibly degraded by the
impulse response of the channel s.(¢) was described in Equation (1.1) and is re-
written as

r(t) =s;(t)*h(t) + n(t) i=1,....M (3.1)

where n(r) is here assumed to be a zero mean AWGN process, and * represents a
convolution operation. For binary transmission over an ideal distortionless channel
where convolution with A.(¢) produces no degradation (since for the ideal case k(1)
is an impulse function), the representation of () can be simplified to

r(t) =s;(t) + n(t) i =1,2, 0=t =T (3.2)

Figure 3.1 shows the typical demodulation and detection functions of a digital
receiver. Some authors use the terms “demodulation” and “detection” inter-
changeably. This book makes a distinction between the two. We define demodula-
tion as recovery of a waveform (to an undistorted baseband pulse), and we
designate detection to mean the decision-making process of selecting the digital
meaning of that waveform. If error-correction coding not present, the detector out-
put consists of estimates of message symbols (or bits), m; (also called hard deci-
sions). If error-correction coding is used, the detector output consists of estimates
of channel symbols (or coded bits) 4;, which can take the form of hard or soft deci-
sions (see Section 7.3.2). For brevity, the term “detection” is occasionally used
loosely to encompass all the receiver signal-processing steps through the decision
making step. The frequency down-conversion block, shown in the demodulator
portion of Figure 3.1, performs frequency translation for bandpass signals operat-
ing at some radio frequency (RF). This function may be configured in a variety of
ways. It may take place within the front end of the receiver, within the demodula-
tor, shared between the two locations, or not at all.

Within the demodulate and sample block of Figure 3.1 is the receiving filter
(essentially the demodulator), which performs waveform recovery in preparation
for the next important step—detection. The filtering at the transmitter and the
channel typically cause the received pulse sequence to suffer from ISI, and thus it is
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Figure 3.1 Two basic steps in the demodulation/detection of digital signals.

not quite ready for sampling and detection. The goal of the receiving filter is to re-
cover a baseband pulse with the best possible signal-to-noise ratio (SNR), free of
any ISI. The optimum receiving filter for accomplishing this is called a maiched
filter or correlator, described in Sections 3.2.2 and 3.2.3. An optional equalizing
filter follows the receiving filter; it is only needed for those systems where channel-
induced ISI can distort the signals. The receiving filter and equalizing filter are
shown as two separate blocks in order to emphasize their separate functions. In
most cases, however, when an equalizer is used, a single filter would be designed to
incorporate both functions and thereby compensate for the distortion caused by
both the transmitter and the channel. Such a composite filter is sometimes referred
to simply as the equalizing filter or the receiving and equalizing filter.

Figure 3.1 highlights two steps in the demodulation/detection process. Step 1,
the waveform-to-sample transformation, is made up of the demodulator followed
by a sampler. At the end of each symbol duration 7, the output of the sampler, the
predetection point, yields a sample z(7T), sometimes called the test statistic. z(7)
has a voltage value directly proportional to the energy of the received symbol and
inversely proportional to the noise. In step 2, a decision (detection) is made regard-
ing the digital meaning of that sample. We assume that the input noise is a Gaus-
sian random process and that the receiving filter in the demodulator is linear. A
linear operation performed on a Gaussian random process will produce a second
Gaussian random process [2]. Thus, the filter output noise is Gaussian. The output
of step 1 yields the test statistic

d(T)=a;(T)+ny(T) =12 (3.3)
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where a,(T) is the desired signal component, and ny(7') is the noise component. To
simplify the notation, we sometimes express Equation (3.3) in the form of z = a; +
n,;. The noise component n, is a zero mean Gaussian random variable, and thus
z(T) 1s a Gaussian random variable with a mean of either a, or @, depending on
whether a binary one or binary zero was sent. As described in Section 1.5.5, the
probability density function (pdf) of the Gaussian random noise n, can be ex-
pressed as

1 1 :
P = G Vo P ()] B

where af is the noise variance. Thus it follows from Equations (3.3) and (3.4) that
the conditional pdfs p(zls;) and p(zls,) can be expressed as

p(zlsy) = TV exp [ 5 ( T ) (3.5)
and
— —.--.-]1--\.——-—- .-_-—l" z - az 2}
p(z|ss) = o exp [ > ( = ) (3.6)

These conditional pdfs are illustrated in Figure 3.2. The rightmost conditional pdf,
p(zls;), called the likelihood of s\, illustrates the probability density function of the
random variable z(7'), given that symbol s; was transmitted. Similarly, the leftmost
conditional pdf, p(zls,), called the likelihood of s, illustrates the pdf of z(7), given
that symbol s, was transmitted. The abscissa, z(7'), represents the full range of pos-
sible sample output values from step 1 of Figure 3.1.

After a received waveform has been transformed to a sample, the actual
shape of the waveform is no longer important; all waveform types that are trans-
formed to the same value of z(7) are identical for detection purposes. Later it is
shown that an optimum receiving filter (matched filter) in step 1 of Figure 3.1 maps
all signals of equal energy into the same point z(7'). Therefore, the received signal
energy (not its shape) is the important parameter in the detection process. This is
why the detection analysis for baseband signals is the same as that for bandpass sig-

Likelihood of s» Likelihood of s4
p(z|s7) p(zlsq)

z(T)

Figure 3.2 Conditional probability density functions: p(zls,) and p(zls.).

3.1 Signals and Noise 109



nals. Since z(7') is a voltage signal that is proportional to the energy of the received
symbol, the larger the magnitude of z(7'), the more error free will be the decision-
making process. In step 2, detection is performed by choosing the hypothesis that
results from the threshold measurement

H,

T) = 37
z(T) = (3.7)

where H, and H, are the two possible (binary) hypotheses. The inequality relation-
ship indicates that hypothesis H, is chosen if z(7') > v, and hypothesis H; is chosen
if z(T) <~. If z(T) =y, the decision can be an arbitrary one. Choosing H, is equiva-
lent to deciding that signal s(¢) was sent and hence a binary 1 is detected. Similarly,
choosing H, is equivalent to deciding that signal s,(f) was sent, and hence a binary 0
1s detected.

3.1.3 A Vector View of Signals and Noise

We now present a geometric or vector view of signal waveforms that are useful for
either baseband or bandpass signals. We define an N-dimensional orthogonal space
as a space characterized by a set of N linearly independent functions {&,(1)}, called
basis functions. Any arbitrary function in the space can be generated by a lin-
ear combination of these basis functions. The basis functions must satisly the
conditions

-
f U (0(t) dt = K3, O=st=T j,k=1,...,.N (3.8a)
{
where the operator
1 forj =k
o= 3.8b
Oje {U otherwise (2.8b)

is called the Kronecker delta function and is defined by Equation (3.8b). When the
K; constants are nonzero, the signal space is called orthogonal. When the basis
functions are normalized so that each K; = 1, the space is called an orthonormal
space. The principal requirement for orthogonality can be stated as follows. Each
y;(t) function of the set of basis functions must be independent of the other mem-
bers of the set. Each {(7) must not interfere with any other members of the set in
the detection process. From a geometric point of view, each y(r) is mutually
perpendicular to each of the other () for j # k. An example of such a space with
N =3 is shown in Figure 3.3, where the mutually perpendicular axes are designated
P (1), Wa(f), and s(r). If Y(r) corresponds to a real-valued voltage or current
waveform component, associated with a 1-(} resistive load, then using Equations
(1.5) and (3.8), the normalized energy in joules dissipated in the load in T seconds,
due to s;, is
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One reason we focus on an orthogonal signal space is that Euclidean distance
measurements, fundamental to the detection process, are easily formulated in
such a space. However, even if the signaling waveforms do not make up such an
orthogonal set, they can be transformed into linear combinations of orthogonal
waveforms. It can be shown [3] that any arbitrary finite set of waveforms {s,(1)}
(i=1,..., M). where each member of the set is physically realizable and of dura-
tion 7, can be expressed as a linear combination of N orthogonal waveforms s, (1),
Us(1), . .., Wn(r), where N < M, such that

$1(t) = apy(t) + apln(t) + -+ + apbar)
So(t) = anln(r) + apln(t) + - + ayabt)

Sut) = @atn(t) + auglis(t) + 0 + apadinlt)

These relationships are expressed in more compact notation as

N
s;(t)= Day(t) i=1,....M (3.10)
= N=M
where
=—f (W )dt i=1,....M 0=t =T (3.11)
Fom TN

The coefficient a;; is the value of the () component of signal 5,(¢). The form of the
{Us(1)} is not specified; it is chosen for convenience and will depend on the form of
the signal waveforms. The set of signal waveforms, {s,(r)}, can be viewed as a set of
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vectors, {s;} = {a;, an. ..., an). I, for example, N = 3, we may plot the vector s,,
corresponding to the waveform

'Fm('r) o ﬂm]lb](f) * fi'mzll.lz(f} ot ﬂquJS{I)

as a point in a three-dimensional Euclidean space with coordinates (a,,,, @,,2. @,,3).
as shown in Figure 3.3. The orientation among the signal vectors describes the rela-
tion of the signals to one another (with respect to phase or frequency), and the am-
plitude of each vector in the set {s;} is a measure of the signal energy transmitted
during a symbol duration. In general, once a set of N orthogonal functions has been
adopted. each of the transmitted signal waveforms, s,(r), is completely determined
by the vector of its coefficients,

S, = (a;,a;5....a;y) i=1,.... M (3.12)

We shall employ the notation of signal vectors, {s}, or signal waveforms, {s(r)},
as best suits the discussion. A typical detection problem, conveniently viewed in
terms of signal vectors, is illustrated in Figure 3.4. Vectors s; and s, represent proto-
type or reference signals belonging to the set of M waveforms, [s,(1)]. The receiver
knows, a priori. the location in the signal space of each prototype vector belonging to
the M-ary set. During the transmission of any signal, the signal is perturbed by noise
so that the resultant vector that is actually received is a perturbed version (e.g.,s;+n
or s, +n) of the original one, where n represents a noise vector. The noise is additive
and has a Gaussian distribution; therefore, the resulting distribution of possible re-
ceived signals is a cluster or cloud of points around s; and s,. The cluster is dense in the
center and becomes sparse with increasing distance from the prototype. The arrow
marked “r” represents a signal vector that might arrive at the receiver during some
symbol interval. The task of the receiver is to decide whether r has a close “resem-

Walt)

Y1 (t)

Figure 3.4 Signals and noise in a
yalt) three-dimensional vector space.
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blance” to the prototype s;, whether it more closely resembles s, or whether it is
closer to some other prototype signal in the M-ary set. The measurement can be
thought of as a distance measurement. The receiver or detector must decide which of
the prototypes within the signal space is closest in distance to the received vector r.
The analysis of all demodulation or detection schemes involves this concept of
distance between a received waveform and a set of possible transmitted waveforms.
A simple rule for the detector to follow is to decide that r belongs to the same class as
its nearest neighbor (nearest prototype vector).

3.1.3.1 Waveform Energy

Using Equations (1.5), (3.10), and (3.8), the normalized energy E,, associated
with the waveform s,(r) over a symbol interval T can be expressed in terms of the
orthogonal components of s,(r) as follows:

B I s2e)dt = j [Za,!qj () ] (3.13)

o

r—T
- E a0 (1 2 a0, (t) d (3.14)

<0

2 2 a at,{f U (1 Vi () dt (3.15)

= E ; .-_1}”. a."k‘K}a,fk (316)

j
N

= ay k& i=NanM (3.17)
f=1

Equation (3.17) is a special case of Parseval’s theorem relating the integral of the
square of the waveform s,(¢) to the sum of the square of the orthogonal series coef-
ficients. If orthonormal functions are used (i.e., K;= 1), the normalized energy over
a symbol duration T is given by |

i} aj, (3.18)

If there is equal energy E in each of the s,(r) waveforms, we can write Equation
(3.18) in the form

E= > aj; foralli (3.19)

3.1.3.2 Generalized Fourier Transforms

The transformation described by Equations (3.8), (3.10), and (3.11) is re-
ferred to as the generalized Fourier transformation. In the case of ordinary Fourier
transforms, the {Ui,(r)} set comprises sine and cosine harmonic functions. But in the
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case of generalized Fourier transforms, the {{(r)} set is not constrained to any spe-
cific form; it must only satisfy the orthogonality statement of Equation (3.8). Any
arbitrary integrable waveform set, as well as noise, can be represented as a linear
combination of orthogonal waveforms through such a generalized Fourier transfor-
mation [3]. Therefore, in such an orthogonal space, we are justified in using dis-
tance (Euclidean distance) as a decision criterion for the detection of any signal set
in the presence of AWGN. The most important application of this orthogonal
transformation has to do with the way in which signals are actually transmitted and
received. The transmission of a nonorthogonal signal set is generally accomplished
by the appropriate weighting of the orthogonal carrier components.

Example 3.1 Orthogonal Representation of Waveforms

Figure 3.5 illustrates the statement that any arbitrary integrable waveform set can be
represented as a linear combination of orthogonal waveforms. Figure 3.5a shows a set
of three waveforms, s,(¢), s2(r), and s:(¢).

(a) Demonstrate that these waveforms do not form an orthogonal set.

(b) Figure 3.5b shows a set of two waveforms, (1) and W,(r). Verify that these wave-
forms form an orthogonal set.

(¢) Show how the nonorthogonal waveform set in part (a) can be expressed as a linear
combination of the orthogonal set in part (b).

(d) Figure 3.5¢ illustrates another orthogonal set of two waveforms, () and ().
Show how the nonorthogonal set in Figure 3.5a can be expressed as a linear com-
bination of the set in Figure 3.5¢.

Solution

(a) sy(1), s2(1), and s4(t) are clearly not orthogonal, since they do not meet the
requirements of Equation (3.8); that is, the time integrated value (over a symbol
duration) of the cross-product of any two of the three waveforms is not zero. Let
us verify this for s,(r) and s,(r):

T

T T2 T
J- si1(t)so(t) dt = 5.(t)s5(t) dr + f s1{)sa(t) dt
0 T/2

]

T2

= (=1)(2) dr + fr (=3)(0)dt = -T

J|]

Similarly, the integral over the interval T of each of the cross-products s,(f)s;(¢)
and s,(r)s;(r) results in nonzero values. Hence, the waveform set [s,(1)} (i =1, 2, 3)
in Figure 3.5a is not an orthogonal set.

(b) Using Equation (3.8), we verify that U(f) and (1) form an orthogonal set as

follows:
J’ by (1) ia(t) dt =J‘

1

T2 i
(1)(1) dr + J' (—1)(1) dt =0
172

(c) Using Equation (3.11) with K; = T, we can express the nonorthogonal set {s,(f)} (i =
1.2.3) as a linear combination of the orthogonal basis waveforms [{i(1)} (j=1. 2):
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Figure 3.5 Example of an arbitrary signal set in terms of an orthogonal set.
(a) Arbitrary signal set. (b) A set of orthogonal basis functions. (c) Another set of
orthogonal basis functions.

s1(8) = () — 24(1)
$2(8) = () + o(t)
s3(t) = 2Uy(1) — (1)

(d) Similar to part (c), the nonorthogonal set {s/(¢)} (i = 1, 2, 3) can be expressed in
terms of the simple orthogonal basis set {{i/(r)} (j =1, 2) in Figure 3.5c, as follows:

si(f) = —i(r) — 3d3(r)

$2(1) = 20(r)

s3(t) = Wi(t) — 3un(r)
These relationships illustrate how an arbitrary waveform set {s(7)} can be ex-
pressed as a linear combination of an orthogonal set [(¢)], as described in Equa-

tions (3.10) and (3.11). What are the practical applications of being able to
describe s,(1), s,(1), and s5(¢) in terms of ;(f), y.(7), and the appropriate coeffi-
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cients? If we want a system for transmitting waveforms s,(r), s,(1), and s5(r). the
transmitter and the receiver need only be implemented using the two basis func-
tions () and \,(¢) instead of the three original waveforms. The Gram-Schmidt
orthogonalization procedure provides a convenient way in which an appropriate
choice of a basis function set |s(¢)}, can be obtained for any given signal set {s,(7)}.
(Tt is described in Appendix 4A of Reference [4].)

3.1.3.3 Representing White Noise with Orthogonal Waveforms

Additive white Gaussian noise (AWGN) can be expressed as a linear combi-
nation of orthogonal waveforms in the same way as signals. For the signal detection
problem, the noise can be partitioned into two components,

n(t) = n(t) + a(t) ' (3.20)
where
i) = 3 ml(0) (3.21)

=1

is taken to be the noise within the signal space, or the projection of the noise
components on the signal coordinates s, (), . . ., Wn(7), and

At) = n(t) — A(t) (3.22)

is defined as the noise outside the signal space. In other words, 7(¢) may be thought
of as the noise that is effectively tuned out by the detector. The symbol ri(r)
represents the noise that will interfere with the detection process. We can express
the noise waveform n(r) as

N
n(t) = D na(t) + ar) (3.23)
i=1
where
1 T
n; = E f n(r)ys(r) dt for all j (3.24)
and
T
f At (t)dt =0  forallj (3.25)
0

The interfering portion of the noise, 7i(r), expressed in Equation (3.21) will hence-
forth be referred to simply as n(t). We can express n(f) by a vector of its coefficients
similar to the way we did for signals in Equation (3.12). We have

n=(n,ny,...,"0yN) (3.26)

where n is a random vector with zero mean and Gaussian distribution. and where
the noise components n; (i=1, ..., N) are independent.

116 Baseband Demodulation/Detection Chap. 3



3.1.3.4 Variance of White Noise

White noise is an idealized process with two-sided power spectral density
equal to a constant N,/2, for all frequencies from —= to +=. Hence, the noise
variance (average noise power, since the noise has zero mean) is

= /N
o? = var [n(1)] = J (5“) df = (3.27)

Although the variance for AWGN is infinite, the variance for filtered AWGN
is finite. For example, if AWGN is correlated with one of a set of orthonormal
functions yi(1), the variance of the correlator output is given by

. dii Ny
o = var (n;,) = E{{J, n(t)y(r) dr} } =& (3.28)

The proof of Equation (3.28) is given in Appendix C. Henceforth we shall assume
that the noise of interest in the detection process is the output noise of a correlator
or matched filter with variance o’ = N, /2 as expressed in Equation (3.28).

3.1.4 The Basic SNR Parameter for Digital Communication Systems

Anyone who has studied analog communications is familiar with the figure of
merit, average signal power to average noise power ratio (S/N or SNR). In digital
communications, we more often use E,/N,, a normalized version of SNR, as a
figure of merit. £, is bit energy and can be described as signal power S times the bit
time T,,. N, 1s noise power spectral density, and can be described as noise power N
divided by bandwidth W. Since the bit time and bit rate R, are reciprocal, we can
replace T, with 1/R,, and write

E, ST, S/R,
N, NW NW

(3.29)

Data rate, in units of bits per second, is one of the most recurring parameters in
digital communications. We therefore simplify the notation throughout the book,
by using R instead of R, to represent bits/s, and we rewrite Equation (3.29) to
emphasize that £,/N, is just a version of /N normalized by bandwidth and bit rate,

as follows:
E, S{W
— = — 3.

M N(R> )

One of the most important metrics of performance in digital communication sys-
tems is a plot of the bit-error probability Py versus E,/N,. Figure 3.6 illustrates the
“waterfall-like” shape of most such curves. For E,/N, = x,, Pz < P,. The dimension-
less ratio E,/N, 1s a standard quality measure for digital communications system
performance. Therefore, required E,/N, can be considered a metric that character-
1zes the performance of one system versus another; the smaller the required E,/N,,
the more efficient is the detection process for a given probability of error.
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For E/Ng 2 x0, Pg < Py

Ey _S(W
No N\R

B /N, Figure 3.6 General shape of the Pg
X0 bIEY0 versus E,/N, curve.

3.1.5 Why E, /N, Is a Natural Figure of Merit

A newcomer to digital communications may question the usefulness of the parame-
ter E,/N,. After all, /N is a useful figure of merit for analog communications—the
numerator represents a power measurement of the signal we wish to preserve and
deliver, and the denominator represents electrical noise degradation. Moreover,
S/N is intuitively acceptable as a metric of goodness. Thus, why can’t we continue
to use S/N as a figure of merit for digital communications? Why has a different
metric for digital systems—the ratio of bit energy to noise power spectral density—
arisen? The explanation is given below.

In Section 1.2.4, a power signal was defined as a signal having finite average
power and infinite energy. An energy signal was defined as a signal having zero av-
erage power and finite energy. These classifications are useful in comparing analog
and digital waveforms. We classify an analog waveform as a power signal. Why
does this make sense? We can think of an analog waveform as having infinite dura-
tion that need not be partitioned or windowed in time. An infinitely long electrical
waveform has an infinite amount of energy; hence, energy is not a useful way
to characterize this waveform. Power (or rate of delivering the energy) is a more
useful parameter for analog waveforms.

However, in a digital communication system we transmit (and receive) a sym-
bol by using a transmission waveform within a window of time, the symbol time T.
Focusing on one symbol, we can see that the power (averaged over all time) goes to
zero. Hence, power is not a useful way to characterize a digital waveform. What we
need for such waveforms is a metric of the “good stuff” within the window. In other
words, the symbol energy (power integrated over T,) is a more useful parameter
for characterizing digital waveforms.
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The fact that a digital signal is best characterized by its received energy
doesn’t yet get to the crux of why E,/N,, is a natural metric for digital systems, so let
us continue. The digital waveform is a vehicle that represents a digital message.
The message may contain one bit (binary), two bits (4-ary), . .., 10 bits (1024-ary).
In analog systems, there is nothing akin to such a discretized message structure. An
analog information source is an infinitely quantized continuous wave. For digital
systems, a figure of merit should allow us to compare one system with another at
the bit level. Therefore, a description of the digital waveform in terms of S/N is vir-
tually useless, since the waveform may have a one-bit meaning, a two-bit meaning,
or a 10-bit meaning. For example, suppose we are told that for a given error proba-
bility, the required S/N for a digital binary waveform is 20 units. Think of the wave-
form as being interchangeable with its meaning. Since the binary waveform has a
one-bit meaning, then the 5/N requirement per bit is equal to the same 20 units.
However, suppose that the waveform is 1024-ary, with the same 20 units of re-
quired S/N. Now, since the waveform has a 10-bit meaning, the S/N requirement
per bit is only 2 units. Why should we have to go through such computational ma-
nipulations to find a metric that represents a figure of merit? Why not immediately
describe the metric in terms of what we need—an energy-related parameter at the
bit level, E,/N,7 Just as §/N 1s a dimensionless ratio, so too is E,/N,. To verify this,
consider the following units of measure:

E;, Joule ~ Watt-s

N, ~ Watt per Hz ~ Watt-s

3.2 DETECTION OF BINARY SIGNALS IN GAUSSIAN NOISE
3.2.1 Maximum Likelihood Receiver Structure

The decision-making criterion shown in step 2 of Figure 3.1 was described by
Equation (3.7) as

H
=
2(T) = v

A popular criterion for choosing the threshold level vy for the binary decision in
Equation (3.7) is based on minimizing the probability of error. The computation
for this minimum error value of y = v, starts with forming an inequality expression
between the ratio of conditional probability density functions and the signal a pri-
ori probabilities. Since the conditional density function p(zls,) is also called the like-
lihood of s;, the formulation

p(zls)) # P(s,)
p(zlsy) m Ps))

(3.31)
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is called the likelihood ratio test. (See Appendix B.) In this inequality, P(s,) and
P(s,) are the a priori probabilities that s,(¢) and s,(¢), respectively, are transmitted,
and H, and H, are the two possible hypotheses. The rule for minimizing the error
probability states that we should choose hypothesis H, if the ratio of likelihoods is
greater than the ratio of a priori probabilities, as shown in Equation (3.31).

It is shown in Section B.3.1, that if P(s;) = P(s,). and if the likelihoods,
p(zls;) (i =1, 2), are symmetrical, the substitution of Equations (3.5) and (3.6) into
(3.31) yields

H a, + a;
(M) =z~ 5 = (3.32)
H, :

where a, is the signal component of z(7T) when s,(¢) is transmitted, and a, is the
signal component of z(7) when s,(¢) is transmitted. The threshold level v, repre-
sented by (a; + a,)/2, is the optimum threshold for minimizing the probability of
making an incorrect decision for this important special case. This strategy is known
as the minimum error criterion.

For equally likely signals, the optimum threshold vy, passes through the inter-
section of the likelihood functions, as shown in Figure 3.2. Thus by following Equa-
tion (3.32), the decision stage effectively selects the hypothesis that corresponds to
the signal with the maximum likelihood. For example, given an arbitrary detector
output value z,(7'), for which there is a nonzero likelihood that z,(7) belongs to
either signal class s,(f) or 5,(¢), one can think of the likelihood test as a comparison
of the likelihood values p(z,ls;) and p(z,ls,). The signal corresponding to the maxi-
mum pdf is chosen as the most likely to have been transmitted. In other words, the
detector chooses s,(1) if

p(z.ls1) > p(z.ls,) (3.33)

Otherwise, the detector chooses s,(f). A detector that minimizes the error prob-
ability (for the case where the signal classes are equally likely) is also known as a
maximum likelihood detector.

Figure 3.2 illustrates that Equation (3.33) is just a “common sense” way to
make a decision when there exists statistical knowledge of the classes. Given the
detector output value z,(7), we see in Figure 3.2 that z,(T) intersects the likeli-
hood of s,(7) at a value €, and it intersects the likelihood of s,(¢) at a value {,. What
is the most reasonable decision for the detector to make? For this example, choos-
ing class s(f), which has the greater likelihood, is the most sensible choice. If this
was an M-ary instead of a binary example, there would be a total of M likelihood
functions representing the M signal classes to which a received signal might belong.
The maximum likelihood decision would then be to choose the class that had the
greatest likelihood of all M likelihoods. (Refer to Appendix B for a review of deci-
sion theory fundamentals.)
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3.2.1.1 Error Probability

For the binary decision-making depicted in Figure 3.2, there are two ways
errors can occur. An error e will occur when s,(r) is sent, and channel noise results
in the receiver output signal z(t) being less than v, The probability of such an oc-
currence 1s

Plels)) = PIs) = [ plzlsy az (3.34)

This is illustrated by the shaded area to the left of y, in Figure 3.2. Similarly, an
error occurs when s,(f) is sent, and the channel noise results in z(7) being greater
than ~y,. The probability of this occurrence is

Plelsy) = P(Hlss) = f st Iy e (3.35)

i

The probability of an error is the sum of the probabilities of all the ways that an
error can occur. For the binary case, we can express the probability of bit error as

2 2
Py= > Ple,s;) = >, Plels;) P(s;) (3.36)
i=1 i=1
Combining Equations (3.34) to (3.36), we can write
Py = P(el|s|)P(s,) + P(e|s,)P(s,) (3.37a)
or equivalently,
Py = P(H,|s,)P(s) + P(H|s,)P(s) (3.37b)

That is, given that signal s,(f) was transmitted, an error results if hypothesis H,
is chosen; or given that signal s,(¢) was transmitted, an error results if hypothesis
H, is chosen. For the case where the a priori probabilities are equal [that is,
P(s1) = P(s2) =3,

Py =% P(Hyls,) + 5 P(Hls») (3.38)

and because of the symmetry of the probability density functions,
Py = P(H,|s,) = P(H|s,) (3.39)

The probability of a bit error, Py, is numerically equal to the area under the “tail”
of either likelihood function, p(zls;) or p(zls,), falling on the “incorrect™ side of the
threshold. We can therefore compute Py by integrating p(zls,) between the limits
- and vy, or by integrating p(zls,) between the limits vy, and =:

Pg = f p(zls,) dz (3.40)

Yo =\dy+it;)/2

Here, v, = (a, + a,)/2 is the optimum threshold from Equation (3.32). Replacing the
likelihood p(zls,) with its Gaussian equivalent from Equation (3.6), we have
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P—f L { ](z_al)z}s 3.41
o U[:VZ_WLKP 2 Ty - A

Yo=(a,+a,)/2

where o is the variance of the noise out of the correlator.
Let u=(z —a,)/o,. Then oy du = dz and

== 1 u’ a, — a})
& B Y 2 3.4
4 J- T ( 2 )du Q ( 207 4%

w={a; —ai)2ay

where Q(x), called the complementary error function or co-error function, is a
commonly used symbol for the probability under the tail of the Gaussian pdf. It is
defined as

Ox) = ?]i_% f exp (—%) du (3.43)

Note that the co-error function is defined in several ways (see Appendix B); how-
ever, all definitions are equally useful for determining probability of error in
Gaussian noise. Q(x) cannot be evaluated in closed form. It is presented in tabular
form in Table B.1. Good approximations to Q(x) by simpler functions can be found
“in Reference [5]. One such approximation, valid for x > 3, is

| oy
Q(I) L AT CXp (_E> (3.44)

We have optimized (in the sense of minimizing Py) the threshold level v, but
have not optimized the receiving filter in block 1 of Figure 3.1. We next consider
optimizing this filter by maximizing the argument of Q(x) in Equation (3.42).

3.2.2 The Matched Filter

A matched filter is a linear filter designed to provide the maximum signal-to-noise
power ratio at its output for a given transmitted symbol waveform. Consider that a
known signal s(¢) plus AWGN n(¢) is the input to a linear, time-invariant (receiv-
ing) filter followed by a sampler, as shown in Figure 3.1. At time ¢ = 7, the sampler
output z(7T') consists of a signal component a; and a noise component n, The
variance of the output noise (average noise power) is denoted by o, so that the
ratio of the instantaneous signal power to average noise power, (5/N);, at time
t =T, out of the sampler in step 1, is

S a?
(R’) . = U—ﬁ (3.45)

We wish to find the filter transfer function H(f) that maximizes Equation (3.45).
We can express the signal a,(r) at the filter output in terms of the filter transfer
function H(f) (before optimization) and the Fourier transform of the input
signal, as
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a(t) = J’ H(f)S(f)e!*™" df (3.46)

where S(f) is the Fourier transform of the input signal, s(¢). If the two-sided power
spectral density of the input noise is N,/2 watts/hertz, then, using Equations (1.19)
and (1.53), we can express the output noise power as

N [= =]
0f =" f B |H(f)|? df (3.47)

We then combine Equations (3.45) to (3.47) to express (S/N)y, as follows:

(%),

We next find that value of H(f) = Hy(f) for which the maximum (5/N) is achieved,
by using Schwarz’s inequality. One form of the inequality can be stated as

2

‘ f T H)S(e T af

. (3.48)
No/2 If H(f) | df

e

2

EJ' £1(x) |2 dx f H)Pde (349

| Fi)fax) dx

The equality holds if f;(x) = kf;(x), where k is an arbitrary constant and * indicates
complex conjugate. If we identify H(f) with f;(x) and S(f) e’*™" with f5(x), we can
write

= +] a2 oo x
‘ [ _mpsrermma < [ 1mprar [ iseorar 650
Substituting into Equation (3.48) yields
S 2 (7 ;
(3) == f_m IS(F) P df (351)
or
S) 2E
max| —) = — 3.52
(N r N @2
where the energy E of the input signal s(¢) is
E=J- |S(f) 12 df (3.53)

Thus, the maximum output (S/N); depends on the input signal energy and the
power spectral density of the noise, not on the particular shape of the waveform
that is used.

The equality in Equation (3.52) holds only if the optimum filter transfer func-
tion Hy(f) is employed, such that
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H(f) = H(f) = kS*(f)e /> (3.54)

or

_ h(t) = FHKS*(f)e 2T} (3.55)
Since s(¢) is a real-valued signal, we can write, from Equations (A.29) and (A.31),

h(r)={kS(T_r) O0<t=T

3.5
0 elsewhere (3:6)

Thus, the impulse response of a filter that produces the maximum output signal-to-
noise ratio is the mirror image of the message signal s(¢), delayed by the symbol
time duration 7. Note that the delay of T seconds makes Equation (3.56) causal;
that is, the delay of T seconds makes A(r) a function of positive time in the interval
0 <t < T. Without the delay of T seconds, the response s (—t) is unrealizable
because it describes a response as a function of negative time.

3.2.3 Correlation Realization of the Matched Filter

Equation (3.56) and Figure 3.7a illustrate the matched filter’s basic property: The
impulse response of the filter is a delayed version of the mirror image (rotated on
the ¢ = 0 axis) of the signal waveform. Therefore, if the signal waveform is s(r), its
mirror image is s(—t), and the mirror image delayed by 7 seconds is s(7 — 1). The
output z(¢) of a causal filter can be described in the time domain as the convolution
of a received input waveform r(t) with the impulse response of the filter (see Sec-
tion A.5):

z(t) = r(t) = h(r) = j r(t)h(t — 1) dt (3.57)

Substituting h(t) of Equation (3.56) into A(t — 7) of Equation (3.57) and arbitrarily
setting the constant k equal to unity, we get

z(t) = |r-Ir(*r)s[l"'—(.t‘-- )] dr
g (3.58)
= rr)s(T—¢+7)dr

When ¢ =T, we can write Equation (3.58) as

i
z(T) = J’ r(t)s(t) dr (3.59)

The operation of Equation (3.59), the product integration of the received signal r(¢)
with a replica of the transmitted waveform s(f) over one symbol interval is known
as the correlation of r(t) with s(¢). Consider that a received signal r(r) is correlated
with each prototype signal s,(¢) (i=1, ..., M), using a bank of M correlators. The
signal s;(f) whose product integration or correlation with r(¢) yields the maximum
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Figure 3.7 Correlator and matched filter. (a) Matched filter characteris-
tic. (b) Comparison of correlator and matched filter outputs.

output z;(T') is the signal that matches r(z) better than all the other s,(¢), j # i. We
will subsequently use this correlation characteristic for the optimum detection of
signals.

3.2.3.1 Comparison of Convolution and Correlation

The mathematical operation of a matched filter (MF) is convolution; a signal
is convolved with the impulse response of a filter. The mathematical operation of a
correlator is correlation; a signal is correlated with a replica of itself. The term
“matched filter” is-often used synonymously with “correlator.” How is that possi-
ble when their mathematical operations are different? Recall that the process of
convolving two signals reverses one of them in time. Also, the impulse response of
an MF is defined in terms of a signal that is reversed in time. Thus, convolution in
the MF with a time-reversed function results in a second time-reversal, making the
output (at the end of a symbol time) appear to be the result of a signal that has
been correlated with its replica. Therefore, it is valid to implement the receiving fil-
ter in Figure 3.1 with either a matched filter or a correlator. It is important to note
that the correlator output and the matched filter output are the same only at time
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t = T. For a sine-wave input, the output of the correlator, z(t), is approximately a
linear ramp during the interval 0 <t < 7. However, the matched filter output is ap-
proximately a sine wave that is amplitude modulated by a linear ramp during the
same time interval. The comparison is shown in Figure 3.7b. Since for comparable
imputs, the MF output and the correlator output are identical at the sampling time
t = T, the matched filter and correlator functions pictured in Figure 3.8 are often
used interchangeably.

3.2.3.2 Dilemma in Representing Earliest versus Latest Event

A serious dilemma exists in representing timed events. This dilemma is un-
doubtedly the cause of a frequently made error in electrical engineering—confus-
ing the most significant bit (MSB) with the least significant bit (LSB). Figure 3.9a
illustrates how a function of time is typically plotted; the earliest event appears left-
most, and the latest event rightmost. In western societies, where we read from left
to right, would there be any other way to plot timed events? Consider Figure 3.9b,
where pulses are shown entering (and leaving) a network or circuit. Here, the
carliest events are shown rightmost, and the latest are leftmost. From the figure, it
should be clear that whenever we denote timed events, there is an inference that
we are following one of the two formats described here. Often, we have to
provide some descriptive words (e.g., the rightmost bit is the earliest bit) to avoid
confusion.

Mathematical relationships often have built-in features guaranteeing the
proper alignment of time events. For example, in Section 3.2.3, a matched filter is
defined as having an impulse response A(z) that is a delayed version of the time-
reversed copy of the signal. That is, A(t) = s(T — t). Delay of one symbol time T is
needed for the filter to be causal (the output must occur in positive time). Time re-
versal can be thought of as a “precorrection” where the rightmost part of the time
plot will now correspond to the earliest event. Since convolution dictates another
time reversal, the arriving signal and the filter’s impulse response will be “in step”
(earliest with earliest, and latest with latest).

r(t) =s;(t) + n(t) —— h(T - t) f—2z(T)

Matched to
81(t) = s9(2)
(a)
s —s) ’:
| |
| il
r{t) = s;(¢) + n(t) I‘—é; J ' = z(T)
. 0 |
| | Figure 3.8 Equivalence of matched
“““““““““““““““ filter and correlator. (a) Matched fil-
(b) ter. (b) Correlator.
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3.2.4 Optimizing Error Performance

To optimize (minimize) Py in the context of an AWGN channel and the receiver
shown in Figure 3.1, we need to select the optimum receiving filter in step 1 and the
optimum decision threshold in step 2. For the binary case, the optimum decision
threshold has already been chosen in Equation (3.32), and it was shown in Equa-
tion (3.42) that this threshold results in Pz = Q [(a; — @,)/20,]. Next, for minimizing
Py, itis necessary to choose the filter (matched filter) that maximizes the argument
of Q(x). Thus, we need to determine the linear filter that maximizes (a, — a,)/20y,
or equivalently, that maximizes

R (3.60)

a0y

where (@, — a,) is the difference of the desired signal components at the filter out-
put at time ¢ = T, and the square of this difference signal is the instantaneous power
of the difference signal. In Section 3.2.2, a matched filter was described as one that
maximizes the output signal-to-noise ratio (SNR) for a given known signal. Here,
we continue that development for binary signaling, where we view the optimum
filter as one that maximizes the difference between two possible signal outputs.
Starting with Equations (3.45) and (3.47), it was shown in Equation (3.52) that a
matched filter achieves the maximum possible output SNR equal to 2E/N,.
Consider that the filter is matched to the input difference signal [s,(1) — 5,(¢)]; thus,
we can write an output SNR at time r= T as

(E)T _ (@ —a) 2E (3.61)

; —
N Ty MJ

where N,/2 is the two-sided power spectral density of the noise at the filter input
and
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T

E,= f [s1(t) — s4(t) " dt (3.62)

0
is the energy of the difference signal at the filter input. Note that Equation (3.61)
does not represent the SNR for any single transmission, s,(f) or s,(f). This SNR
yields a metric of signal difference for the filter output. By maximizing the output
SNR as shown in Equation (3.61), the matched filter provides the maximum
distance (normalized by noise) between the two candidate outputs—signal a, and
signal a,.
Next, combining Equations (3.42) and (3.61) yields

| E,
Py = Q( 2—%) (3.63)

For the matched filter, Equation (3.63) is an important interim result in terms
of the energy of the difference signal at the filter’s input. From this equation, a
more general relationship in terms of received bit energy can be developed. We
start by defining a time cross-correlation coefficient p as a measure of similarity be-
tween two signals, s,(¢) and s,(f). We have

1 T

b= A D s1(t) s,(t) dt (3.64a)

and
p=cos6 (3.64b)

where —1 < p < 1. Equation (3.64a) is the classical mathematical way of expressing
correlation. However, when s,(¢) and s,(¢) are viewed as signal vectors, s, and s,, re-
spectively, then p is conveniently expressed by Equation (3.64b). This vector view
provides a useful image. The vectors s, and s, are separated by the angle 8; for
small angular separation, the vectors are quite similar (highly correlated) to each
other, and for large angular separation, they are quite dissimilar. The cosine of this
angle gives us the same normalized metric of correlation as Equation (3.64a).
Expanding Equation (3.62), we get

T T ‘X
E; = f si(t) dt + f s3(t) dt — Zj s(1) s5(t) dt (3.65)

{0 0 0

Recall that each of the first two terms in Equation (3.65) represents the energy as-
sociated with a bit, E,; that is,

T T
E, = f si(t) dt = f s3(t) dt (3.66)
0 0
Substituting Equations (3.64a) and (3.66) into Equation (3.65), we get
E, =E, + E, — 2pE, = 2E,(1 — p) (3.67)

Substituting Equation (3.67) into (3.63), we obtain
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Ey(1 — P))

— (3.68)

Pﬁ!:Q(

Consider the case of p = 1 corresponding to signals s,(¢) and s,(r) being perfectly
correlated over a symbol time (drawn as vectors, with the angle between them
equal to zero). Would anyone use such waveforms for digital signaling? Of course
not, because the communication signals (members of the alphabet set) need to be
as disparate from one another as possible so that they are easily distinguished (de-
tected). We are simply cataloging the possible values for the parameter p. Consider
the case of p = —1 corresponding to s,(¢) and s,(t) being “anticorrelated” over a
symbol time. In other words, the angle between the signal vectors is 180°. In such a
case, where the vectors are mirror images, we call the signals antipodal, as shown in
Figure 3.10a. Also, consider the case of p = 0 corresponding to zero correlation
between s,(7) and s,(7) (the angle between the vectors is 90°). We call such signals
orthogonal, as seen in Figure 3.10b. For two waveforms to be orthogonal, they must
be uncorrelated over a symbol interval; that is,

T
f s1(t) s2(6) dt =0 (3.69)
0

The subject of orthogonality was treated earlier in Section 3.1.3. For the case of de-
tecting antipodal signals (that is, p = —1) with a matched filter, Equation (3.68) can

be written as
Py = ( %) 3.70)
=\ 3.

3 ' ()
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Figure 3.10 Binary signal vectors. (a) Antipodal.
(b) Orthogonal. (b)
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Similarly, for the case of detecting orthogonal signals (that is, p = 0) with a matched

- filter, Equation (3.68) can be written as

[E, |
-o(\5)

Figure 3.10, where the signal magnitudes are each shown equal to \/E_h helps
illustrate that the error performance described by Equations (3.70) and (3.71) is a
function of the distance between s, and s, (the larger the distance, the smaller will
be Pg). When the signals are antipodal, as in Figure 3.10a, the distance between
them is 2 \/E,, and the energy E, associated with that distance is characterized by
the distance squared or 4E,. When we substitute £, =4FE,; into Equation (3.63), the
result is Equation (3.70). When the signals are orthogonal as in Figure 3.10b, the
distance between them 1s \/2E, and thus £,=2 E,. When we substitute £,=2 E,
into Equation (3.63), the result is Equation (3.71).

Example 3.2 Matched Filter Detection of Antipodal Signals

Consider a binary communications system that receives equally likely signals s,(f) and
55(t) plus AWGN. See Figure 3.11. Assume that the receiving filter is a matched filter
(MF), and that the noise-power spectral density N, is equal to 10 "> Watt/Hz. Use the
values of received signal voltage and time shown on Figure 3.11 to compute the bit-
error probability.

Solution

We can graphically determine the received energy per bit from the plot of either s,(1)
or s5(t) shown in Figure 3.11 by integrating to find the energy (area under the voltage-
squared pulse). Doing this in piecewise [ashion, we get

E, = J'J vi(r) dt

]
= (1077 V)’ X (107°s) + (2 X 1077 V)? X (107°s) + (1077 V)* X (107°s)
=6 % 107 joule

s1(t)
(millivolts)

s2(t)

2 |J_L| (millivolts)
|| t (us) 0??3 t (us)
0123 1L Ll_
-2+

=

Figure 3.11 Baseband antipodal waveforms.
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Since the waveforms depicted in Figure 3.11 are antipodal and are detected with a
matched filter, we use Equation (3.70) to find the bit-error probability, as

[l2x107™y _ =
Q(\; e ) = Q(V12) = Q(3.46)

From Table B.1, we find that Py =3 x 10°*, Or, since the argument of Q(x) is greater
than 3, we can also use the approximate relationship in Equation (3.44) which yields
Pp=29x107"

Because the received signals are antipodal and are received by an MF, these are
sufficient prerequisites such that Equation (3.70) provides the proper relationship for
finding bit-error probability. The waveforms s,(z) and s4(¢) could have been pictured in
a much more bizarre fashion, but as long as they are antipodal and detected by an MF,
their shapes do not enter into the Py computations. The shapes of the waveforms, of
course, do matter when it comes to specifying the impulse response of the MF needed
to detect these waveforms.

3.2.5 Error Probability Performance of Binary Signaling

3.2.5.1 Unipolar Signaling

Figure 3.12a illustrates an example of baseband orthogonal signaling—
namely, unipolar signaling, where

s.t) = A 0=g=T for binary 1

3.72
s(t) =0 O0=t=T  forbinary0 &-12)

and where A > 0 is the amplitude of symbol s,(r). The definition of orthogonal sig-
naling described by Equation (3.69) requires that s,(¢) and s,(¢) have zero correla-
tion over each symbol time duration. Because in Equation (3.72), s,(f) is equal to
zero during the symbol time, this set of unipolar pulses clearly fulfills the condition

8;{1)
A
' t
0 T 2T 3T 4T 5T
(a)
Reference signal
s1(t) —s2(t) = A
T H, .
Figure 3.12 Detection of unipolar r(t) J —12(T") 2 Y [—=5:i(2)
baseband’ signaling. (a) Unipolar 0| =(I) H,
signaling example. (b) Correlator
detector. (b)

3.2 Detection of Binary Signals in Gaussian Noise 131



shown in Equation (3.69), and hence, they form an orthogonal signal set. Consider
such unipolar signaling, as illustrated in Figure 3.12a, as well as the correlator
shown in Figure 3.12b, which can be used for detecting such pulses. The correlator
multiplies and integrates the incoming signal r(r) with the difference of the proto-
type signals, [s,(f) — s5(1)] = A. After a symbol duration 7, a sampler (inferred by
the upper limit of integration) yields the test statistic z(7°), which is then compared
with the threshold v, For the case of s,(f) plus AWGN being received—that is,
when r(t) = s,(t) + n(t)—the signal component of z(7') is found, using Equation
(3.59), to be

a(T) = E{z(T)|s(t)} = E{ fTAE + An(t) dr} ¥ o
0

where E [z(T)ls,(1)} is the expected value of z(T), given that s,(f) was sent. This
follows since E {n(r)} = 0. Similarly, when r(7) = s5(¢) + n(t), then a,(T) = 0. Thus,
in this case, the optimum decision threshold, from Equation (3.32), is given by
vo = (a; + a,)/2 = 1/2 A°T. If the test statistic z(T) is greater than vy, the signal is
declared to be s,(r); otherwise, it is declared to be s,(¢).

The energy difference signal, from Equation (3.62), is given by E,; = AT,
Then the bit-error performance at the output is obtained from Equation (3.63) as

Po=© (\/2%) (\EE)ZQ(\/%) e

where, for the case of equaily likely signaling, the average energy per bit 1s £, =
A’T/2. Equation (3.73) corroborates Equation (3.71) where this relationship was
established for orthogonal signaling in a more general way.

Note that the units out of a multiplier circuit, such as that seen in Figure 3.12b
are volts. Therefore, for voltage signals on each of the two inputs, the multiplier
transfer function must have units of 1/volt, and the measurable units of r(f) s,(r) out
of the multiplier are volt/volt-squared. Similarly, the units out of an integrator cir-
cuit are also volts. Thus, for a voltage signal into an integrator, the integrator trans-
fer function must have units of 1/second, and thus the overall transfer function of
the product integrator has units of 1/volt-second. Then, for a signal into the product
integrator having units of volt-squared-seconds (a measure of energy), we
represent the output z(7) as a voltage signal that is proportional to received signal
energy (volt/joule).

3.2.5.2 Bipolar Signaling

Figure (3.13a) illustrates an example of baseband antipodal signaling—
namely, bipolar signaling, where

st) = +A O=r=T for binary 1
"~ and (3.74)

Sqo(t) = —A O0=¢t=T forbinary0
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Figure 3.13 Detection of bipolar baseband signaling.
(a) Bipolar signaling example. (b) Correlator detector.

As defined earlier, the term “antipodal” refers to binary signals that are mirror im-
ages of one another; that is, s;(f) = —s,(f). A correlator receiver for such antipodal
waveforms can be configured as shown in Figure 3.13b. One correlator multiplies
and integrates the incoming signal r(r) with the prototype signal s,(7); the second
correlator multiplies and integrates r(¢) with 5,(¢).

Figure 3.13b captures the essence of a digital receiver’s main function. That is,
during each symbol interval, a noisy input signal is sent down multiple “avenues” in
an effort to correlate it with each of the possible candidates. The receiver then
seeks the largest output voltage (the best match) to make a detection. For the bi-
nary example, there are just two possible candidates. For a 4-ary example, there
would be four candidates, and so forth. In Figure 3.13b, the correlator outputs are
designated z(T) (i = 1, 2). The test statistic, formed from the difference of the cor-
relator outputs, is

2(T) = 2/(T) - 2oT) (3.75)

and the decision is made using the threshold shown in Equation (3.32). For antipo-
dal signals, a, = —a,; therefore, vy, = 0. Thus, if the test statistic z(7') is positive, the
signal is declared to be s,(7); and if it is negative, it is declared to be s,(T).
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From Equation (3.62), the energy-difference signal is E; = (2A)*T. Then, the
bit-error performance at the output can be obtained from Equation (3.63) as

e olB)- o B oB) o

where the average energy per bit is given by E, = A*T. Equation (3.76) corrobo-
rates Equation (3.70) where this relationship was established for antipodal signal-
ing in a more general way.

3.2.5.3 Signaling Described with Basis Functions

Instead of designating s,(¢) as the reference signals in the correlator of Figure
3.13b, we can use the concept of basis functions described in Section 3.1.3. Binary
signaling with unipolar or bipolar pulses provides particularly simple examples for
doing this, because the entire signaling space can be described by just one basis
function. If we normalize the space by choosing K; = 1 in Equation (3.9), then it
should be clear that the basis function s (r) must be equal to \/1/T.

For unipolar pulse signaling, we could then write

s1(t) = apn(t) = AV'T X (\E) = A

§o(t) = ary(t) = 0 X (@) = ()

where the coefficients a,, and a,; equal A \/T and 0, respectively.
For bipolar pulse signaling, we would write

s1(t) = apin(t) = AVT X (\/-;) = A

55(t) = any(t) = —AVT X (\g_) = -A

where the coefficients a;; and a,; equal AV'T and -AVT, respectively. For the
case of antipodal pulses, we can envision the correlator receiver taking the form of
Figure 3.12b with the reference signal equal to \/1/7. Then, for the case of s,(t) =
A being sent, we can write

and

and

a\(T) = E{z(T)[s,(t)} = E{ \‘/4% + %di‘} =AVT

This follows because E {n(t)} = 0, and since, for antipodal signaling, E;, = A*T, it fol-
lows that a,(T) = \/E,. Similarly, for a received signal r(t) = s,(t) + n(z), it follows
that a,(7T) = —'\/E_ When reference signals are treated in this way, then the ex-
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pected value of z(7') has a magnitude of \/Eb which has units of normalized volts
proportional to received energy. This basis-function treatment of the correlator
yields a convenient value of z(7') that is consistent with units of volts out of multi-
pliers and integrators. We therefore repeat an important point: At the output of
the sampler (the predetection point), the test statistic z(7') is a voltage signal that is
proportional to received signal energy.

Figure 3.14 illustrates curves of Py versus E,/N, for bipolar and unipolar sig-
naling. There are only two fair ways to compare such curves. By drawing a vertical
line at some given E,/N,, say, 10 dB, we see that the unipolar signaling yields P, in
the order of 107, but that the bipolar signaling yields Pj in the order of 10, The
lower curve is the better performing one. Also, by drawing a horizontal line at
some required Pp. say 107, we see that with unipolar signaling each received bit
would require an E,/N, of about 12.5 dB, but with bipolar signaling, we could get
away with requiring each received bit to have an E,/N, of only about 9.5 dB. Of
course, the smaller requirement of E,/N, is better (using less power, smaller batter-
ies). In general, the better performing curves are the ones closest to the axes, lower
and leftmost. In examining the two curves in Figure 3.14, we can see a 3-dB error-
performance improvement for bipolar compared with unipolar signaling. This
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Figure 3.14 Bit error performance of unipolar and bipolar signaling.
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difference could have been predicted by the factor-of-2 difference in the coefficient
of E,/N, in Equation (3.70) compared with (3.71). In Chapter 4, it is shown that,
with MF detection, bandpass antipodal signaling (e.g., binary phase-shift keying)
has the same Pp performance as baseband antipodal signaling (e.g., bipolar pulses).
It is also shown that. with MF detection, bandpass orthogonal signaling (e.g., or-
thogonal frequency-shift keying) has the same Py performance as baseband orthog-
onal signaling (e.g., unipolar pulses).

3.3 INTERSYMBOL INTERFERENCE

Figure 3.15a introduces the filtering aspects of a typical digital communication sys-
tem. There are various filters (and reactive circuit elements such as inductors and
capacitors) throughout the system—in the transmitter, in the receiver, and in the
channel. At the transmitter, the information symbols, characterized as impulses or
voltage levels, modulate pulses that are then filtered to comply with some band-
width constraint. For baseband systems, the channel (a cable) has distributed reac-
tances that distort the pulses. Some bandpass systems, such as wireless systems, are
characterized by fading channels (see Chapter 15), that behave like undesirable fil-
ters manifesting signal distortion. When the receiving filter is configured to com-
pensate for the distortion caused by both the transmitter and the channel, it is often
referred to as an equalizing filter or a receiving/equalizing filter. Figure 3.15b illus-
trates a convenient model for the system, lumping all the filtering effects into one
overall equivalent system transfer function

H(f) = H(f) H(f) H{f) (3.77)

X X2

Transmitting M . Receiving )
filter o \V »{ Channel filter —d?'k?q—r» Detector —{x:1
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Figure 3.15 Intersymbol interference in the detection process. (a) Typical baseband
digital system. (b) Equivalent model.
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where H,(f) characterizes the transmitting filter, H,(f) the filtering within the chan-
nel, and H,(f) the receiving/equalizing filter. The characteristic H(f), then, repre-
sents the composite system transfer function due to all the filtering at various
locations throughout the transmitter/channel/receiver chain. In a binary system
with a common PCM waveform, such as NRZ-L, the detector makes a symbol deci-
sion by comparing a sample of the received pulse to a threshold; for example, the
detector in Figure 3.15 decides that a binary one was sent if the received pulse is
positive, and that a binary zero was sent, if the received pulse is negative. Due to
the effects of system filtering, the received pulses can overlap one another as
shown in Figure 3.15b. The tail of a pulse can “smear” into adjacent symbol inter-
vals, thereby interfering with the detection process and degrading the error perfor-
mance; such interference is termed intersymbol interference (ISI). Even in the
absence of noise, the effects of filtering and channel-induced distortion lead to ISL
Sometimes H(f) is specified, and the problem remains to determine H,(f) and
H,(f). such that the ISI is minimized at the output of H,(f).

Nyquist [6] investigated the problem of specifying a received pulse shape so
that no IST occurs at the detector. He showed that the theoretical minimum system
bandwidth needed in order to detect R, symbols/s, without ISI, is R./2 hertz. This
occurs when the system transfer function H(f) is made rectangular, as shown in
Figure 3.16a. For baseband systems, when H(f) is such a filter with single-sided
bandwidth 1/27T (the ideal Nyquist filter), its impulse response, the inverse Fourier
transform of H(f) (from Table A.1) is of the form h(¢) = sinc (¢/T), shown in Figure
3.16b. This sinc (t/T')-shaped pulse is called the ideal Nyquist pulse; its multiple
lobes comprise a mainlobe and sidelobes called pre- and post-mainlobe tails that
are infinitely long. Nyquist established that if each pulse of a received sequence is
of the form sinc (¢/T), the pulses can be detected without ISI. Figure 3.16b illus-
trates how ISI is avoided. There are two successive pulses, 4(7) and A(t — T). Even
though /() has long tails, the figure shows a tail passing through zero amplitude at
the instant (¢ = T) when A (t — T) is to be sampled, and likewise all tails pass
through zero amplitude when any other pulse of the sequence h(r — kT), k = +1,
12, ... is to be sampled. Therefore, assuming that the sample timing is perfect,
there will be no ISI degradation introduced. For baseband systems, the bandwidth

H(f) hit)

T=r h(t-T)

(a) (b)

Figure 3.16 Nyquist channels for zero ISI. (a) Rectangular system
transfer function H(f). (b) Received pulse shape h(t) = sinc (#T).
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required to detect 1/7 such pulses (symbols) per second is equal to 1/2T; in other
words, a system with bandwidth W = 1/2T = R,/2 hertz can support a maximum
transmission rate of 2W = 1/T = R, symbols/s (Nyquist bandwidth constraint) with-
out ISI. Thus, for ideal Nyquist filtering (and zero ISI), the maximum possible
symbol transmission rate per hertz, called the symbol-rate packing, is
2 symbols/s/Hz. It should be clear from the rectangular-shaped transfer function of
the ideal Nyquist filter and the infinite length of its corresponding pulse, that such
ideal filters are not realizable; they can only be approximately realized.

The names “Nyquist filter” and “Nyquist pulse” are often used to describe
the general class of filtering and pulse-shaping that satisfy zero ISI at the sampling
points. A Nyquist filter is one whose frequency transfer function can be repre-
sented by a rectangular function convolved with any real even-symmetric fre-
quency function. A Nyquist pulse is one whose shape can be represented by a sinc
(t/ T) function multiplied by another time function. Hence, there are a countless
number of Nyquist filters and corresponding pulse shapes. Amongst the class of
Nyquist filters, the most popular ones are the raised cosine and the root-raised
cosine, treated below.

A fundamental parameter for communication systems is bandwidth efficiency,
R/W, whose units are bits/s/Hz. As the units imply, R/W represents a measure of
data throughput per hertz of bandwidth and thus measures how efficiently any
signaling technique utilizes the bandwidth resource. Since the Nyquist bandwidth
constraint dictates that the theoretical maximum symbol-rate packing without ISI
is 2 symbols/s/Hz, one might ask what it says about the maximum number of
bits/s/Hz. It says nothing about bits, directly; the constraint deals only with pulses
or symbols, and the ability to detect their amplitude values without distortion from
other pulses. To find R/W for any signaling scheme, one must know how many bits
each symbol represents, which is a separate issue. Consider an M-ary PAM signal-
ing set. Each symbol (comprising & bits) is represented by one of M-pusle ampli-
tudes. For k = 6 bits per symbol, the symbol set size is M = 2* = 64 amplitudes. Thus
with 64-ary PAM, the theoretical maximum bandwidth efficiency that is possible
without ISI is 12 bits/s/Hz. (Bandwidth efficiency is treated in greater detail in
Chapter 9.)

3.3.1 Pulse Shaping to Reduce ISI

3.3.1.1 Goals and Trade-offs

The more compact we make the signaling spectrum, the higher is the allow-
able data rate or the greater is the number of users that can simultaneously be
served. This has important implications to communication service providers, since
greater utilization of the available bandwidth translates into greater revenue. For
most communication systems (with the exception of spread-spectrum systems, cov-
ered in Chapter 12), our goal is to reduce the required system bandwidth as much
as possible. Nyquist has provided us with a basic limitation to such bandwidth re-
duction. What would happen if we tried to force a system to operate at smaller
bandwidths than the constraint dictates? The pulses would become spread in time,
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which would degrade the system’s error performance due to increased ISI. A pru-
dent goal is to compress the bandwidth of the data impulses to some reasonably
small bandwidth greater than the Nyquist minimum. This is accomplished by pulse-
shaping with a Nyquist filter. If the band edge of the filter is steep, approaching the
rectangle in Figure 3.16a, then the signaling spectrum can be made most compact.
However, such a filter has an impulse response duration approaching infinity, as in-
dicated in Figure 3.16b. Each pulse extends into every pulse in the entire sequence.
Long time responses exhibit large-amplitude tails nearest the main lobe of each
pulse. Such tails are undesirable because, as shown in Figure 3.16b, they contribute
zero 1SI only when the sampling is performed af exactly the correct sampling time;
when the tails are large, small timing errors will result in ISI. Therefore, although a
compact spectrum provides optimum bandwidth utilization, it is very susceptible to
ISI degradation induced by timing errors.

3.3.1.2 The Raised-Cosine Filter

Earlier, it was stated that the receiving filter is often referred to as an equaliz-
ing filter, when it is configured to compensate for the distortion caused by both the
transmitter and the channel. In other words, the configuration of this filter is
chosen so as to optimize the composite system frequency transfer function H(f),
shown in Equation (3.77). One frequently used H(f) transfer function belonging to
the Nyquist class (zero ISI at the sampling times) is called the raised-cosine filter. 1t
can be expressed as

g for |f] < 2W, — W 3
Ffl + W= 2W,
H :<c052(z ) for2W, — W < |f| < W (3.78
(f) et : f (378)
L0 for |[f| > W )

where W is the absolute bandwidth and W, = 1/2T represents the minimum Nyquist
bandwidth for the rectangular spectrum and the —6-dB bandwidth (or half-
amplitude point) for the raised-cosine spectrum. The difference W — W, is termed
the “excess bandwidth,” which means additional bandwidth beyond the Nyquist
minimum (i.e., for the rectangular spectrum, W is equal to W,)). The roll-off factor
is defined to be r = (W — W,)/W,, where 0 < r < 1. It represents the excess band-
width divided by the filter —-6-dB bandwidth (i.e., the fractional excess bandwidth).
For a given W, the roll-off r specifies the required excess bandwidth as a fraction
of W, and characterizes the steepness of the filter roll off. The raised-cosine charac-
teristic is illustrated in Figure 3.17a for roll-off values of =0, r = 0.5, and r= 1. The
r = 0 roll-off is the Nyquist minimum-bandwidth case. Note that when r = 1, the
required excess bandwidth is 100%, and the tails are quite small. A system with
such an overall spectral characteristic can provide a symbol rate of R, symbols/s
using a bandwidth of R, hertz (twice the Nyquist minimum bandwidth), thus
yielding a symbol-rate packing of 1 symbol/s/Hz. The corresponding impulse
response for the H(f) of Equation (3.78) is
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Figure 3.17 Raised-cosine filter characteristics. (a) System transfer
function. (b) System impulse response.
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and is plotted in Figure 3.17b for r =0, r = 0.5, and r = 1. The tails have zero value at
each pulse-sampling time, regardless of the roll-off value.

We can only approximately implement a filter described by Equation (3.78)
and a pulse shape described by Equation (3.79), since, strictly speaking, the raised-
cosine spectrum is not physically realizable (for the same reason that the ideal
Nyquist filter is not realizable). A realizable filter must have an impulse response
of finite duration and exhibit a zero output prior to the pulse turn-on time (see Sec-

h(t) = 2W,(sinc 2W,t) (3.79)
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tion 1.7.2), which is not the case for the family of raised-cosine characteristics.
These unrealizable filters are noncausal (the filter impulse response has infinite
duration, and the filtered pulse begins at time t = —=). A pulse-shaping filter should
satisfy two requirements. It should provide the desired roll-off, and it should be
realizable (the impulse response needs to be truncated to a finite length).

Starting with the Nyquist bandwidth constraint that the minimum required
system bandwidth W for a symbol rate of R, symbols/s without ISI is R /2 hertz, a
more general relationship between required bandwidth and symbol transmission
rate involves the filter roll-off factor r and can be stated as

W= %(1 + R, (3.80)
Thus, with r = 0, Equation (3.80) describes the minimum required bandwidth for
ideal Nyquist filtering. For r > 0, there is a bandwidth expansion beyond the
Nyquist minimum; thus, for this case, R, is now less than twice the bandwidth. If the
demodulator outputs one sample per symbol, then the Nyquist sampling theorem
has been violated, since we are left with too few samples to reconstruct the analog
waveform unambiguously (aliasing is present). However, for digital communica-
tion systems, we are not interested in reconstructing the analog waveform. Since
the family of raised-cosine filters is characterized by zero ISI at the times that the
symbols are sampled, we can still achieve unambiguous detection.
Bandpass-modulated signals (see Chapter 4), such as amplitude shift keying
(ASK) and phase-shift keying (PSK), require twice the transmission bandwidth of
the equivalent baseband signals. (See Section 1.7.1.) Such frequency-translated sig-
nals, occupying twice their baseband bandwidth, are often called double-sideband
(DSB) signals. Therefore, for ASK- and PSK-modulated signals, the relationship
between the required DSB bandwidth Wy, and the symbol transmission rate R, is

WDSH = (]. + r)Ra. (3.81)

Recall that the raised-cosine frequency transfer function describes the com-
posite H(f) that is the “full round trip” from the inception of the message (as an
impulse) at the transmitter, through the channel, and through the receiving filter,
The fltering at the receiver is the compensating portion of the overall transfer
function to help bring about zero ISI with an overall transfer function, such as the
raised cosine. Often this is accomplished by choosing (matching) the receiving filter
and the transmitting filter so that each has a transfer function known as a root-
raised cosine (square root of the raised cosine). Neglecting any channel-induced
ISI, the product of these root-raised-cosine functions yields the composite raised-
cosine system transfer function. Whenever a separate equalizing filter is introduced
to mitigate the effects of channel-induced ISI, the receiving and equalizing filters
together should be configured to compensate for the distortion caused by both
the transmitter and the channel so as to yield an overall system transfer function
characterized by zero ISI.

Let’s review the trade-off that faces us in specifying pulse-shaping filters. The
larger the filter roll-off, the shorter will be the pulse tails (which implies smaller tail
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amplitudes). Small tails exhibit less sensitivity to timing errors and thus make for
small degradation due to ISL. Notice in Figure 3.17b, for r = 1, that timing errors
can still result in some ISI degradation. However, the problem is not as serious as it
is for the case in which r = 0, because the tails of the h(r) waveform are of much
smaller amplitude for r = 1 than they are for r = 0. The cost is more excess
bandwidth. On the other hand, the smaller the filter roll-off, the smaller will be the
excess bandwidth, thereby allowing us to increase the signaling rate or the number
of users that can simultaneously use the system. The cost is longer pulse tails, larger
pulse amplitudes, and thus, greater sensitivity to timing errors.

3.3.2 Two Types of Error-Performance Degradation

The effects of error-performance degradation in digital communications can be
partitioned into two categories. The first is due to a decrease in received signal
power or an increase in noise or interference power, giving rise to a loss in signal-
to-noise ratio or E,/N,. The second is due to signal distortion, such as might be
caused by intersymbol interference (ISI). Let us demonstrate how different are the
effects of these two degradation types.

Suppose that we require a communication system with a bit-error probability
P, versus E,/N, characteristic corresponding to the solid-line curve plotted in Fig-
ure 3.18a. Suppose that after the system is configured and measurements are taken,
we find, to our disappointment, that the performance does not follow the theoreti-
cal curve, but in fact follows the dashed line plot. A loss in E,/N, has come about
because of some signal losses or an increased level of noise or interference. For a
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Figure 3.18 (a) Loss in E/N,. (b) Irreducible P caused by distortion.
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desired bit-error probability of 107, the theoretical required £,/N, is 10 dB. Since
our system performance falls short of our goal, we can see from the dashed-line
curve that, for the same bit-error probability of 107, the required E,/N, is now 12
dB. If there were no way to remedy this problem, how much more E,/N, would
have to be provided in order to meet the required bit-error probability? The an-
swer is 2 dB, of course. It might be a serious problem—especially if the system is
power-limited, and it is difficult to come up with the additional 2 dB. But that loss
in E,/Nj is not so terrible when compared with the possible effects of degradation
caused by a distortion mechanism.

In Figure 3.18b, again imagine that we do not meet the desired performance
of the solid-line curve. But instead of suffering a simple loss in signal-to-noise ratio,
there is a degradation effect brought about by ISI (plotted with the dashed line). If
there were no way to remedy this problem, how much more E,/N, would be re-
quired in order to meet the desired bit-error probability? It would require an infi-
nite amount—or, in other words, there is no amount of E,/N, that will ameliorate
this problem. More E,/N; cannot help when the curve manifests such an irreducible
P (assuming that the bottoming-out point is located above the system’s required
Pg). Undoubtedly, every Pg-versus-E,/N, curve bottoms out somewhere, but if the
bottoming-out point is well below the region of interest, it will be of no conse-
quence.

More E,/N; may not help the ISI problem (it won’t help at all if the P5 curve
has reached an irreducible level). This can be inferred by looking at the overlapped
pulses in Figure 3.15b; if we increase the E,/N,, the ratio of that overlap does not
change. The pulses are subject to the same distortion. What, then, is the usual cure
for the degradation effects of ISI? The cure is found in a technique called equaliza-
tion. (See Section 3.4.) Since the distortion effects of ISI are caused by filtering in
the transmitter and the channel, equalization can be thought of as the process that
reverses such nonoptimum filtering effects.

Example 3.3 Bandwidth Requirements

(a) Find the minimum required bandwidth for the baseband transmission of a four-
level PAM pulse sequence having a data rate of R = 2400 bits/s if the system trans-
fer characteristic consists of a raised-cosine spectrum with 100% excess bandwidth
(r=1).

(b) The same 4-ary PAM sequence is modulated onto a carrier wave, so that the base-
band spectrum is shifted and centered at frequency f;. Find the minimum required
DSB bandwidth for transmitting the modulated PAM sequence. Assume that the
system transfer characteristic is the same as in part (a).

Solution
(a) M =2%since M =4 levels, k=2.

R 2400
Symbol or pulse rate R, = T g 1200 symbols/s;
Minimum bandwidth W = § (1 + r)R, = }(2)(1200) = 1200 Hz

Figure 3.19a illustrates the baseband PAM received pulse in the time domain—an
approximation to the h(r) in Equation (3.79). Figure 3.19b illustrates the Fourier
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Figure 3.19 (a) Shaped pulse. (b) Baseband raised cosine spectrum.

(b)

transform of h(r)—the raised cosine spectrum. Notice that the required band-
width, W, starts at zero frequency and extends to f= 1/7; it is twice the size of the
Nyquist theoretical minimum bandwidth.

As in part (a),
R, = 1200 symbols/s;

Wpss = (1 + )R, = 2(1200) = 2400 Hz.

Figure 3.20a illustrates the modulated PAM received pulse. This waveform can be
viewed as the product of a high-frequency sinusoidal carrier wave and a waveform
with the pulse shape of Figure 3.19a. The single-sided spectral plot in Figure 3.20b
illustrates that the modulated bandwidth is

1 , 1 2
W?SH= (ﬁa"’?) B ()‘n"?) T

When the spectruﬁ;uf Figure 3.19b is shifted up in frequency, the negative and
positive halves of the baseband spectrum are shifted up in frequency, thereby dou-
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Figure 3.20 (a) Modulated shaped pulse. (b) DSB-modulated raised cosine spec-
trum.
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bling the required transmission bandwidth. As the name implies, the DSB signal
has two sidebands: the upper sideband (USB), derived from the baseband positive
half, and the lower sideband (LSB), derived from the baseband negative half.

Example 3.4 Digital Telephone Circuits

Compare the system bandwidth requirements for a terrestrial 3-kHz analog telephone
voice channel with that of a digital one. For the digital channel, the voice is formatted
as a PCM bit stream, where the sampling rate for the analog-to-digital (A/D) conver-
sion 1s 8000 samples/s and each voice sample is quantized to one of 256 levels. The bit
stream is then transmitted using a PCM waveform and received with zero ISI.

Selution

The result of the sampling and quanitization process yields PCM words such that each
word (representing one sample) has one of L = 256 different levels. If each sample
were sent as a 256-ary PAM pulse (symbol), then from Equation (3.80) we can write
that the required system bandwidth (without ISI) for sending R, symbols/s would be

R,
W= 2 hertz

where the equality sign holds true only for ideal Nyquist filtering. Since the digital
telephone system uses PCM (binary) waveforms, each PCM word is converted to
{ = log, L =log, 256 = 8 bits. Therefore, the system bandwidth required to transmit
voice using PCM is

R,
W'PCM = (Iﬂgz L) _2_' hertz
- 1 :
" = 3 (8 bits/symbol) (8000 symbols/s) = 32 kHz

The 3-kHz analog voice channel will generally require approximately 4-kHz of band-
width, including some bandwidth separation between channels, called guard bands.
Therefore, the PCM format, using 8-bit quantization and binary signaling with a PCM
waveform, requires at least eight times the bandwidth required for the analog channel.

3.3.3 Demodulation/Detection of Shaped Pulses

3.3.3.1 Matched Filters versus Conventional Filters

Conventional filters screen out unwanted spectral components of a received
signal while maintaining some measure of fidelity for signals occupying a selected
span of the spectrum, called the pass-band. These filters are generally designed to
provide approximately uniform gain, a linear phase-versus-frequency characteristic
over the pass-band, and a specified minimum attenuation over the remaining spec-
trum, called the stop-band(s). A matched filter has a different “design priority,”
namely that of maximizing the SNR of a known signal in the presence of AWGN.,
Conventional filters are applied to random signals defined only by their bandwidth,
while matched filters are applied to known signals with random parameters (such
as amplitude and arrival time). The matched filter can be considered to be a rem-
plate that is matched to the known shape of the signal being processed. A conven-
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tional filter tries to preserve the temporal or spectral structure of the signal of in-
terest. On the other hand, a matched filter significantly modifies the temporal
structure by gathering the signal energy matched to its template, and, at the end of
each symbol time, presenting the result as a peak amplitude. In general, a digital
communications receiver processes received signals with both kinds of filters. The
task of the conventional filter is to isolate and extract a high-fidelity estimate of the
signal for presentation to the matched filter. The matched filter gathers the re-
ceived signal energy, and when its output is sampled (at t = T'), a voltage propor-
tional to that energy is produced for subsequent detection and post-detection
processing.

3.3.3.2 Nyquist Pulse and Square-Root Nyquist Pulse

Consider a sequence of data impulses at a transmitter input compared with
the resulting sequence of pulses out of a raised-cosine matched filter (before sam-
pling). In Figure 3.21, transmitted data is represented by impulse waveforms that
occur at times Ty, Ty, ... Filtering spreads the input waveforms, and thus delays
them in time. We use the notation, #y, #, . . . , to denote received time. The impulse
event that was transmitted at time 7 arrives at the receiver at time f, corresponding
to the start of the output pulse event. The premainlobe tail of a demodulated pulse
is referred to as its precursor. For a real system with a fixed system-time reference,
causality dictates that ¢, = 7, and the time difference between 7; and #, represents
any propagation delay in the system. In this example, the time duration from the
start of a demodulated pulse precursor until the appearance of its mainlobe or peak
amplitude is 37 (three pulse-time durations). Each output pulse in the sequence is
superimposed with other pulses; each pulse has an effect on the main lobes of three
earlier and three later pulses. When a pulse is filtered (shaped) so that it occupies
more than one symbol time, we define the pulse support time as the total number
of symbol intervals over which the pulse persists. In Figure 3.21, the pulse support
time consists of 6-symbol intervals (7 data points with 6 intervals between them).

The impulse response of a root-raised cosine filter, called the square-root
Nyquist pulse, is shown in Figure 3.22a (normalized to a peak value of unity, with a
filter rolloff of r = 0.5). The impulse response of the raised-cosine filter, called the
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H | | | | | | | H
time £6: £y fo ‘B4 £d e L time
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Figure 3.21 Filtered impulse sequence: output versus input.
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Nyquist pulse, is shown in Figure 3.22b (with the same normalization and filter
rolloff). Inspecting these two pulse shapes, we see that they have a similar appear-
ance, but the square-root Nyquist pulse makes slightly faster transitions, thus its
spectrum (root-raised cosine) does not decay as rapidly as the spectrum (raised
cosine) of the Nyquist pulse. Another subtle but important difference is that the
square-root Nyquist pulse does not exhibit zero ISI (you can verify that the pulse
tails in Figure 3.22a do not go through zero amplitude at the symbol times).
However, if a root-raised cosine filter is used at both the transmitter and the
receiver, the product of these transfer functions being a raised cosine, will give rise
to an output having zero ISI,

It is interesting to see how the square-root Nyquist pulses appear at the out-
put of a transmitter and how they appear after demodulation with a root-raised co-
sine MF. Figure 3.23a illustrates an example of sending a sequence of message
symbols {+1 +1 —1 +3 +1 +3} from a 4-ary set, where the members of the alphabet
set are: (+1, £3}. Consider that the pulse modulation is 4-ary PAM, and that the
pulses have been shaped with a root-raised cosine filter, having a roll-off value of
0.5. The analog waveform in this figure represents the transmitter output. Since the
output waveform from any filter is delayed in time, then in Figure 3.23a, the input
message symbols (shown as approximate impulses) have been delayed the same
amount as the output waveform in order to align the message sequence with its cor-
responding filtered waveform (the square-root Nyquist shaped-pulse sequence).
This is just a visual convenience so that the reader can compare the filter input with
its output. It is, of course, only the output analog waveform that is transmitted (or
modulated) onto a carrier wave.

1.2 ]

Amplitude

Figure 3.22a Square-root Nyquist pulse.
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1.2 :

Figure 3.22b Nyquist pulse.

Figure 3.23b shows the same delayed message samples together with the out-
put waveform from the root-raised cosine MF, yielding a raised-cosine transfer
function for the overall system. Let us describe a simple test to determine if the
filtered output (assuming no noise) contains ISI. It is only necessary to sample
the filtered waveform at the times corresponding to the original input samples; if
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Figure 3.23a Square-root Nyquist-shaped M-ary waveform and
delayed-input sample values.

148 Baseband Demodulation/Detection Chap. 3



a—md
o
I

Amplitude
T

o
o
|

-0.5 —

1+ =

15 | | | | | | | |
-2 -1 0 1 2 3 4 5 6 7

Time

Figure 3.23b OQutput of raised-cosine matched filter and delayed-input
sample values.

the resulting sample values are unchanged from those of the original message, then
the filter output has zero ISI (at the sample times). When Figures 3.23a and 3.23b
are compared with regard to ISI, it should be apparent that sampling the square-
root Nyquist waveform of Figure 3.23a (transmitter output) will not yield the exact
original samples; however, sampling the Nyquist waveform in Figure 3.23b (MF
output) will yield the exact original samples. This supports the statement that a
Nyquist filter yields zero ISI at the sample points, while any other filter does not
do so.

3.4 EQUALIZATION
3.4.1 Channel Characterization

Many communication channels (e.g., telephone, wireless) can be characterized as
band-limited linear filters with an impulse response A.(t) and a frequency response

H.(f) = |H(f)le’% (3.82)

where h.(t) and H,(f) are Fourier transform pairs, |[H.(f)| is the channel’s ampli-
tude response, and 6.(f) is the channel’s phase response. In order to achieve ideal
(nondistorting) transmission characteristics over a channel, it was shown in Section
1.6.3, that within a signal’s bandwidth W, |H (f)| must be constant. Also, 8.(f) must
be a linear function of frequency, which is tantamount to saying that the delay must
be constant for all spectral components of the signal. If |H.(f)| is not constant
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within W, then the effect is amplitude distortion. If 6.(f) is not a linear function of
frequency within W, then the effect is phase distortion. For many channels that ex-
hibit distortion of this type, such as fading channels, amplitude and phase distortion
typically occur together. For a transmitted sequence of pulses, such distortion
manifests itself as a signal dispersion or “smearing” so that any one pulse in the
received demodulated sequence is not well defined. The overlap or smearing,
known as intersymbol interference (1S1), described in Section 3.3, arises in most
modulation systems; it is one of the major obstacles to reliable high-speed data
transmission over bandlimited channels. In the broad sense, the name “equaliza-
tion” refers to any signal processing or filtering technique that is designed to
eliminate or reduce ISI.

In Figure 2.1, equalization is partitioned into two broad categories. The first
category, maximum-likelihood sequence estimation (MLSE), entails making mea-
surements of A.(f) and then providing a means for adjusting the receiver to the
transmission environment. The goal of such adjustments is to enable the detector
to make good estimates from the demodulated distorted pulse sequence. With an
MLSE receiver, the distorted samples are not reshaped or directly compensated in
any way: instead, the mitigating technique for the MLSE receiver is to adjust itself
in such a way that it can better deal with the distorted samples. (An example of this
method, known as Viterbi equalization, is treated in Section 15.7.1.) The second
category, equalization with filters, uses filters to compensate the distorted pulses. In
this second category, the detector is presented with a sequence of demodulated
samples that the equalizer has modified or “cleaned up” from the effects of ISL
Equalizing with filters, the more popular approach and the one described in this
section, lends itself to further partitioning. The filters can be described as to
whether they are linear devices that contain only feedforward elements transversal
equalizers), or whether they are nonlinear devices that contain both feedforward
and feedback elements (decision feedback equalizers). They can be grouped ac-
cording to the automatic nature of their operation, which may be either preset or
adaptive. They also can be grouped according to the filter’s resolution or update
rate. Are predetection samples provided only on symbol boundaries, that is, one
sample per symbol? If so, the condition is known as symbol spaced. Are multiple
samples provided for each symbol? If so, this condition is known as fractionally
spaced.

We now modify Equation (3.77) by letting the receiving/equalizing filter be
replaced by a separate receiving filter and equalizing filter, defined by frequency
transfer functions H,(f) and H.(f), respectively. Also, let the overall system trans-
fer function H(f) be a raised-cosine filter, designated Hyp(f). Thus, we write

Heo(f) = H(f) HAf) B(f) H.f) (3.83)

In practical systems, the channel’s frequency transfer function H,(f) and its im-
pulse response h.(f) are not known with sufficient precision to allow for a receiver
design to yield zero ISI for all time. Usually, the transmit and receive filters are
chosen to be matched so that

Hrc(f) = H(f) H(f) (3.84)
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In this way, H,(f) and H,(f) each have frequency transfer functions that are the
square root of the raised cosine (root-raised cosine). Then, the equalizer transfer
function needed to compensate for channel distortion is simply the inverse of the
channel transfer function:

e 7it(/) (3.85)

: 1 1
=T T TR
Sometimes a system frequency transfer function manifesting ISI at the sam-
pling points is purposely chosen (e.g., a Gaussian filter transfer function). The mo-
tivation for such a transfer function is to improve bandwidth efficiency, compared
with using a raised-cosine filter. When such a design choice is made, the role of the
equalizing filter is not only to compensate for the channel-induced ISI, but also to

compensate for the IST brought about by the transmitter and receiver filters [7].

3.4.2 Eye Pattern

An eye pattern is the display that results from measuring a system’s response to
baseband signals in a prescribed way. On the vertical plates of an oscilloscope we
connect the receiver's response to a random pulse sequence. On the horizontal
plates we connect a sawtooth wave at the signaling frequency. In other words, the
horizontal time base of the oscilloscope is set equal to the symbol (pulse) duration.
This setup superimposes the waveform in each signaling interval into a family of
traces in a single interval (0, 7). Figure 3.24 illustrates the eye pattern that results
for binary antipodal (bipolar pulse) signaling. Because the symbols stem from a
random source, they are sometimes positive and sometimes negative, and the per-
sistence of the cathode ray tube display allows us to see the resulting pattern
shaped as an eye. The width of the opening indicates the time over which sampling
for detection might be performed. Of course, the optimum sampling time corre-
sponds to the maximum eye opening, yielding the greatest protection against noise.

Optimum
sampling time

Figure 3.24 Eye Pattern.
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If there were no filtering in the system—that is, if the bandwidth corresponding to
the transmission of these data pulses were infinite—then the system response
would yield ideal rectangular pulse shapes. In that case, the pattern would look like
a box rather than an eye. In Figure 3.24, the range of amplitude differences labelled
D , is a measure of distortion caused by ISI, and the range of time differences of the
zero crossings labelled J; is a measure of the timing jitter. Measures of noise mar-
gin M, and sensitivity-to-timing error S; are also shown in the figure. In general,
the most frequent use of the eye pattern is for qualitatively assessing the extent of
the ISI. As the eye closes, ISI is increasing; as the eye opens, ISI is decreasing.

3.4.3 Equalizer Filter Types

3.4.3.1 Transversal Equalizer

A training sequence used for equalization is often chosen to be a noise-like
sequence, “rich” in spectral content, which is needed to estimate the channel fre-
quency response. In the simplest sense, training might consist of sending a single
narrow pulse (approximately an ideal impulse) and thereby learning the impulse
response of the channel. In practice, a pseudonoise (PN) signal is preferred over a
single pulse for the training sequence because the PN signal has larger average
power and hence larger SNR for the same peak transmitted power. For describing
the transversal filter, consider that a single pulse was transmitted over a system
designated to have a raised-cosine transfer function Hy(f) = H/(f) H.(f). Also
consider that the channel induces IS1, so that the received demodulated pulse ex-
hibits distortion, as shown in Figure 3.25, such that the pulse sidelobes do not go
through zero at sample times adjacent to the mainlobe of the pulse. The distortion
can be viewed as positive or negative echoes occurring both before and after the
mainlobe. To achieve the desired raised-cosine transfer function, the equalizing fil-
ter should have a frequency response H,(f), as shown in Equation (3.85), such that
the actual channel response when multiplied by H.(f) vields Hge(f). In other
words, we would like the equalizing filter to generate a set of canceling echoes.

0.9

T 0.1 0
)

Time
-0.3 2T 3T

Figure 3.25 Received pulse exhibiting distortion.
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Since we are interested in sampling the equalized waveform at only a few predeter-
mined sampling times, then the design of an equalizing filter can be a straightfor-
ward task.

The transversal filter, depicted in Figure 3.26, 1s the most popular form of an
easily adjustable equalizing filter consisting of a delay line with 7-second taps
(where T'is the symbol duration). In such an equalizer, the current and past values
of the received signal are linearly weighted with equalizer coefficients or tap
weights {¢,] and are then summed to produce the output. The main contribution is
from a central tap, with the other taps contributing echoes of the main signal at
symbol intervals on either side of the main signal. If it were possible for the filter to
have an infinite number of taps, then the tap weights could be chosen to force the
systemn impulse response to zero at all but one of the sampling times, thus making
H.(f) correspond exactly to the inverse of the channel transfer function in Equa-
tion (3.85). Even though an infinite length filter is not realizable, one can still
specify practical filters that approximate the ideal case.

In Figure 3.26, the outputs of the weighted taps are amplified, summed, and
fed to a decision device. The tap weights {c,} need to be chosen so as to subtract the
effects of interference from symbols adjacent in time to the desired symbol. Con-
sider that there are (2N + 1) taps with weights c_y, ¢_ni1s « . . « Cy. Output samples
(z(k)} of the equalizer are then found by convolving the input samples {x(k)} and
tap weights {c,} as follows:

N
z2(k)= > x(k—n)c, k=-2N,...,2N n=-N,...,N (3.86)

n=-N

where k=0, 41,42, . . _is a time index that is shown in parentheses. (Time may take
on any range of values.) The index n is used two ways—as a time offset, and as a fil-
ter coefficient identifier (which is an address in the filter). When used in the latter

C_N

Y

™M
=

k |

Algorithm for
coefficient adjustment

Figure 3.26 Transversal filter.
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sense, it is shown as a subscript. By defining the vectors z and ¢ and the matrix x as,
respectively,

[ 2(—2N) | |
z = z(b) c = c-ﬂ (3.87)
E{;-;NJ . L en
and
[ x(—N) 0 0 0 0 ]
x(-N+1) x(—N) 0
X = x(N} x(N—1) x(N-2) x(—N+1) x(—N} (3.88)
(.} 0 0 x(N) x(N = 1)
0 0 0 0 x(N)

we can describe the relationship among {z(k)}, {x(k)}, and {c,} more compactly as
Z=XC¢C (3.89a)

And whenever the matrix x is square, with its rows and columns each having the
same dimension as the number of elements in ¢, we can find ¢ by solving the follow-
ing equation:

¢c=X 2z (3.89b)

Notice that the size of the vector z and the number of rows in the matrix x may be
chosen to be any value, because one might be interested in the ISI at sample points
far removed from the mainlobe of the pulse in question. In Equations (3.86)
through (3.88), the index k was arbitrarily chosen to allow for 4N + 1 sample points.
The vectors z and ¢ have dimensions 4N + 1 and 2N + 1, respectively, and the ma-
trix x is nonsquare with dimensions 4N + 1 by 2N + 1. Such equations are referred
to as an overdetermined set (i.e., there are more equations than unknowns). One
can solve such a problem in a deterministic way known as the zero-forcing solution,
or, in a statistical way, known as the minimum mean-square error (MSE) solution.

Zero-Forcing Solution. This solution starts by disposing of the top N and
bottom N rows of the matrix x in Equation (3.88), thereby transforming x into a
square matrix of dimension 2N + 1 by 2N + 1, transforming z into a vector of
dimension 2N + 1, and yielding in Equation (3.89a), a deterministic set of 2N + 1
simultaneous equations. This zero-forcing solution minimizes the peak ISI distor-
tion by selecting the {c,] weights so that the equalizer output is forced to zero at N
sample points on either side of the desired pulse. In other words, the weights are
chosen so that -
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1 fork =0
2] = {n fork = il,iZ,...,iN} (3.90)

Equation (3.89) is used to solve the 2N + 1 simultaneous equations for the set of
2N + 1 weights {c,}. The required length of the filter (number of tap weights) is a
function of how much smearing the channel may introduce. For such an equalizer
with finite length, the peak distortion is guaranteed to be minimized only if the eye
pattern is initially open. However, for high-speed transmission and channels
introducing much ISI, the eye is often closed before equalization [8]. Since the zero-
forcing equalizer neglects the effect of noise, it is not always the best system solution.

Example 3.5 A Zero-Forcing Three-Tap Equalizer

3.4

Consider that the tap weights of an equalizing transversal filter are to be determined
by transmitting a single impulse as a training signal. Let the equalizer circuit in Figure
3.26 be made up of just three taps. Given a received distorted set of pulse samples
[x(k)}, with voltage values 0.0, 0.2, 0.9, —0.3, 0.1, as shown in Figure 3.25, use a zero-
forcing solution to find the weights {c_;, ¢, ¢} that reduce the ISI so that the equalized
pulse samples {z(k)] have the values, {z(-1) = 0, z(0) = 1, z(1) = 0]. Using these
weights, calculate the ISI values of the equalized pulse at the sample times k = 12, +3.
What is the largest magnitude sample contributing to IS1, and what is the sum of all
the ISI magnitudes?

Solution

For the channel impulse response specified, Equation (3.89) yields
Z=XxC¢
or

0 [x(0) x(—1) x(-2)]||ec-
1=|x1) x0) x(-1)]] co
0 L x(2)  x(1) x(0) o)

0.9 0.2 0] c_y
— _{]3 09 0,2 C“
01 -03 09]| ¢

Solving these three simultaneous equations results in the following weights:

£ _0214[}
¢ | =| 09631
, 0.3448

The values of the equalized pulse samples [z(k)} corresponding to sample times k =
-3,-2,-1,0, 1, 2, 3 are computed by using the preceding weights in Equation (3.89a),
yielding

The sample of greatest magnitude contributing to ISI equals 0.0428, and the sum of all
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The values of the equalized pulse samples (z(k)] corresponding to sample times k =
-3,-2,-1,0, 1. 2, 3 are computed by using the preceding weights in Equation (3.89a),
vielding

0.0000, —0.0428, 0.0000, 1.0000, 0.0000, —0.0071, 0.0345

The sample of greatest magnitude contributing to ISI equals 0.0428, and the sum of all
the ISI magnitudes equals 0.0844. It should be clear that this three-tap equalizer has
forced the sample points on either side of the equalized pulse to be zero. If the equal-
1zer is made longer than three taps, more of the equalized sample points can be forced
to a zero value.

Minimum MSE Solution. A more robust equalizer is obtained if the {c,)
tap weights are chosen to minimize the mean-square error (MSE) of all the ISI
terms plus the noise power at the output of the equalizer [9]. MSE is defined as the
expected value of the squared difference between the desired data symbol and the
estimated data symbol. One can use the set of overdetermined equations to obtain
a minimum MSE solution by multiplying both sides of Equation (3.89a) by x7,
which yields [10]

x'z = x'xe (3.91a)
and

R. = R,.c (3.91b)

where R,, = x’z is called the cross-correlation vector and R, = xx is called the au-

tocorrelation matrix of the input noisy signal. In practice, R,, and R, are unknown
a priori, but can be approximated by transmitting a test signal over the channel and
using time average estimates to solve for the tap weights from Equation (3.91), as
follows:

¢ =RR,. (3.92)

In the case of the deterministic zero-forcing solution, the x matrix must be square.
But to achieve the minimum MSE (statistical) solution, one starts with an overde-
termined set of equations and hence a nonsquare x matrix, which then gets trans-
formed to a square autocorrelation matrix R, = x’x, yielding a set of 2N + 1
simultaneous equations, whose solution leads to tap weights that minimize the
MSE. The size of the vector ¢ and the number of columns of the matrix x corre-
spond to the number of taps in the equalizing filter. Most high-speed telephone-
line modems use an MSE weight criterion because it is superior to a zero-forcing
criterion; it is more robust in the presence of noise and large ISI [8].

Example 3.6 A Minimum MSE 7-Tap Equalizer

Consider that the tap weights of an equalizing transversal filter are to be determined
by transmitting a single impulse as a training signal. Let the equalizer circuit in Figure
3.26 be made up of seven taps. Given a received distorted set of pulse samples {x(k)},
with values 0.0108, —0.0558, 0.1617, 1.0000, —0.1749, 0.0227, 0.0110, use a minimum
MSE solution to find the value of the weights {c,} that will minimize the ISI. With
these weights, calculate the resulting values of the equalized pulse samples at the fol-
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lowing times: {k =0, 1, #2, ..., +6]. What is the largest magnitude sample contribut-
ing to IS, and what is the sum of all the ISI magnitudes?
Solution

For a seven-tap filter (N = 3), one can form the x matrix in Equation (3.88) that has di-
mensions 4N +1 by 2N+ 1=13x7:

[ 0.0110 0 0 0 0 0 0
0.0227 0.0110 0 0 0 0 0
—0.1749 0.0227 0.0110 0 0 0 0
1.0000  —0.1749 0.0227 0.0110 0 0 0
0.1617 1.0000 —0.1749 0.0227 00110 0 0
—0.0558 0.1617 1.0000 —0.1749  0.0227 0.0110 0

x=| 00108 —0.0558 0.1617 1.0000 —0.1749 0.0227 0.0110
0 0.0108 —0.0558 01617  1.0000 —0.1749 0.0227

0 0 0.0108 —0.0558  0.1617 1.0000  —0.1749

0 0 0 0.0108 —0.0558 0.1617 1.0000

0 0 0 0 0.0108  —0.0558 0.1617

0 0 0 0 0 0.0108 —0.0558

L0 0 0 0 0 0 0.0108 _|

Using this x matrix, one can form the autocorrelation matrix R,, and the cross-
correlation vector R,,, defined in Equation (3.91). With the help of a computer to
invert R,, and perform matrix multiplication, the solution for the tap weights
[c_s, €3, €4, €y, €}, €3, ¢35} shown in Equation (3.92) yields

—0.0116, 0.0108, 0.1659. 0.9495, —0.1318, 0.0670, —0.0269

Using these weights in Equation (3.89a), we solve for the 13 equalized samples {z(k))
at times k=-6,-5,...,5,6:

—0.0001, —0.0001, 0.0041, 0.0007, 0.0000, —0.0000, 1.0000, 0.0003,
—0.0007, 0.0015, —0.0095, 0.0022, —0.0003

The largest magnitude sample contributing to ISI equals 0.0095, and the sum of all the
ISI magnitudes equals 0.0195,

3.4.3.2 Decision Feedback Equalizer

The basic limitation of a linear equalizer, such as the transversal filter, is that
it performs poorly on channels having spectral nulls [11]. Such channels are often
encountered in mobile radio applications. A decision feedback equalizer (DFE) is
a nonlinear equalizer that uses previous detector decisions to eliminate the ISI on
pulses that are currently being demodulated. The ISI being removed was caused by
the tails of previous pulses; in effect, the distortion on a current pulse that was
caused by previous pulses is subtracted.

Figure 3.27 shows a simplified block diagram of a DFE where the forward
filter and the feedback filter can each be a linear filter, such as a transversal filter.
The figure also illustrates how the filter tap weights are updated adaptively. (See
the following section.) The nonlinearity of the DFE stems from the nonlinear
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Figure 3.27 Decision Feedback Equalizer.

characteristic of the detector that provides an input to the feedback filter. The
basic idea of a DFE is that if the values of the symbols previously detected are
known (past decisions are assumed to be correct), then the ISI contributed by these
symbols can be canceled out exactly at the output of the forward filter by subtract-
ing past symbol values with appropriate weighting. The forward and feedback tap
weights can be adjusted simultaneously to fulfill a criterion such as minimizing
the MSE.

When only a forward filter is used, the output of the filter contains channel
noise contributed from every sample in the filter. The advantage of a DFE imple-
mentation is that the feedback filter, which is additionally working to remove ISI,
operates on noiseless quantized levels, and thus its output is free of channel noise.

3.4.4 Preset and Adaptive Equalization

On channels whose frequency responses are known and time invariant, the channel
characteristics can be measured and the filter’s tap weights adjusted accordingly. If
the weights remain fixed during transmission of data, the equalization is called pre-
set equalization; one very simple method of preset equalization consists of setting
the tap weights {c,} according to some average knowledge of the channel. This was
used for data transmission over voice-grade telephone lines at less than 2400 bit/s.
Another preset method consists of transmitting a training sequence that is com-
pared at the receiver with a locally generated sequence. The differences between
the two sequences are used to set {c,}. The significant aspect of any preset method
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1s that 1t is done once at the start of transmission or seldom (when transmission is
broken and needs to be reestablished).

Another type of equalization, capable of tracking a slowly time-varying chan-
nel response, is known as adaptive equalization. It can be implemented to perform
tap-weight adjustments periodically or continually. Periodic adjustments are ac-
complished by periodically transmitting a preamble or short training sequence of
digital data that is known in advance by the receiver. The receiver also uses the
preamble to detect start of transmission, to set the automatic gain control (AGC)
level, and to align internal clocks and local oscillator with the received signal. Con-
tinual adjustments are accomplished by replacing the known training sequence
with a sequence of data symbols estimated from the equalizer output and treated as
known data. When performed continually and automatically in this way, the adap-
tive procedure (the most popular) is referred to as decision directed [11]. The name
“decision directed” is not to be confused with decision feedback (DFE). Decision
directed only addresses how filter tap weights are adjusted—that is, with the help
of a signal from the detector. DFE, however, refers to the fact that there exists an
additional filter that operates on the detector output and recursively feeds back a
signal to the detector input. Thus, with DFE there are two filters, a feed-forward
filter and a feedback filter that process the data and help mitigate the ISL.

A disadvantage of preset equalization is that it requires an initial training
period that must be invoked at the start of any new transmission. Also, a time-
varying channel can degrade system performance due to ISI, since the tap
weights are fixed. Adaptive equalization, particularly decision-directed adaptive
equalization, successfully cancels ISI when the initial probability of error due to
probability of error exceeds one percent, (rule of thumb). If the probability of
error exceeds one percent, the decision directed equalizer might not converge. A
common solution to this problem is to initialize the equalizer with an alternate
process, such as a preamble to provide good channel-error performance, and then
switch to the decision-directed mode. To avoid the overhead represented by a
preamble, many systems designed to operate in a continuous broadcast mode use
blind equalization algorithms to form initial channel estimates. These algorithms
adjust filter coefficients in response to sample statistics rather than in response to
sample decisions [11].

Automatic equalizers use iterative techniques to estimate the optimum coeffi-
cients. The simultaneous equations described in Equation (3.89) do not include the
affects of channel noise. To obtain a stable solution to the filter weights, it is neces-
sary that the data be averaged to obtain stable signal statistics, or the noisy solu-
tions obtained from the noisy data must be averaged. Considerations of algorithm
complexity and numerical stability most often lead to algorithms that average noisy
solutions. The most robust of this class of algorithm is the least-mean-square
(LMS) algorithm. Each iteration of this algorithm uses a noisy estimate of the error
gradient to adjust the weights in the direction to reduce the average mean-square
error. The noisy gradient is simply the product e(k) r, of an error scalar e(k) and
the data vector r,. The vector r, is the vector of noise-corrupted channel samples
residing in the equalizer filter at time k. Earlier, an impulse was transmitted and
the equalizing filter operated on a sequence of samples (a vector) that represented
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the impulse response of the channel. We displayed these received samples (in time-
shifted fashion) as the matrix x. Now, rather than dealing with the response to an
impulse, consider that data is sent and thus the vector of received samples r, at the
input to the filter (Figure 3.27) represents the data response of the channel. The
error is formed as the difference between the desired output signal and the filter
output signal and 1s given by

e(k) = z(k) — z(k) (3.93)

where z(k) is the desired output signal (a sample free of ISI) and z(k) is an
estimate of z(k) at time k out of the filter (into the quantlzer of Figure 3.27), which
is obtained as follows:

N

dk)=cr, = S x(k - n)c, (3.94)
n=—N

In Equation (3.94), the summation represents a convolution of the input data
samples with the {c,} tap weights, where ¢, refers to the nth tap weight at time k,
and ¢’ is the transpose of the weight vector at time k. We next show the iterative
process that updates the set of weights at each time & as

ek + 1) = e(k) + Ae(k)r, (3.95)

where e(k) is the vector of filter weights at time k, and A is a small term that limits
the coefficient step size and thus controls the rate of convergence of the algorithm
as well as the variance of the steady state solution. This simple relationship is a con-
sequence of the orthogonality principle that states that the error formed by an opti-
mal solution is orthogonal to the processed data. Since this is a recursive algorithm
(in the weights), care must be exercised to assure algorithm stability. Stability is as-
sured if the parameter A is smaller than the reciprocal of the energy of the data in
the filter. When stable, this algorithm converges in the mean to the optimal solu-
tion but exhibits a variance proportional to the parameter A. Thus, while we want
the convergence parameter A to be large for fast convergence but not so large as to
be unstable, we also want it to be small enough for low variance. The parameter A
is usually set to a fixed small amount [12] to obtain a low-variance steady-state tap-
weight solution. Schemes exist that permit A to change from large values during
initial acquisition to small values for stable steady-state solutions [13].

Note that Equations (3.93) through (3.95) are shown in the context of real sig-
nals. When the receiver is implemented in quadrature fashion, such that the signals
appear as real and imaginary (or inphase and quadrature) ordered pairs, then each
line in Figure 3.27 actually consists of two lines, and Equations (3.93) through
(3.95) need to be expressed with complex notation. (Such quadrature implementa-
tion is treated in greater detail in Sections 4.2.1 and 4.6.)
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3.4.5 Filter Update Rate

Equalizer filters are classified by the rate at which the input signal is sampled. A
transversal filter with taps spaced 7 seconds apart, where 7 is the symbol time, is
called a symbol-spaced equalizer. The process of sampling the equalizer output at a
rate 1/7 causes aliasing if the signal is not strictly bandlimited to 1/7 hertz—that is.
the signal’s spectral components spaced 1/T hertz apart are folded over and super-
imposed. The aliased version of the signal may exhibit spectral nulls [8]. A filter up-
date rate that is greater than the symbol rate helps to mitigate this difficulty.
Equalizers using this technique are called fractionally-spaced equalizers. With a
fractionally spaced equalizer, the filter taps are spaced at

P
P e (3.96)

seconds apart, where r denotes the excess bandwidth. In other words, the received
signal bandwidth is

Wi (3.97)

The goal is to choose T so that the equalizer transfer function H,(f) becomes suffi-
ciently broad to accommodate the whole signal spectrum. Note that the signal at
the output of the equalizer is still sampled at a rate 1/7, but since the tap weights
are spaced T’ seconds apart (the equalizer input signal is sampled at a rate 1/T"),
the equalization action operates on the received signal before its frequency compo-
nents are aliased. Equalizer simulations over voice-grade telephone lines, with 7" =
172, confirm that such fractionally-spaced equalizers outperform symbol-spaced
equalizers [14].

3.5 CONCLUSION

In this chapter, we described the detection of binary signals plus Gaussian noise in
terms of two basic steps. In the first step the received waveform is reduced to a sin-
gle number z(T'), and in the second step a decision is made as to which signal was
transmitted, on the basis of comparing z(7T) to a threshold. We discussed how to
best choose this threshold. We also showed that a linear filter known as a matched
filter or correlator is the optimum choice for maximizing the output signal-to-noise
ratio and thus minimizing the probability of error.

We defined intersymbol interference (ISI) and explained the importance of
Nyquist’s work in establishing a theoretical minimum bandwidth for symbol detec-
tion without ISI. We partitioned error-performance degradation into two main
types. The first 1s a simple loss in signal-to-noise ratio. The second, resulting from
distortion, is a bottoming-out of the error probability versus the E,/N, curve.
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Finally, we described equalization techniques that can be used to mitigate the
effects of ISL.
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PROBLEMS

3.1. Determine whether or not s,(f) and s,(r) are orthogonal over the interval (-1.57;
<t < 1.575), where 5,(¢) = cos (2mfit + dy), 55(t) = cos (2mwfit + ¢;), and f, = 1/T; for the
following cases.

(a) fi=fpand b=
(b) fi=53fand b = b,
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Wq(t) Wolt) y3(t)

Figure P3.2

(¢) fi=2f;and b, =,

(d) fi=7fand b, =,

(e) fi=fand ;= dy+ 7/2

(f) fi=fand b=+ 7

3.2. (a) Show that the three functions illustrated in Figure P3.1 are pairwise orthogonal

over the interval (-2, 2).

(b) Determine the value of the constant, A, that makes the set of functions in part
(a) an orthonormal set.

(¢) Express the following waveform, x(r), in terms of the orthonormal set of part (b).

{1 for0=t =2

lI_l —
x(f) ( otherwise

3.3. Consider the functions
Py(r) =exp(—It]) and =1—Aexp(-2]t])

Determine the constant, A, such that s, (¢) and (1) are orthogonal over the interval
(-, ).

3.4. Assume that in a binary digital communication system, the signal component out of
the correlator receiver is a,(7) = +1 or —1 V with equal probability. If the Gaussian
noise at the correlator output has unit variance, find the probability of a bit error.

3.5. A bipolar binary signal, st), is a +1- or —1-V pulse during the interval (0, T). Addi-
tive white Gaussian noise having two-sided power spectral density of 10~ W/Hz is
added to the signal. If the received signal is detected with a matched filter, determine
the maximum bit rate that can be sent with a bit error probability of P; <107,

3.6. Bipolar pulse signals, s(¢) (i=1, 2), of amplitude +1 V are received in the presence of
AWGN that has a variance of 0.1 V% Determine the optimum (minimum probability
of error) detection threshold, v, for matched filter detection if the a priori probabili-
ties are: (a) P(s;) = 0.5; (b) P(s;) = 0.7; (¢) P(s,) = 0.2. (d) Explain the effect of the
a priori probabilities on the value of v,. {Hint: Refer to Equations (B.10) to (B.12).}

3.7. A binary communication system transmits signals s,(t) (i = 1, 2). The receiver test
statistic z(7') = a; + n,, where the signal component g, is ¢ither @, = +1 or a, = -1 and
the noise component n, is uniformly distributed, yielding the conditional density
functions p(zls;) given by

3 for—0.2=z7=18
0 otherwise

and
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3.8.

3.9.

3.10.

311

3.12,

3.13,

3.14.

3.15.

164

( |?)_{—§ for —1.8 =z =0.2

PlEI2 ) otherwise

Find the probability of a bit error, Pj. for the case of equally likely signaling and the
use of an optimum decision threshold.

(a) What is the theoretical minimum system bandwidth needed for a 10-Mbits/s
signal using 16-level PAM without IS1?

(b) How large can the filter roll-off factor be if the allowable system bandwidth is
1.375 MHz?

A voice signal (300 to 3300 Hz) is digitized such that the quantization distortion
< #0.1% of the peak-to-peak signal voltage. Assume a sampling rate of 8000 sam-
ples/s and a multilevel PAM waveform with M = 32 levels. Find the theoretical mini-
mum system bandwidth that avoids ISI.

Binary data at 9600 bits/s are transmitted using 8-ary PAM modulation with a system
using a raised cosine roll-off filter characteristic. The system has a frequency re-
sponse oul to 2.4 kHz.

(a) What is the symbol rate?

(b) What is the roll-off factor of the filter characteristic?

A voice signal in the range 300 to 3300 Hz is sampled at 8000 samples/s. We may

transmit these samples directly as PAM pulses or we may first convert each sample

to a PCM format and use binary (PCM) waveforms for transmission.

(a) What is the minimum system bandwidth required for the detection of PAM with
no ISI and with a filter roll-off characteristic of r=17

(b) Using the same filter roll-off characteristic, what is the minimum bandwidth re-
quired for the detection of binary (PCM) waveforms if the samples are quantized
to eight levels?

(¢) Repeat part (b) using 128 quantization levels.

An analog signal is PCM formatted and transmitted using binary waveforms over a

channel that is bandlimited to 100 kHz. Assume that 32 quantization levels are used

and that the overall equivalent transfer function is of the raised cosine type with roll-

off r=0.6.

(a) Find the maximum bit rate that can be used by this system without introducing
ISL.

(b) Find the maximum bandwidth of the original analog signal that can be accommo-
dated with these parameters.

(¢) Repeat parts (a) and (b) for transmission with 8-ary PAM waveforms.

Assume that equally-likely RZ binary pulses are coherently detected over a Gaussian

channel with N, = 10~ Watt/Hz. Assume that synchronization is perfect, and that the

received pulses have an amplitude of 100 mV. If the bit-error probability specification

is P, =107, find the largest data rate that can be transmitted using this system.

Consider that NRZ binary pulses are transmitted along a cable that attenuates the
signal power by 3 dB (from transmitter to receiver). The pulses are coherently de-
tected at the receiver, and the data rate is 56 kbit/s. Assume Gaussian noise with
o= 10" Watt/Hz. What is the minimum amount of power needed at the transmitter
in order to maintain a bit-error probability of Pz =107?
Show that the Nyquist minimum bandwidth for a random binary sequence sent with
ideal-shaped bipolar pulses is the same as the noise equivalent bandwidth. Hint: the
power spectral density for a random bipolar sequence is given in Equation (1.38) and
the noise equivalent bandwidth is defined in Section 1.7.2.
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3.16. Consider the 4-ary PAM-modulated sequence of message symbols {+1 +1 —1 43 +1
+3}, where the members of the alphabet set are: {+1, £3]. The pulses have been
shaped with a root-raised cosine filter such that the support time of each filtered
pulse is 6-symbol times, and the transmitted sequence is the analog waveform shown
in Figure 2.47a. Note that the waveform appears “smeared™ due to the filter-induced
ISI. Show how a bank of N correlators can be implemented to perform matched-
filter demodulation of the received pulse sequence, r(r), where N corresponds to the
number of symbols in the pulse-support time. [ Hint: For the bank of correlators, use
reference signals of the form s, (1 — k7), where k=0, ....5 and T is the symbol time.]

3.17. A desired impulse response of a communication system is the ideal A(f) = 8(f), where
8(r) is the impulse function. Assume that the channel introduces ISI so that the over-
all impulse response becomes h(t) = 8(f) + ad(t — T'), where a < 1, and T is the symbol
time. Derive an expression for the impulse response of a zero-forcing filter that will
equalize the effects of ISI. Demonstrate that this filter suppresses the ISI. If the
resulting suppression is deemed inadequate. how can the filter design be modified to
increase the ISI suppression further?

3.18. The result of a single pulse (impulse) transmission is a received sequence of samples
(impulse response), with values 0.1, 0.3, 0.2, 1.0, 0.4, =0.1, 0.1, where the leftmost
sample 1s the earliest. The value 1.0 corresponds to the mainlobe of the pulse, and
the other entrics correspond to adjacent samples. Design a 3-tap transversal equal-
izer that forces the ISI to be zero at one sampling point on cach side of the mainlobe.
Calculate the values of the equalized output pulses at times k =0, £1,..., 3. After
equalization, what is the largest magnitude sample contributing to ISI, and what is
the sum of all the ISI magnitudes?

3.19. Repeat problem 3.18 for the case of a channel impulse response described by the fol-
lowing received samples: 0.01, 0.02, -0.03, 0.1, 1.0, 0.2, 0.1, 0.05, 0.02. Use a com-
puter to find the weights of a nine-tap transversal equalizer to meet the minimum
MSE criterion. Calculate the values of the equalized output pulses at times k = 0,
+1,. .., £8. After equalization, what is the largest magnitude sample contributing to
ISI, and what is the sum of all the ISI magnitudes?

3.20. In this chapter, it has been emphasized that signal-processing devices, such as
multipliers and integrators, typically deal with signals having units of velts. There-
fore, the transfer functions of such processors must accommodate these units. Draw
a block diagram of a product-integrator showing the signal units on each of
the wires, and the device transfer functions in each of the blocks (Hint: see Sec-
tion 3.2.5.1).

QUESTIONS

3.1. In the case of baseband signaling, the received waveforms are already in a pulse-like
form. Why then, is a demodulator needed to recover the pulse waveform? (See
Chapter 3, introduction.)

3.2. Why is E,/N, a natural figure-of-merit for digital communication systems? (See
Section 3.1.5.)

3.3. When representing timed events, what dilemma can easily result in confusing the
most-significant bit (MSB) and the least-significant bit (LSB)? (See Section 3.2.3.1.)
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3.4.

3.5,

3‘1- 6i

3.7.

3.8.

3.9.

3.10.

The term matched-filter is often used synonymously with correlator. How is that
possible when their mathematical operations are different? (See Section 3.23.1.)

Describe the two fair ways of comparing different curves that depict bit-error proba-
bility versus E,/N,. (See Section 3.2.5.3.)

Are there other pulse-shaping filter functions, besides the raised-cosine, that exhibit
zero ISI? (See Section 3.3.)

Describe a reasonable goal in endeavoring to compress bandwidth to the minimum
possible, without incurring ISI. (See Section 3.3.1.1.)

The error performance of digital signaling suffers primarily from two degradation
types: loss in signal-to-noise ratio, and distortion resulting in an irreducible bit-error
probability. How do they differ? (See Section 3.3.2.)

Often times, providing more E,/N, will not mitigate the degradation due to intersym-
bol interference (ISI). Explain why this is the case. (See Section 3.3.2.)

Describe the difference between equalizers that use a zero-forcing solution, and
those that use a minimum mean-square error solution? (See Section 3.4.3.1.)

EXERCISES

Using the Companion CD, run the exercises associated with Chapter 3.
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Figure 4.8 Binary correlator receiver. (a) Using a single correlator.
(b) Using two correlators.

n(T) is a Gaussian random process. Since the correlator is a linear device, the out-

put noise is also a Gaussian random process [2]. Thus, the output of the correlator,
sampled at ¢t =T, yields

2T) =a,(T) + ny(T) i=12

where ny(7T) is the noise component. To shorten the notation we sometimes ex-
press z(t) as a; + n,. The noise component n is a zero-mean Gaussian random vari-
able, and thus z(7T) is a Gaussian random variable with a mean of either a; or a,,
depending on whether a binary one or binary zero was sent.

4.3.2.1 Binary Decision Threshold

For the random variable z(T'), Figure 4.9 illustrates the two conditional prob-
ability density functions (pdfs), p(zls;) and p(zls,), with mean value of @; and a,,
respectively. These pdfs, also called the likelihood of s; and the likelihood of s,,
respectively, were presented in Section 3.1.2, and are rewritten as

pzls,) = UD:/E exp ’—% ("3 ;ﬂ”lﬂ (4.18a)
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where oj is the noise variance. In Figure 4.9 the rightmost likelihood p(zls,) illus-
trates the probability density of the detector output z(7'), given that s,(¢) was trans-
mitted. Similarly, the leftmost likelihood p(zls,) illustrates the probability density
of z(T'), given that s5,(f) was transmitted. The abscissa z(7") represents the full range
of possible sample output values from the correlation receiver shown in Figure 4.8.

With regard to optimizing the binary decision threshold for deciding in which
region a recelved signal is located, we found in Section 3.2.1 that the minimum
error criterion for equally likely binary signals corrupted by Gaussian noise can be
stated as

Boa, + a,
2(T) = = Yo (4.19)
o2

where a, is the signal component of z(7) when s(¢) is transmitted, and a, is the sig-
nal component of z(7') when s,(¢) is transmitted. The threshold level -y, represented
by (a; + a,)/2 is the optimum threshold for minimizing the probability of making an
incorrect decision given equally likely signals and symmetrical likelihoods. The de-
cision rule in Equation (4.19) states that hypothesis H; should be selected [equiva-
lent to deciding that signal s,(¢) was sent] if z(T) > vy,, and hypothesis H, should be
selected [equivalent to deciding that s,(f) was sent] if z(T') < v,. If z(T) = vy, the
decision can be an arbitrary one. For equal-energy, equally likely antipodal signals,
where 5,(f) = - 5,(¢) and a, = - a,, the optimum decision rule becomes
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H,
Z(n = = OI (42{)3)
H,
or
decide s (¢) if 2y(T) > zoT) (4.20b)

decide s,(¢) otherwise

4.4 COHERENT DETECTION
4.4.1 Coherent Detection of PSK
The detector shown in Figure 4.7 can be used for the coherent detection of any

digital waveforms. Such a correlating detector is often referred to as a maximum
likelihood detector. Consider the following binary PSK (BPSK) example: Let

2F
sq(t) = 4 .f?cos (wgt + ) 0=t =T (4.21a)
2F
so(t) = a,.l'?COS (wgt + b + 7)
[2E
= - ?CGS(MDI + ) 0=t =T (4.21b)

and
n(t) = zero-mean white Gaussian random process

where the phase term ¢ is an arbitrary constant, so that the analysis is unaffected
by setting ¢ = 0. The parameter E is the signal energy per symbol, and 7 is the
symbol duration. For this antipodal case, only a single basis function is needed. If
an orthonormal signal space is assumed in Equations (3.10) and (3.11) (i.e., K;=1),
we can express a basis function () as

7 .
Py (t) = \/;C{}S wy ! forO0=¢r=T (4.22)

Thus, we may express the transmitted signals s;(¢) in terms of Us,(f) and the coeffi-
cients a;(t) as follows:

si{t) = ann(z) (4.23a)
s1(t) = apdy(t) = VE (1) (4.23b)
$2(f) = anyy(t) = — VE (1) (4.23c)

Assume that s,(¢) was transmitted. Then the expected values of the product inte-
grators in Figure 4.7b, with reference signal s, (1), are found as
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T
Blals) = B{ | VEG© + 0w ar | (4242
Jy _
~ T
E{z,|s,} = E{ = VE i(t) + n(t)(1) df} (4.24b)
lll
T
E{z,|s,} = E{ [ %VECDSE wyl + n(r}\/% coS wy ! dr} = VE (4.25a)
<0

and

T
E{z,|s,} = E{ J— - %\/’Ecosz wyl + n(tj\/%cus wy ! dr} = —VE (4.25b)
)
where E{-} denotes the ensemble average, referred to as the expected value. Equa-
tion (4.25) follows because E{n(r)} = 0. The decision stage must decide which
signal was transmitted by determining its location within the signal space. For this
example, the choice of yy(t) = V2 /T cos wyt normalizes E{z,(T)} to be * VE.
The prototype signals {s;(r)} are the same as the reference signals {i5(1)} except for
the normalizing scale factor. The decision stage chooses the signal with the largest
value of z,(T). Thus, the received signal in this example is judged to be s(f). The
error performance for such coheréntly detected BPSK systems is treated in Section
4.7.1.

4.4.2 Sampled Matched Filter

In Section 3.2.2, we discussed the basic characteristic of the matched filter—
namely, that its impulse response is a delayed version of the mirror image (rotated
on the ¢ =0 axis) of the input signal waveform. Therefore, if the signal waveform is
s(t), its mirror image is s(— t), and the mirror image delayed by T seconds is s(7 — 1),
The impulse response A(r) of a filter matched to s(¢) is then described by

_fs(T—1) 0=t =T
hr) = {U elsewhere (4.26)

Figures 4.7 and 4.8 illustrate the basic function of a correlator to product-
integrate the received noisy signal with each of the candidate reference signals and
determine the best match. The schematics in these figures imply the use of analog
hardware (multipliers and integrators) and continuous signals. They do not reflect
the way that the correlator or matched filter (MF) can be implemented using digi-
tal techniques and sampled waveforms. Figure 4.10 shows how an MF can be im-
plemented using digital hardware. The input signal r(f) comprises a prototype
signal s;(¢), plus noise n(7), and the bandwidth of the signal is W = 1/2T, where T is
the symbol time. Thus, the minimum Nyquist sampling rate is f, = 2W = 1/T, and the
sampling time T, needs to be equal to or less than the symbol time. In other words,
there must be at least one sample per symbol. In real systems, such sampling is usu-
ally performed at a rate that exceeds the Nyquist minimum by a factor of 4 or
more. The only cost is processor speed, not transmission bandwidth. At the clock
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k = 0 sample is located in the rightmost stage of each register. In Equations (4.28)
and (4.29), notice that the time indexes n of the reference weights are in reverse
order compared with the time index k — n of the samples, which is a key aspect of
the convolution integral. The fact that the earliest time sample now corresponds
to the rightmost weight will ensure a meaningful correlation. Even though we de-
scribe the mathematical operation of an MF to be convolution of a signal with the
impulse response of the filter, the end result appears to be the correlation of a sig-
nal with a replica of that same signal. That is why it is valid to describe a correlator
as an implementation of a matched filter.

In Figure 4,10b, detection will follow the MF in the usual way. For the binary
decision, the z;(k) outputs are examined at each value of k = N — 1 corresponding
to the end of a symbol. Under the condition that s,(¢) had been transmitted and
noise is neglected, we combine Equations (4.27) through (4.29) to express the cor-
relator outputs at time k=N —-1=3 as

z1(k=3) = i 513 —n)cy(n) =12 (4.30a)
n=1_0
and
725(k=3) = i 513 —n)cyn) = -2 (4.30b)
n=0

Since z,(k = 3) is greater than z,(k = 3), the detector chooses s,(¢) as the transmitted
symbol.

One might ask, “What is the difference between the MF in Figure 4.10b and the
correlator in Figure 4.8?” In the case of the MF, a new output value is available in re-
sponse to each new input sample; thus the output will be a time series such as the MF
output seen in Figure 3.7b (a succession of increasing positive and negative correla-
tions to an input sine wave). Such an MF output sequence can be equated to several
correlators operating at different starting points of the input time series. Note that a
correlator only computes an output once per symbol time, such as the value of the
peak signal at time T in Figure 3.7b. If the timing of the MF and correlator are
aligned, then their outputs at the end of a symbol time are identical. An important
distinction between the MF and correlator is that since the correlator yields a single
output value per symbol, it must have side information, such as the start and stop
times over which the product integration should take place. If there are timing errors
in the correlator, then the sampled output fed to the detector may be badly degraded.
On the other hand, since the MF yields a time series of output values (reflecting time-
shifted input samples multiplied by fixed weights), then with the use of additional cir-
cuitry, the best time for sampling the MF output can be learned.

Example 4.1 Sampled Matched Filter
Consider the waveform set
5.(t) = At 0=t =kT
and

where k=0,1, 2, 3.
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Illustrate how a sampled matched filter as shown in Figure 4.10 can be used to detecta
received signal, say 5,(f), from this sawtooth waveform set in the absence of noise.

Solution

First, the waveform is sampled so that s5,() is transformed into the set of samples
[s,(k)). The sampled matched filter receiver will be shown with two branches, follow-
ing the implementation in Figure 4.10b. The top branch is made up of shift registers
and coefficients matched to the {s,(k)} sample points. The bottom branch is similarly
matched to the {s,(k)] sample points. The four equally spaced sample points (k =0, 1,
2, 3) for each of the {s;(k)} are as follows:

A A 3A

sitk=0)=0 51(k=1]21 5‘1("6:2}:5 51(k=3)=T
A ' A 3A
sk =0)=0  syk=1)= vy solk=2)= 5 s,k =3) = e

The c,(n) coefficients represent the delayed mirror-image rotation of the signal to
which the filter is matched. Therefore, ¢(n)=s(N—-1-n), wheren=0,..., N -1, and
we can write ¢;(0) = 5;(3), ¢;(1) =5;(2), ¢,(2) =5:(1), ¢;(3) = 5,(0).

Consider the top branch in Figure 4.10b. At the k =0 clock time, the first sample
s,(k = 0) = 0 enters the leftmost stage of each register. At the next clock time, the sec-
ond sample s,(k = 1) = A/4 enters the leftmost stage of each register; at this same time
the first sample has been shifted to the next right stage in each register, and so on. At
the k = 3 clock time the sample s,(k = 3) = 3A/4 enters the leftmost stage; by this time
the first sample has been shifted into the rightmost stage. The four signal samples are
now located in the registers in mirror-image arrangement compared with how they
would be plotted in time. Hence, the convolution operation is an appropriate expres-
sion for describing the alignment of the incoming waveform samples with the refer-
ence coefficients to maximize the correlation in the proper branch.

4.4.3 Coherent Detection of Multiple Phase-Shift Keying

Figure 4.11 illustrates the signal space for a multiple phase-shift keying (MPSK)
signal set; the figure describes a four-level (4-ary) PSK or quadriphase shift keying
(QPSK) example (M = 4). At the transmitter, binary digits are collected two at a
time, and for each symbol interval, the two sequential digits instruct the modulator
as to which of the four waveforms to produce. For typical coherent M-ary PSK
(MPSK) systems, s;(f) can be expressed as

5 omi\  0=(=T
(1) =\ cos (mﬂr - %) Ly (4.31)

where E is the received energy of such a waveform over each symbol duration T,
and w, is the carrier frequency. If an orthonormal signal space is assumed in Equa-
tions (3.10) and (3.11), we can choose a convenient set of axes, such as

() = \/% cos wy ! (4.32a)
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The form of the correlator shown in Figure 4.7a implies that there are always
M product correlators used for the demodulation of MPSK signals. The figure in-
fers that for each of the M branches, a reference signal with the appropriate phase
shift is configured. In practice, the implementation of an MPSK demodulator fol-
lows Figure 4.7b, requiring only N = 2 product integrators regardless of the size of
the signal set M. The savings in implementation is possible because any arbitrary
integrable waveform set can be expressed as a linear combination of orthogonal
waveforms, as shown in Section 3.1.3. Figure 4.12 illustrates such a demodulator.
The received signal r(t) can be expressed by combining Equations (4.32) and
(4.33) as

2E 0=t =T
Ht) = 4 .f?(cos b; cos wyt + sin &; sin wyt ) + n(t) -1 M (4.34)

where &, = 2mi/M, and n(t) is a zero-mean white Gaussian noise process. Notice
that in Figure 4.12, there are only two reference waveforms or basis functions, Us(t)
= \/2/T cos wyt for the upper correlator and U,(1) = V2/T sin wyt for the lower
correlator. The upper correlator computes

;
X= L r(t)(t) dt (4.35)

and the lower correlator computes

T
Y= f r(t)l() dt (4.36)

0
Figure 4.13 illustrates that the computation of the received phase angle b can be

accomplished by computing the arctan of Y/X, where X can be thought of as the in-
phase component of the received signal, Y is the quadrature component, and ¢ is a

’ T
— X-= jD r(E)un(t) dt
__é_, )

Y

. Y| ¢ |Compute Choose )
r(2) yolt) =’\/% sin wgt arctan}—{ —— - = §;(2)

lo; -0 smallest
f
%] .[
0

T
Y= jﬂ r()wyo(t) di

¥

Figure 4.12 Demodulator for MPSK signals.
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but instead the lag caused the received phasor to appear as exp [2mfy(t + T) —
/2], then the detecting correlator would yield a zero output. This is so because

T T
i .
J COs [!J[]I CcOs (ﬂ]nf - E) di‘ = ‘l- COs U]Gr sS1n l:ﬂ“t dE = U
(]

0

Find the user’'s minimum distance movement that wil! cause a /2 phase rotation.

Solution

(a) Initially, let ¢ = 0, so that when the mobile user is located at point A, the received
phasor at the base station can be expressed as r(t) = exp (j27mfyT,). Then, after the
user’s movement to point B, the received (further delayed) phasor ry(t =T, + T, ),
can be written as r (f) = exp [ j2nfy(T; + T;)]. The minimum delay time T, corre-
sponding to a 2w (one wavelength) phasor rotation is 7,/ = 1/fy = 107 second.
Therefore, the minimum distance for such a rotation (assuming ideal electromag-
netic propagation at the speed of light) is

c

d'=—=10"m/s X 10 °s =03 m
fo
(b) Thus, for a 7/2 phasor rotation, the minimum distance is
, d° 03m
d" = 7" 1 = 7.5 cm

It should be clear that even if a transmitter and receiver are located on fixed tow-
ers, a small amount of wind movement can bring about complete uncertainty re-
garding phase. If we scale our example from a frequency of 1 GHz to that of 10
GHz, the minimum distance scales from 7.5 ¢cm to 0.75 cm. Very often we might
want to avoid building receivers with PLLs for carrier recovery. The results of this
example might then motivate us to ask, How will the error performance suffer if
phase information is not used in the detection process? In other words, how will
the system fare if the detection is performed noncoherently? We address this
question in the sections that follow.

4.5 NONCOHERENT DETECTION
4.5.1 Detection of Differential PSK

The name differential PSK (DPSK) sometimes needs clarification because two
separate aspects of the modulation/demodulation format are being referred to: the
encoding procedure and the detection procedure. The term differential encoding
refers to the procedure of encoding the data differentially; that is, the presence
of a binary one or zero is manifested by the symbol’s similarity or difference when
compared with the preceding symbol. The term differentially coherent detection of
differentially encoded PSK, the usual meaning of DPSK, refers to a detection
scheme often classified as noncoherent because it does not require a reference in
phase with the received carrier. Occasionally, differentially encoded PSK is coher-
ently detected. This will be discussed in Section 4.7.2.
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DPSK is that the former compares the received signal with a clean reference; in the
latter, however, two noisy signals are compared with each other. We might say that
there is twice as much noise associated with DPSK signaling compared to PSK sig-
naling. Consequently, as a first guess, we might estimate that the error probability
for DPSK is approximately two times (3 dB) worse than PSK; this degradation
decreases rapidly with increasing signal-to-noise ratio. The trade-off for this perfor-
mance loss is reduced system complexity. The error performance for the detection
of DPSK is treated in Section 4.7.3.

4.5.2 Binary Differential PSK Example

The essence of differentially coherent detection in DPSK is that the identity of the
data is inferred from the changes in phase from symbol to symbol. Therefore, be-
cause the data are detected by differentially examining the waveform, the transmit-
ted waveform must first be encoded in a differential fashion. Figure 4.17a
illustrates a differential encoding of a binary message data stream m(k), where k is
the sample time index. The differential encoding starts (third row in the figure)
with the first bit of the code-bit sequence c(k = 0), chosen arbitrarily (here taken to
be a one). Then the sequence of encoded bits ¢(k) can, in general, be encoded in
one of two ways:

c(k) =clk — 1) ®m(k) (4.43)

or

clk) =clk — 1) ®m(k) (4.44)

where the symbol @ represents modulo-2 addition (defined in Section 2.9.3) and
the overbar denotes complement. In Figure 4.17a the differentially encoded mes-
sage was obtained by using Equation (4.44). In other words, the present code bit
c(k) is a one if the message bit m(k) and the prior coded bit c(k — 1) are the same,
otherwise, c(k) is a zero. The fourth row translates the coded bit sequence c(k) into
the phase shift sequence 0(k), where a one is characterized by a 180° phase shift,
and a zero is characterized by a 0° phase shift.

Figure 4.17b illustrates the binary DPSK detection scheme in block diagram
form. Notice that the basic product integrator of Figure 4.7 is the essence of the de-
modulator; as with coherent PSK, we are still attempting to correlate a received
signal with a reference. The interesting difference here is that the reference signal
is simply a delayed version of the received signal. In other words, during each
symbol time, we are matching a received symbol with the prior symbol and looking
for a correlation or an anticorrelation (180° out of phase).

Consider the received signal with phase shift sequence 8(k) entering the cor-
relator of Figure 4.17b, in the absence of noise. The phase 6(k = 1) is matched with
0(k = 0); they have the same value, 7; hence the first bit of the detected output is
#i(k = 1) = 1. Then 0(k = 2) is matched with 6(k = 1); again they have the same
value, and #1(k = 2) = 1. Then 8(k = 3) is matched with 6(k = 2); they are different,
so that m(k =3) =0, and so on.
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4.5.3 Noncoherent Detection of FSK

A detector for the noncoherent detection of FSK waveforms described by Equation
(4.8) can be implemented with correlators similar to those shown in Figure 4.7.
However, the hardware must be configured as an energy detector, without exploit-
ing phase measurements. For this reason, the noncoherent detector typically
requires twice as many channel branches as the coherent detector. Figure 4.18
illustrates the in-phase (I) and quadrature (Q) channels used to detect a binary
FSK (BFSK) signal set noncoherently. Notice that the upper two branches are con-
figured to detect the signal with frequency ;; the reference signals are \/2 /T cos
wit for the I branch and \/2/T sin w,t for the Q branch. Similarly, the lower two
branches are configured to detect the signal with frequency w,; the reference sig-
nals are \/2/T cos w,t for the I branch and \/2 /T sin w,f for the Q branch. Imag-
ine that the received signal r(r), by chance alone, is exactly of the form cos wf +
n(t); that is, the phase is exactly zero, and thus the signal component of the received
signal exactly matches the top-branch reference signal with regard to frequency
and phase. In that event, the product integrator of the top branch should yield the
maximum output. The second branch should yield a near-zero output (integrated
zero-mean noise), since its reference signal \/2 /7 sin wyf is orthogonal to the sig-

Iand
energy Test statistic
Correlation Squaring summation and decision
V2/T cos w1t
% I channel 22
_ jT 21(3'2 ()2 1
0
2, ,2
z{ +25

V2/T sin wqt
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l_—é - - -[ 22 Lt ( - ]2 2
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Figure 4.18 Quadrature receiver.
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naling, where a rectangular-shaped bandwidth corresponds to sinc (#7) shaped
pulses, as seen in Figure 3.16b. A given bandwidth gives rise to the minimum time
spacing between pulses that would be needed to achieve zero ISL

Example 4.3 Minimum Tone Spacing for Orthogonal FSK

202

Consider two waveforms cos (2mfit + ¢) and cos 2mfyt to be used for noncoherent
FSK-signaling, where f, > f>. The symbol rate is equal to 1/T symbols/s, where T 1s the
symbol duration and & is a constant arbitrary angle from 0 to 2.

(a) Prove that the minimum tone spacing for noncoherently detected orthogonal FSK-

signaling is 1/T.

(b) What is the minimum tone spacing for coherently detected orthogonal FSK

signaling?

Solution

(a) For the two waveforms to be orthogonal, they must fulfill the orthogonality

constraint of Equation (3.69):

.
j cos (2mfyt + &) cos 2mfat df = 0 (4.45)
0

Using the basic trigonometric identities shown in Equations (D.6) and (D.1) to
(D.3), we can write Equation (4.45) as

T
cos ¢ f cos 27fit cos 2mfyt dt (4.46)
0

-
— sin ¢ J- sin 2w f, ¢t cos 2w fot dt = 0
]
s0 that
.
cos ¢ f [cos 2w(f, + fo)t + cos2n(f, — f,)t] dt
0

T
—sind f [sin 2m(f, + fo)t + sin2w(f, — f,)e]dt =0 (4.47)
0

which, in turn, yields

sin 2m(fy + fo)t  sin 2u(fy — fo)r 7
mb(b[ 2n(fy + f2) " 2n(fy, — f2) ]n
 [eos2alfy + f)r | cos2m(fy — AT
raing | wht ) 2ah - f) L Y (349
or
[sin 2w(fy + )T sin2w(f; — f-,)T}
S Tomtf v £ 2mlfi - )
; cos 2mw(f; + )T —1  cos2w(fy — fo)T — 1
g | |=0 @
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Thus the minimum tone spacing for coherent FSK signaling occurs for n = 1 as
follows:

, _ 1 .
f] - fz - T {4-56)

Therefore, for the same symbol rate, coherently detected FSK can occupy less
bandwidth than noncoherently detected FSK and still retain orthogonal signaling.
We can say that coherent FSK is more bandwidth efficient. (The subject of band-
width efficiency is addressed in greater detail in Chapter 9.)

The required tone spacings are now closer than in part (a) because when we
align two periodic waveforms so that their starting phases are the same, we
achieve orthogonality by virtue of an even-versus-odd symmetry in the respective
waveforms over one symbol time. This is unlike the way orthogonality was
achieved in part (a), where we paid no attention to phase. In the coherent case
here, the phase alignment in the correlator stages means that we can bring the
tones closer together in frequency and still maintain orthogonality among the sct
of FSK tones. Prove it to yourself by plotting two sine waves (or cosine waves or
square waves). Start them off at the same phase (0 radians is convenient). Using
quadrille paper, choose a simple time scale to represent one symbol time 7. Then,
plot a tone at one cycle per 7. Below that, with the same starting phase, plot
another tone at one-and-a-half cycles per T. Perform product-summation over
period T, and verify that these waveforms (spaced 1/27 hertz apart) are indeed
orthogonal.

4.6 COMPLEX ENVELOPE

The description of real-world modulators and demodulators is facilitated by the
use of complex notation which began in Section 4.2.1 and continues here. Any real
bandpass waveform s(t) can be represented using complex notation as

s(t) = Re{g(t)e™'} (4.57)
where g(t) is known as the complex envelope, expressed as
g(r) = x(t) + jy(t) = lg(t)|e™) = R(t)e™" (4.58)
The magnitude of the complex envelope is then
R(r) = lg()] = V() + y(0) (4.59)
and its phase is
[
B(t) = tan ' & (4.60)

x(r)

With respect to Equation (4.57), we can call g(r) the baseband message or data in
complex form, and e/’ the carrier wave in complex form. The product of these two
represents modulation, and s(¢), the real part of this product, is the transmitted
waveform. Therefore, using Equations (4.4), (4.57), and (4.58), we can express s(1)
as follows:
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to simple amplitude modulation. Any phasor on the plane is transmitted by
amplitude-modulating its inphase and quadrature projections onto the cosine and
sine wave components of the carrier, respectively. For ease of notation, we neglect
the pulse shaping; that is, we assume that the data pulses have ideal rectangular
shapes. Then, using Equation (4.65), for time k = 2, where x;, = - 0.707 and
y, = —0.707, the transmitted s(r) can be written as follows:

s(t) = —0.707 cos wot + 0.707 sin wq !
= sin ( t— E)
: Wy 4

4.6.3 DS8PSK Demodulator Example

(4.66)

In the previous section, the quadrature implementation of a modulator began with
multiplying the complex envelope (baseband message) by e’ and transmitting the
real part of the product s(1), as described in Equation (4.63). Using a similar quad-
rature implementation, demodulation consists of reversing the process—that 1s,
multiplying the received bandpass waveform by ¢7' in order to recover the base-
band waveform. The left side of Figure 4.24 shows the modulator of Figure 4.23 in
simplified form, and the waveform s(r) = sin (wyt — 7/4) that was launched at time
k =2 for that example. We continue this same example in this section, and also show
a quadrature implementation of the demodulator on the right side of Figure 4.24.

Notice the subtle difference between the — sin wyf term at the modulator and
the — sin wyf term at the demodulator. At the modulator, the minus sign stems from
taking the real part of the complex waveform (product of the complex envelope
and complex carrier wave). At the demodulator, — sin t stems from multiplying
the bandpass waveform by the conjugate e’ of the modulator carrier wave; de-
modulation is coherent if phase is recovered. To simplify writing the basic relation-
ships of the process, the noise is neglected. After the inphase multiplication by
cos wyt in the demodulator, we get the signal at point A:

A = (—0.707 cos wyt + 0.707 sin 1) cos wy!

j ) 4.67
= —0.707 cos” wyt + 0.707 sin wyt COS wyl ( )
cos mpf cos mpl
Modulator Demodulator
I N T LPF —A
s(t) = — 0.707 cos mgt + 0.707 sin wot —
+ = sin (wot — /4) BoF
L I I
Q @T B
—sin gt —sin ot

Figure 4.24 Modulator/demodulator example.
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Py = — - 4,
' J-wm S exp ( > )du (4.78)

- (/215;,
“C\WN

This result for bandpass antipodal BPSK signaling is the same as the results that
were developed earlier in Equation (3.70) for the matched-filter detection of an-
tipodal signaling in general, and in Equation (3.76) for the matched-filter detection
of baseband antipodal signaling in particular. This is an example of an equivalence
theorem, described earlier. For linear systems the equivalence theorem establishes
that the mathematics of detection is unaffected by a shift in frequency. Hence in
this chapter, the use of matched filters or correlators in the detection of bandpass
signals yields the same relationships as those developed for comparable signals at
baseband.

) (4.79)

Example 4.4 Bit Error Probability for BPSK Signaling

Find the bit error probability for a BPSK system with a bit rate of 1 Mbit/s. The
received waveforms s,(f) = A cos wyt and s,(f) = —A cos wyt, are coherently detected
with a matched filter. The value of A is 10 mV. Assume that the single-sided noise
power spectral density is N, = 107"! W/Hz and that signal power and energy per bit are
normalized relative to a 1-() load.

Solution
[2E, 1
=,/— =102V T=—=10"°%;

A 7 0 R 0 "s
Thus,

A2 " 2E,

L = hod - —— 3‘
E, 5 T=5x10"1 and N, 16

Also,

Py = Q(f—;‘?) - 0(316)

Using Table B.1 or Equation (3.44), we obtain
PB = 8 > 1[}_4

4.7.2 Probability of Bit Error for Coherently Detected,
Differentially Encoded Binary PSK

Channel waveforms sometimes experience inversion; for example, when using a co-
herent reference generated by a phase-locked loop, one may have phase ambiguity.
If the carrier phase were reversed in a DPSK modulation application, what would
be the effect on the message? The only effect would be an error in the bit during
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4.7.3 Probability of Bit Error for Coherently Detected
Binary Orthogonal FSK

Equations (4.78) and (4.79) describe the probability of bit error for coherent an-
tipodal signals. A more general treatment for binary coherent signals (not limited
to antipodal signals) yields the following equation for Py [6]:

1 * u’
Py = f exp (—-—-) du (4.81)
V2w VIT=pIE N, =

From Equation (3.64b), p = cos 6 is the time cross-correlation coefficient between
signal s,(¢) and s,(¢r), where 6 is the angle between signal vectors s; and s, (see
Figure 4.6). For antipodal signals such as BPSK, 6 = w, thus p=— 1.

For orthogonal signals such as binary FSK (BFSK), 8 = w/2, since the s; and s,
vectors are perpendicular to each other; thus p =0, as can be verified with Equation
(3.64a), and Equation (4.81) can then be written as

Py = v”‘f exp( z)du—Q(\/%) (4.82)

where the co-error function Q(x) 1s described in greater detail in Sections 3.2 and
B.3.2. The result in Equation (4.82) for the coherent detection of orthogonal BFSK
plotted in Figure 4.25 i1s the same as the results that were developed earlier in
Equation (3.71) for the matched-filter detection of orthogonal signaling, in general,
and in Equation (3.73) for the matched-filter detection of baseband orthogonal sig-
naling (unipolar pulses), in particular. The details of on-off keying (OOK) are not
treated in this book. However, it is worth noting that on-off keying is an orthogonal
signaling set (unipolar pulse signaling is the baseband equivalent of OOK). Thus
the relationship in Equation (4.82) applies to the matched-filter detection of OOK,
as it does to any coherent detection of orthogonal signaling.

The relationship in Equation (4.82) can also be confirmed by noting that the
energy difference between the orthogonal signal vectors s; and s,, with amplitudes
of \/E,, as shown in Figure 3.10b, can be computed as the square of the distance
between the heads of the orthogonal vectors, which will be E, = 2E,. Using this re-
sult in Equation (3.63) also yields Equation (4.82). If we compare Equation (4.82)
with Equation (4.79), we can see that 3-dB more E;/N;is required for BFSK to
provide the same performance as BPSK. It should not be surprising that the perfor-
mance of BFSK signaling is 3-dB worse than BPSK signaling, since for a given
signal power, the distance-squared between orthogonal vectors is a factor of two
less than the distance squared between antipodal vectors.

4.7.4 Probability of Bit Error for Noncoherently Detected
Binary Orthogonal FSK

Consider the equally likely binary orthogonal FSK signal set {s,(r)}, defined in
Equation (4.8) as follows:
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[2E
si{t) = ?cos[m,-r. + &) O0=¢=T7, i=12

The phase term ¢ is unknown and assumed constant. The detector is characterized
by M = 2 channels of bandpass filters and envelope detectors, as shown in Figure
4.19. The input to the detector consists of the received signal r(t) = s,(f) + n(1),
where n(t) is a white Gaussian noise process with two-sided power spectral density
Ny/2. Assume that s,(¢) and s,(¢) are separated in frequency sufficiently that they
have negligible overlap. For s,(¢) and s,(f) being equally likely, we start the bit-
error probability Pz computation with Equation (3.38) as we did for baseband
signaling:

Py =3 P(Hls,) + 3 P(H,|s,)

1 (° I
=5 | pllsgdz+5 | plzls)dz
— oo {}

For the binary case, the test statistic z(T) is defined by z,(T) — z(T). Assume
that the bandwidth of the filter W, is 1/7, so that the envelope of the FSK signal
is (approximately) preserved at the filter output. If there was no noise at the
receiver, the value of z(T) = V/2E/T when s,(¢) is sent, and z(T) = — V2E/T
when s,(¢) is sent. Because of this symmetry, the optimum threshold is vy, = 0.
The pdf p(z|s,) is similar to p(z|s,); that is,

(4.83)

p(zlsy) = p(—zlsy) (4.84)
Therefore, we can write
Py = J- p(zls,) dz (4.85)
0
or
Py = P(z; > z5ls,) (4.86)

where z, and z, denote the outputs z,(7) and z,(7T) from the envelope detectors
shown in Figure 4.19. For the case in which the tone s,(f) = cos w,f is sent, such that
r(t) = 5,(t) + n(t), the output z,(7) is a Gaussian noise random variable only; it has
no signal component. A Gaussian distribution into the nonlinear envelope detector
yields a Rayleigh distribution at the output [6], so that

2
ﬂ+e::!{p (—ﬂ) ;=0

p(zilsy) = § o% 207 (4.87)
0 z; <0

where o is the noise at the filter output. On the other hand, z,(7") has a Rician dis-
tribution, since the input to the lower envelope detector is a sinusoid plus noise [6].
The pdf p(z,s,) is written as
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- | 0P - f () dt =0
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Therefore, pairs of DPSK signals can be represented as orthogonal signals 27T sec-
onds long. Detection could correspond to noncoherent envelope detection with
four channels matched to each of the possible envelope outputs, as shown in Figure
4.26a. Since the two envelope detectors representing each symbol are negatives of
each other, the envelope sample of each will be the same. Hence we can implement
the detector as a single channel for s,(¢) matched to either (x;, x;) or (x, , x,), and a
single channel for s,(f) matched to either (x, , x,) or {x, , x;), as shown in Figure
4.26b. The DPSK detector is therefore reduced to a standard two-channel nonco-
herent detector. In reality, the filter can be matched to the difference signal so that
only one channel is necessary. In Figure 4.26, the filters are matched to the signal
envelopes (over two symbol times). What does this mean in light of the fact that

Filters
matched to signal
envelopes

=1 X1, X

Y

X2, X2

Decision L
rit) —e—e stage - 5 (1)

Y

X1, X2

—1X2, X

(a)

Filters
matched to signal
envelopes

—_— T, U] ——

Figure 426 DPSK detection. (a)
Four-channel differentially coherent
detection of binary DPSK. (b) Equiv-
alent two-channel detector for bi-
nary DPSK.

rit) —e—se
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4.8.5 Vectorial View of MFSK Signaling

In Section 4.8.3, Figure 4.30 provides some insight as to why the error performance
of MPSK signaling degrades as k (or M) increases. It would be useful to have a sim-
ilar vectorial illustration for the error performance of orthogonal MFSK signaling
as seen in the curves of Figure (4.28). Since the MFSK signal space is characterized
by M mutually perpendicular axes, we can only conveniently illustrate the cases
M =72 and M = 3. In Figure 4.32a we see the binary orthogonal vectors s, and s, po-
sitioned 90° apart. The decision boundary is drawn so as to partition the signal
space into two regions. On the figure is also shown a noise vector n, which repre-
sents the minimum noise vector that would cause the detector to make an error.

In Figure 4.32b we see a 3-ary signal space with axes positioned 90° apart.
Here decision planes partition the signal space into three regions. Noise vectors n
are shown added to each of the prototype signal vectors s, s,, and s;; each noise
vector illustrates an example of the minimum noise vector that would cause the de-
tector to make a symbol error, The minimum noise vectors in Figure 4.32b are the
same length as the noise vector in Figure 4.32a. In Section 4.4.4 we stated that for a
given level of received energy, the distance between any two prototype signal vec-
tors s; and s, in an M-ary orthogonal space is constant. It follows that the minimum
distance between a prototype signal vector and any of the decision boundaries re-
mains fixed as M increases. Unlike the case of MPSK signaling, where adding new
signals to the signal set makes the signals vulnerable to smaller noise vectors, here,
in the case of MFSK signaling, adding new signals to the signal set does nor make
the signals vulnerable to smaller noise vectors.

[t would be convenient to illustrate the point by drawing higher dimensional
orthogonal spaces, but of course this is not possible. We can only use our “mind’s
eye” to understand that increasing the signal set M—by adding additional axes,
where each new axis is mutually perpendicular to all the others—does not crowd

Decision
line
324 ' ~
ra
///
/'/f
/f
.
f_//
!-/-’ n
.-"f'/
- 51

Figure 4.32 MFSK signal sets for M= 2, 3.
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Figure 4.34 Mapping Pe versus SNR into Pg versus E,/N, for orthogo-
nal signaling. (a) Unnormalized. (b) Normalized.

E, S 71
22 (2 4.104
N, N(k) (4.104)

Figure 4.34 illustrates the mapping from Py versus SNR to P versus E, /N, for co-
herently detected M-ary orthogonal signaling, with “ballpark” numbers on the
axes. In Figure 4.34a, on the k = 1 curve is shown an operating point corresponding
to P =107 and SNR = 10 dB. On the k = 10 curve is shown an operating point at
the same P = 10~ but with SNR = 13 dB (approximate values taken from Figure
4.33). Here we clearly see the degradation in error performance as k increases. To
appreciate where the performance improvement comes from, let us convert the ab-
scissa from the nonlinear scale of SNR in decibels to a linear one—SNR expressed
as a factor. This is shown in Figure 4.34a as the factors 10 and 20 for the k =1 and
k = 10 cases, respectively. Next, we further convert the abscissa scale to SNR per
bit (expressed-as a factor). This is shown in Figure 4.34a as the factors 10 and 2 for
the k = 1 and k = 10 cases, respectively. It is convenient to think of the 1024-ary
symbol or waveform (k = 10 case) as being interchangeable with its 10-bit meaning.
Thus, if the symbol requires 20 units of SNR then the 10 bits belonging to that sym-
bol require that same 20 units; or, in other words, each bit requires 2 units.

Rather than performing such computations, we can simply map these same
k =1 and k = 10 cases onto the Figure 4.34b plane, representing P versus E,/N.
The k =1 case looks exactly the same as it does in Figure 4.34a. But for the k& =10
case, there is a dramatic change. We can immediately see that signaling with the k =
10-bit symbol requires only 2 units (3 dB) of E, /N, compared with 10 units (10 dB)
for the binary symbol. The mapping that gives rise to the required E,/N; for the k =
10 case is obtained from Equation (4.104) as follows: E,/N, = 20 (1/10) = 2 (or
3-dB), which shows the error performance improvement as k is increased. In digital
communication systems, error performance is almost always considered in terms of
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E, /Ny, since such a measurement makes for a meaningful comparison between one
system’s performance and another. Therefore, the curves shown in Figures 4.33
and 4.34a are hardly ever seen.

Although Figure 4.33 is not often seen, we can still use it for gaining insight
into why orthogonal signaling provides improved error performance as M or k in-
creases. Let us consider the analogy of purchasing a commodity—say, grade A cot-
tage cheese. The choice of the grade corresponds to some point on the Py axis of
Figure 4.33—say, 10~ From this point, construct a horizontal line through all of
the curves (from M = 2 through M = 1024). At the grocery store we buy the very
smallest container of cottage cheese, containing 2 ounces and costing $1. On Figure
4.33 we can say that this purchase corresponds to our horizontal construct inter-
cepting the M =2 curve. We look down at the corresponding SNR and call the in-
tercept on this axis our cost of $1. The next time we purchase cottage cheese, we
remember that the first purchase seemed expensive at 50 cents an ounce. So, we
decide to buy a larger carton, containing 8 ounces and costing $2. On Figure 4.33,
we can say that this purchase corresponds to the point at which our horizontal con-
struct intercepts the M = 8 curve. We look down at the corresponding SNR, and
call this intercept our cost of $2. Notice that we bought a larger container so the
price went up, but because we bought a greater quantity, the price per ounce went
down (the unit cost is now only 25 cents per ounce). We can continue this analogy
by purchasing larger and larger containers so that the price of the container (SNR)
keeps going up, but the price per ounce keeps going down. This is the age-old story
called the economy of scale. Buying larger quantities at a time is commensurate
with purchasing at the wholesale level; it makes for a lower unit price. Similarly,
when we use orthogonal signaling with symbols that contain more bits, we need
more power (more SNR), but the requirement per bit (E,/N,) is reduced.

4.9 SYMBOL ERROR PERFORMANCE
FOR M-ARY SYSTEMS (M > 2)

4.9.1 Probability of Symbo] Error for MPSK

For large energy-to-noise ratios, the symbol error performance P(M), for equally
likely, coherently detected M-ary PSK signaling, can be expressed [7] as

PAM) =2 ( 2E, “) (4.105)
(M) Q N, smM )

where P(M) is the probability of symbol error, E, = E,(log, M) is the energy per
symbol, and M = 2" is the size of the symbol set. The P.(M) performance curves for
coherently detected MPSK signaling are plotted versus E, /N, in Figure 4.35.

The symbol error performance for differentially coherent detection of M-ary
DPSK (for large E,/N,) is similarly expressed [7] as
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versus Pg.

tom one listed, comprising bits 1 1 1, two of the three transmitted symbol bits will
be correct; only one bit will be in error. It should be apparent that for nonbinary
signaling, Py will always be less than P (keep in mind that Py and P reflect the
frequency of making errors on the average.)

Consider any of the bit-position columns in Figure 4.38. For each bit position,
the digit occupancy consists of 50% ones and 50% zeros. In the context of the first
bit position (rightmost column) and the transmitted symbol, how many ways are
there to cause an error to the binary one? There are 2! = 4 ways (four places
where zeros appear in the column) that a bit error can be made; it is the same for
each of the columns. The final relationship Pg/Ps, for orthogonal signaling, in
Equation (4.112), is obtained by forming the following ratio: the number of ways
that a bit error can be made (2 ') divided by the number of ways that a symbol
error can be made (2% - 1). For the Figure 4.38 example, Pg/P,=4/7.

4.9.4 Bit Error Probability Versus Symbol Error Probability
for Multiple Phase Signaling

For the case of MPSK signaling, Py is less than or equal to Pp, just as in the case of
MFSK signaling. However, there is an important difference. For orthogonal signal-
ing, selecting any one of the (M — 1) erroneous symbols is equally likely. In the case
of MPSK signaling, each signal vector is not equidistant from all of the others. Fig-
ure 4.39a illustrates an 8-ary decision space with the pie-shaped decision regions
denoted by the 8-ary symbols in binary notation. If symbol (0 1 1) is transmitted, it
is clear that should an error occur, the transmitted signal will most likely be mis-
taken for one of its closest neighbors, (0 1 0) or (1 0 0). The likelihood that (01 1)
would get mistaken for (1 1 1) is relatively remote. If the assignment of bits to sym-
bols follows the binary sequence shown in the symbol decision regions of Figure
4.39a, some symbol errors will usually result in two or more bit errors, even with a
large signal-to-noise ratio.

For nonorthogonal schemes, such as MPSK signaling, one often uses a
binary-to-M-ary code such that binary sequences corresponding to adjacent sym-
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4.20.

there is also a constant phase-estimation error ¢. Assume cqually-likely signaling

and perfect frequency synchronization.

(a) Find the general expression for bit-error probability P, as a function of p and &.

(b) If received E,/N,=9.6dB, p =0.2, and ¢ = 25°, compute the value of degraded
Py, due to the combined effects of timing and phase bias.

(¢) If one did not compensate for the biases in this example, how much additional
E, /Ny in dB must be provided in order to restore the P, that exists when p =0
and ¢ =0°7?

Correlating to a known Barker sequence i1s an often used synchronization technique,

since the Barker sequence yields a prominent correlation peak when properly syn-

chronized, and a small correlation output when not synchronized. Using the short

Barker sequence 1 0 11 1, where the leftmost bit is the earliest bit, devise a discrete

matched filter similar to the one in Figure 4.10 that is matched to this sequence. Ver-

ify its usefulness for synchronization by plotting the output versus input as a function
of time, when the inputis the 1 01 1 1 sequence.

QUESTIONS

4.1.

At what location in the system is E, /N, defined? (Sce Section 4.3.2.)

4.2. Amplitude- or phase-shift keying is visualized as a constellation of points or phasors

4.3.

4.4.

4.5.

4.6.

41-?1

4.8.

4.9.

on a plane. Why can’t we use a similarly simple visualization for orthogonal signaling
such as FSK? (See Section 4.4.4.)

In the case of MFSK signaling, what is the minimum tone spacing that insures signal
orthogonality? (See Section 4.5.4.)

What benefits are there in using complex notation for representing sinusoids? (See
Sections 4.2.1 and 4.6.)

Digital modulation schemes fall into one of the two classes with oppositc behavior
characteristics: orthogonal signaling, and phase/amplitude signaling. Describe the
behavior of each class. (See Sections 4.8.2.)

Why do binary phase shift keying (BPSK) and quaternary phase shift keying
(QPSK) manifest the same bit-error-probability relationship? (See Section 4.8.4.)

In the case of multiple-phase shift keying (MPSK), why does bandwidth efficiency
improve with higher dimensional signaling? (See Sections 4.8.2 and 4.8.3.)

In the case of orthogonal signaling such as MFSK, why does error-performance
improve with higher dimensional signaling? (See Section 4.8.5.)

The use of a Gray code for assigning bits to symbols, represents one of the few cases
in digital communications where a benefit can be achieved free-of-charge. Explain
why there is no cost. (See Section 4.9.4.)

EXERCISES

Using the Companion CD, run the exercises associated with Chapter 4.
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electromagnetic energy in a desired direction. The larger the antenna
aperture (area), the larger is the resulting signal power density in the desired
direction. An antenna’s efficiency is described by the ratio of its effective
aperture to its physical aperture. Mechanisms contributing to a reduction in
efficiency (/oss in signal strength) are known as amplitude tapering, aperture
blockage, scattering, re-radiation, spillover, edge diffraction, and dissipative
loss [3]. Typical efficiencies due to the combined effects of these mechanisms
range between 50 and 80%.

Radome loss and noise. A radome is a protective cover, used with some
antennas, for shielding against weather effects. The radome, being in the
path of the signal, will scatter and absorb some of the signal energy,-thus
resulting in a signal /oss. A basic law of physics holds that a body capable of
absorbing energy also radiates energy (at temperatures above 0 K). Some of
this energy falls in the bandwidth of the receiver and constitutes injected
noise.

Pointing loss. There is a loss of signal when either the transmitting antenna or
the receiving antenna is imperfectly pointed.

Polarization loss. The polarization of an electromagnetic (EM) field is
defined as the direction in space along which the field lines point, and the
polarization of an antenna is described by the polarization of its radiated
field. There is a loss of signal due to any polarization mismatch between the
transmitting and receiving antennas.

Atmospheric loss and noise. The atmosphere is responsible for signal loss and
is also a contributor of unwanted noise. The bulk of the atmosphere extends
to an altitude of approximately 20 km; yet within that relatively short path,
important loss and noise mechanisms are at work. Figure 5.2 is a plot of the
theoretical one-way attenuation from a specified height to the top of the at-
mosphere. The calculations were made for several heights (0 km is sea level)
and for a water vapor content of 7.5 g/m” at the earth’s surface. The magni-
tude of signal /oss due to oxygen (O,) and water vapor absorption is plotted
as a function of carrier frequency. Local maxima of attenuation occur in the
vicinities of 22 GHz (water vapor), and 60 and 120 GHz (0,). The atmos-
phere also contributes noise energy into the link. As in the case of the
radome, molecules that absorb energy also radiate energy. The oxygen and
water vapor molecules radiate noise throughout the RF spectrum. The por-
tion of this noise that falls within the bandwidth of a given communication
system will degrade its SNR. A primary atmospheric cause of signal loss and
contributor of noise is rainfall. The more intense the rainfall, the more signal
energy it will absorb. Also, on a day when rain passes through the antenna
beam, there is a larger amount of atmospheric noise radiated into the system
receiver than there is on a clear day. More will be said about atmospheric
noise in later sections.

Space loss. There is a decrease in the electric field strength, and thus in signal
strength (power density or flux density), as a function of distance. For a
satellite communications link, the space loss is the largest single loss in the
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that are not necessarily thermal in origin (e.g., galactic, atmospheric, mterfering
signals) that can be introduced into the receiving antenna. The effective noise
temperature of such a noise source is defined as the temperature of a hypothetical
thermal noise source that would give rise to an equivalent amount of interfering
power. The subject of noise temperature is treated in greater detail in Section 5.5.

Example 5.3 Maximum Available Noise Power

Using a noise generator with mean-square voltage equal to 4k T°W®R, demonstrate
that the maximum amount of noise power that can be coupled from this source into an
amplifier is N, =k T°W.

Solution

A theorem from network theory states that maximum power is delivered to a load
when the value of the load impedance is made equal to the complex conjugate of the
generator impedance [7]. In this case the generator impedance is a pure resistance, :
therefore, the condition for maximum power transfer is fulfilled when the input resis-
tance of the amplifier equals 2. Figure 5.8 illustrates such a network. The input ther-
mal noise source is represented by an electrically equivalent model consisting of a
noiseless source resistor in series with an ideal voltage generator whose rms noise volt-
age 1s V4x T°W%. The input resistance of the amplifier is made equal to 2. The noise
voltage delivered to the amplifier input is just one-half the generator voltage. follow-
ing basic circuit principles. The noise power delivered to the amplifier input can ac-
cordingly be expressed as

(VAT WR/2)* 4T W

*' R 4
= kT"W
A
™~
‘R g | ™
(ideal) N
I s
| QR N‘x\h
ei | F (ideal) -7
S o
& = VAXT WX D
I -
Figure 5.8 Electrical model of max- L
imum available thermal noise power !

at amplifier input.

5.4 LINK BUDGET ANALYSIS

In evaluating system performance, the quantity of greatest interest is the signal-to-
noise ratio (SNR) or E,/N,, since a major concern is the ability to detect signals in
the presence of noise with an acceptable error probability. Since in the case of
satellite communication systems, the most usual signal structure is a modulated car-
rier with constant envelope, we can use average carrier power-to-noise power (C/N)
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TABLE 5.2 Earth Terminal to Satellite Link Budget Example: Frequency = 8 GHz, Range = 21,915
Nautical Miles.

1. Transmitter power (dBW) (100.00W) 20.0 P,
2. Transmitter circuit loss (dB) (2.0} L,
3. Tramsmitter antenna gain (peak dBi) 51.6 G,
Dish diameter (ft) 20.00 .
Half-power beamwidth (degrees) 0.45
4. Terminal EIRP (dBW) 69.6 EIRP
5. Path loss (dB) (107 elev.) (202.7} L,
6. Fade allowance (dB) (4.0% L,
7. Other losses (dB) (6.0) L,
8 Received isotropic power (dBW) -143.1
9. Receiver antenna gain (peak dBi) 35.1 G,
Dish diameter (ft) 3.00
Half-power beamwidth (degrees) 2.99
10. Edge-of-coverage loss (dB) (2.0} L,
11. Received signal power (dBW) -110.0 P,
Receiver noise figure at antenna port (dB) 11.5
Receiver temperature (dB-K) 358 (3806 K)
Receiver antenna temperature (dB-K) 248 (300 K)
12.  System temperature (dB-K) 36.1 (4106 K)
13.  System G/T° (dB/K) -1.0 G/
14. Boltzmann’s constant (dBW/K-Hz) =228.60
15. Noise spectral density (dBW/Hz) {-192.5) Ny=kT
16. Received P, /N, (dB-Hz) 82.5 (P,/Ny),
17. Data rate (dB-bit/s) (2 Mbits/s) (63.0) R
18. Received E/N, (dB) 19.5 (EyINg),
19. Implementation loss (dB) (1.5) L,
20. Required E,/N,, (dB) (10.0% (Ep/No)requ
2. Margin (dB) (80 M
Receiver
L, Lo G/T®
. _L/ EIRP
Figure 5.23 Key parameters of a Transmitter
link analysis.
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TABLE 5.3 Link Budget Example For a Nonregenerative Satellite Repeater with 10 Users: Uplink
Freguency = 375 MHz, Downlink Frequency = 275 MHz, Range = 22,000 Nautical Miles

Uplink Downlink
Transmitter power (ABW) 27.0 (500.0 W) 13.0 (20.0 W)
Transmitler circuit losses (dB) 1.0 1.0
Transmilter antenna gain (peak-dBi) 19.0 19.8
Dish diameter (ft) 10.00 15.00
Half-power beamwidth (degrees) 19.16 17.42
EIRP (dBW) 45.0 318 (15147 W)
Path loss (dB) 176.1 173.4
Transmitted signal power (dBW) 217 (1485w)| B
Transmitted other signal power (dBW) 313 (1336.1 W)
Transmitted U/L noise power (dBW) 14.8 (30.1 W)
Other losses (dB) 2.0 2.0
Received isotropic signal power (dBW) —133.1 -153.7
Received isotropic U/L noise power (dBW) ~-160.6
Receiver antenna gain (peak dBi) 22.5 16.3
Dish diameter (ft) 15.00 10.00
Half-power beamwidth (degrees) 12.77 26.13
Received signal power (dBW) -110.6 -1374
Received U/L noise power (dBW) —144.3
Receiver antenna temperature (dB-K) 246 (290 K) 20,0 (100 K)
Recerver noise figure at antenna port (dB) 10.8 2.0
Receiver temperature (dB-K) 35.1 (3197 K) 223 (170 K)
System temperature (dB-K) 354 (3487 K) 243 (2ZT0K)
System G/T° (dB/K) -12.9 —8.0
Boltzmann’s constant (dBW/K-Hz) —228.6 —228.6
Noise spectral density (dBW/Hz) -193.2 -204.3
System bandwidth (dB-Hz) 75.6  (36.0 MHz) 75.6  (36.0 MHz)
Noise power (dBW) -117.6 -128.7
U/L noise + D/L noise power (dBW) -128.6
Simultaneous accesses 10
Received other signal power (dBW) -101.1
Other signals + noise (dBW) -101.0
P./(Pp+ N,W) (dB) -10.1  (0.098) A
P./N (dB) 7.0 8.7
Overall P,/N (dB) —8.8
P.IN, (dB-Hz) 82.6 66.9
Overall P,/N, (dB-Hz) 66.8
Data rate (dB-bil/s) 50.0 (100,000 bits/s)
Available £, /N, (dB) 16.8

Required E, /N, (dB)

Margin (dB)

10.0

53]
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5.7.2 Nonlinear Repeater Amplifiers

Power is severely limited in most satellite communication systems, and the meffi-
ciencies associated with linear power amplification stages are expensive to bear.
For this reason, many satellite repeaters employ nonlinear power amplifiers. Effi-
cient power amplification is obtained at the cost of signal distortion due to nonlin-
ear operation. The major undesirable effects of the repeater nonlinearities are:

1. Intermodulation (IM) noise due to the interaction of different carriers. The
harm is twofold; useful power can be lost from the channel as IM energy
(typically 1 to 2 dB), and spurious IM products can be introduced into the
channel as interference. The latter problem can be quite serious.

2. AM-to-AM conversion is a phenomenon common to nonlinear devices such
as traveling wave tubes (TWT). At the device input, any signal-envelope fluc-
tuations (amplitude modulation) undergo a nonlinear transformation and
thus result in amplitude distortion at the device output. Hence, a TW'T oper-
ating in its nonlinear region would not be the optimum power-amplifier
choice for an amplitude-based modulation scheme (such as QAM).

3. AM-to-PM conversion is another phenomenon common to nonlinear devices.
Fluctuations in the signal envelope produce phase variations that can affect
the error performance for any phase-based modulation scheme (such as PSK
or DPSK).

4. Tn hard limiters, weak signals can be suppressed, relative to stronger signals,
by as much as 6 dB [2]. In saturated TWTs, the suppression of weak signals is
due not only to limiting, but also to the fact that the signal coupling mecha-
nism of the tube is optimized in favor of the stronger signals. The effect can
cause weak signals to be suppressed by as much as 18 dB [17].

Conventional nonregenerative repeaters are generally operated backed-off
from their highly nonlincar saturated region; this is done to avoid appreciable IM
noise and thus to allow efficient utilization of the system’s entire bandwidth. How-
ever, backing off to the linear region is a compromise; some level of IM noise must
be accepted to achi¢ve a useful level of output power.

5.8 SYSTEM TRADE-OFFS

The link budget example in Table 5.3 is a resource allocation document. With such
a link tabulation, one can examine potential system trade-offs and attempt to opti-
mize system performance. The link budget is a natural starting point for consider-
ing all sorts of potential trade-offs: margin versus noise figure, antenna SiZEe VErsus
transmitter power, and so on. Table 5.4 represents an example of a computer exer-
cise for examining a pO‘?‘?lb]E trade-off between the earth station transmitting
power and the system noise margin at the receiving terminal. The first row in the
table is taken from the Table 5.3 link budget. Suppose a system engineer is con-
cerned that a 500-W transmitter is not practical because of some physical con-
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TABLE 5.4 Potential Trade-Off: P, versus Margin

(PINy), (£ /Ny )y (P ING) o Margin

P (W) (dB-Hz) (dB-Hz) (dB-Hz) (dB)
S500.0 82.6 66.9 66.8 6.8
250.0 79.6 66.8 66.6 6.6
125.0 76.6 66.6 66.2 6.2
62.5 73.6 66.3 63.5 3.5
31.3 70.5 63.7 6H4.5 4.5
15.6 67.5 64.8 62.9 2.9
7.8 6H4.5 Hh33 B8 (.8
3.9 6H1.5 6l.4 aR.4 -1.6
2.0 58.4 59.0 557 —4.3
1.0 55.4 56.4 529 -7.2
0.5 524 53.6 49.9 ~10.1

straints within the transmitting earth terminal or that such a transmitter makes the
system “uplink rich” (a poor design point). The engineer might then consider a
trade-off of transmitter power versus thermal noise margin. The listing of candi-
date trade-offs is a trivial task for a computer. Table 5.4 was generated by repeating
the link budget computation multiple times, and at each iteration, reducing P, by
one-half.

The result is a selection of transmitters (in steps of 3 dB) and uplink, down-
link, and overall SNRs, and margin, associated with each transmitter value. The
system engineer need only peruse the list to find a likely candidate. For example, if
the engineer were satisfied with a margin of 3 to 4 dB, it appears he could reduce
the transmitter from 500 W to 20 or 30 W. Or, he might be willing to provide a
transmitter with, say, P, = 100 W, since he may want to consider additional trade-
offs (perhaps because of having misgivings about one of the other subsystems, say
the antenna size). The engineer would then start a new tabulation with P, = 100 W,
and again perform a succession of link budget computations, to produce a similar
enumeration of other possible trade-offs.

Notice from Table 5.4 that one can recognize the uplink-limited and downlink-
limited regions, discussed earlier. In the first few rows, where the uplink SNR is high,
a 3-dB degradation in uplink SNR results in only a few tenths of a decibel degrada-
tion to the overall SNR. Here the system is downlink limited; that is, the system is con-
strained primarily by its downlink parameters and is hardly affected by the uplink
parameters. In the bottom few rows of the table, we see that a 3-dB degradation to the
uplink affects the overall SNR by almost 3 dB. Here the system is uplink limited; that
is, the system is constrained primarily by the uplink parameters.

5.9 CONCLUSION

Of the many analyses that support a developing communication system, the link
budget stands out in its ability to provide overall system insight. By examining the
link budget, one can learn many things about the overall system design and perfor-
mance. For example, from the link margin, one learns whether the system will meet
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Channel coding refers to the class of signal transformations designed to improve
communications performance by enabling the transmitted signals to better with-
stand the effects of various channel impairments, such as noise, interference, and
fading. These signal-processing techniques can be thought of as vehicles for accom-
plishing desirable system trade-offs (e.g., error-performance versus bandwidth,
power versus bandwidth). Why do you suppose channel coding has become such a
popular way to bring about these beneficial effects? The use of large-scale inte-
grated circuits (LSI) and high-speed digital signal processing (DSP) techniques
have made it possible to provide as much as 10 dB performance improvement
through these methods, at much less cost than through the use of most other meth-
ods such as higher power transmitters or larger antennas.

6.1 WAVEFORM CODING

Channel coding can be partitioned into two study areas, waveform (or signal
design) coding and structured sequences (or structured redundancy), as shown in
Figure 6.1. Waveform coding deals with transforming waveforms into “better
waveforms,” to make the detection process less subject to errors. Structured se-
guences deals with transforming data sequences into “better sequences,” having
structured redundancy (redundant bits). The redundant bits can then be used for
the detection and correction of errors. The encoding procedure provides the coded
signal (whether waveforms or structured sequences) with better distance properties
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Figure 6.3 Example of a binary orthogonal signal set.

where z;; is called the cross-correlation coefficient, and where E is the signal energy,
expressed as

.
E= L sH(t) dt (6.2)

The waveform representation in Figure 6.3 illustrates that s,(7) and s,(f) cannot in-
terfere with one another because they are disjoint in time. The vector representa-
tion illustrates the perpendicular relationship between orthogonal signals. Consider
some alternative descriptions of orthogonal signals or vectors. We can say that the
inner or dot product of two different vectors in the orthogonal set must equal zero.
In a two- or three-dimensional Cartesian coordinate space, we can describe the
signal vectors, geometrically, as being mutually perpendicular to one another. We
can say that one vector has zero projection on the other, or that one signal cannot
interfere with the other, since they do not share the same signal space.

6.1.2 M-ary Signaling

With M-ary signaling, the processor accepts k data bits at a time. It then instructs
the modulator to produce one of M = 2* waveforms; binary signaling is the special
case where k = 1. For k > 1, M-ary signaling alone can be regarded as a waveform
coding procedure. For orthogonal signaling (e.g., MFSK), as k increases there is
improved error performance or a reduction in required E,/N,, at the expense of
bandwidth; nonorthogonal signaling (e.g., MPSK) manifests improved bandwidth
efficiency, at the expense of degraded error performance or an increase in required
E,/N,. By the appropriate choice of signal waveforms, one can trade off error
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6.1.3.1 Orthogonal Codes

A one-bit data set can be transformed, using orthogonal codewords of two
digits each, described by the rows of matrix H, as follows:

Data set Orthogonal codeword set

0 0 0

For this, and the following examples, use Equation (6.3) to verify the orthogonality
of the codeword set. To encode a 2-bit data set, we extend the foregoing set both
horizontally and vertically, creating matrix H,.

Data set Orthogonal codeword set
0 0 (0 0 0 0]
0 1 0101
P e _ [“' E} (6.4b)
10 00411 H, H
11 0111 0

The lower right quadrant is the complement of the prior codeword set. We
continue the same construction rule to obtain an orthogonal set H; for a 3-bit
data set.

Data Set Orthogonal codeword set
0 0 0 00 0 0 00 0 0]
0 0 1 01010101
01 0 001 1{ 0011
oo P I T {Hﬁ E] (6.4¢)
: H, 2
1 0 0 0000: 1 1 11
1 01 01 01{ 1010
110 001 1{ 1100
111 L0011 0{ 100 1.

In general, we can construct a codeword set H,, of dimension 2k x 2% called a
Hadamard matrix, for a k-bit data set from the H, _, matrix, as follows:

H -
H_, Hq,

Each pair of words in each codeword set H;, Hy, H;, . .., Hy, . . . has as many digit
agreements as disagreements [2]. Hence, in accordance with Equation (6.3), z;; =0
(for i # ), and each of the sets is orthogonal.
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Just as M-ary signaling with an orthogonal modulation format (such as
MFSK) improves the P, performance, waveform coding with an orthogonally con-
structed signal set, in combination with coherent detection, produces exactly the
same improvement. For equally likely, equal-energy orthogonal signals, the proba-
bility of codeword (symbol) error, Pg, can be upper bounded as [2]

Pr(M) = (M—UQ(\,E&) (6.5)

where the codeword set M equals 2%, and k is the number of data bits per code-
word. The function Q(x) is defined by Equation (3.43), and E, = kE), is the energy
per codeword. For a fixed M, as E,/N, is increased, the bound becomes increasingly
tight; for Px(M) < 107, Equation (6.5) is a good approximation. For expressing the
bit-error probability, we next use the relationship between Py and Pg, given in
Equation (4.112) and repeated here:

Pylk)  2¢° Py(M)  M/2

or =
Puk) 21 PAM) ~ (M~ 1)

Combining Equations (6.5) and (6.6), the probability of bit error can be bounded

as follows:
=@ o) o rm=Yo(\E) 6

6.1.3.2 Biorthogonal Codes

(6.6)

A biorthogonal signal set of M total signals or codewords can be obtained
from an orthogonal set of M/2 signals by augmenting it with the negative of each

signal as follows:
H,_
B, - { ! 1}
H;_,

For example, a 3-bit data set can be transformed into a biothogonal codeword set
as follows:

Data set Biorthogonal codeword set

0 0 0 00 0 0]

0 0 1 0 1 0 1

0 1 0 0 0 1 1

0 1 1 0 1 1 0
By = | oo

1 0 0 1 1 1 1

1 0 1 1 0 1 0

I 1 0 1 1 0 0

111 1.0 0 1,
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The biorthogonal set is really two sets of orthogonal codes such that each code-
word in one set has its antipodal codeword in the other set. The biorthogonal set
consists of a combination of orthogonal and antipodal signals. With respect to z;; of
Equation (6.1), biorthogonal codes can be characterized as

1 fori=j
2 =4 -1 fori#j, |i—j| = 5 (6.8)
0 f()l‘.!#j.,|f‘j|§&? .

One advantage of a biorthogonal code over an orthogonal one for the same
data set is that the biorthogonal code requires one-half as many code bits per code-
word (compare the rows of the B; matrix with those of the H, matrix presented
carlier). Thus the bandwidth requirements for biorthogonal codes are one-half the
requirements for comparable orthogonal ones. Since antipodal signal vectors have
better distance properties than orthogonal ones, it should come as no surprise that
biorthogonal codes perform slightly better than orthogonal ones. For equally
likely, equal-energy biorthogonal signals, the probability of codeword (symbol)
error can be upper bounded, as follows [2]:

[2E, ) (69)

Pe(M) = (M - ZJQ(\/%) + Q(\s N,

which becomes increasingly tight for fixed M as E,/N, is increased. Pg(M) is a
complicated function of P (M); we can approximate it with the relationship [2]

_ Pe(M)
2

Py(M)

The approximation is quite good for M > 8. Therefore, we can write

Ry(M) < ) [{M— Z)Q(\/%) + Q(\j,ﬁ”

These biorthogonal codes offer improved P, performance, compared with the
performance of the orthogonal codes, and require only half the bandwidth of
orthogonal codes.

(6.10)

6.1.3.3 Transorthogonal (Simplex) Codes

A code generated from an orthogonal set by deleting the first digit of each code-
word is called a transorthogonal or simplex code. Such a code is characterized by

1 fori=j
Z”. = -1 (6711}

Mol fori#j
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It is possible to design decoders using soft decisions, but block code soft-
decision decoders are substantially more complex than hard-decision decoders:
therefore, block codes are usually implemented with hard-decision decoders. For
convolutional codes, both hard- and soft-decision implementations are equally
popular. In this chapter we consider that the channel is a binary symmetric channel
(BSC), and hence the decoder employs hard decisions. In Chapter 7 we further dis-
cuss channel models, as well as hard- versus soft-decision decoding for convolu-
tional codes.

6.3.2 Code Rate and Redundancy

In the case of block codes, the source data are segmented into blocks of k& data bits,
also called information bits or message bits; each block can represent any one of 2*
distinct messages. The encoder transforms each k-bit data block into a larger block
of n bits, called code bits or channel symbols. The (n — k) bits, which the encoder
adds to each data block, are called redundant bits, parity bits, or check bits; they
carry no new information. The code is referred to as an (n, k) code. The ratio of re-
dundant bits to data bits, denoted (n — k)/k, within a block is called the redundancy
of the code; the ratio of data bits to total bits, k/n, is called the code rate. The code
rate can be thought of as the portion of a code bit that constitutes information. For
example, in a rate 5 code, each code bit carries 5 bit of information.

In this chapter and in Chapters 7 and 8 we consider those coding techniques
that provide redundancy by increasing the required transmission bandwidth.
For example, an error control technique that employs a rate 1/2 code (100%
redundancy) will require double the bandwidth of an uncoded system. However, if
a rate 3/4 code is used, the redundancy is 33% and the bandwidth expansion is only
4/3. In Chapter 9 we consider modulation/coding techniques for bandlimited
channels where complexity instead of bandwidth is traded for error performance
improvement.

6.3.2.1 Code-Element Nomenclature

Different authors describe an encoder’s output elements in a variety of ways:
code bits, channel bits, code symbols, channel symbols, parity bits, parity symbols.
The terms are all very similar. In this text, for a binary code, the terms “code bit,”
“channel bit,” “code symbol,” and “channel symbol” have exactly the same mean-
ing. The terms “code bit” and “channel bit” are most descriptive for binary codes
only. The more generic names “code symbol” and “channel symbol™ are often pre-
ferred because they can be used to describe binary or nonbinary codes equally well.
Note that such code symbols or channel symbols are not to be confused with the
grouping of bits to form transmission symbols that was done in previous chapters.
The terms “parity bit” and “parity symbol” are used to identify only those code
clements that represent the redundancy components added to the original data.
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6.3.3 Parity-Check Codes

6.3.3.1 Single-Parity-Check Code

Parity-check codes use linear sums of the information bits, called parity symbols
or parity bits, for error detection or correction. A single-parity-check code is con-
structed by adding a single-parity bit to a block of data bits. The parity bit takes on the
value of one or zero as needed to ensure that the summation of all the bits in the code-
word yields an even (or odd) result. The summation operation is performed using
modulo-2 arithmetic (exclusive-or logic), as described in Section 2.9.3. If the added
parity is designed to yield an even result, the method is termed even parity; if it is de-
signed to yield an odd result, the method is termed odd parity. Figure 6.8a illustrates
a serial data transmission (the rightmost bit is the earliest bit). A single-parity bit is
added (the leftmost bit in each block) to yield even parity.

At the receiving terminal, the decoding procedure consists of testing that the
modulo-2 sum of the codeword bits yields a zero result (even parity). If the result is
found to be one instead of zero, the codeword is known to contain errors. The rate of
the code can be expressed as k/(k +1). Do you suppose the decoder can automatically
correct a digit that is received in error? No, it cannot. It can only detect the presence
of an odd number of bit errors. (If an even number of bits are inverted, the parity test
will appear correct, which represents the case of an undetected error.) Assuming that

Parity
bit

F 1 b
éo 001010700111 1001%

111710101 ({1T11111(|1011

Off17000017](701T1T10([1110
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Figure 6.8 Parity checks for serial Horizontal Vertical
and parallel code structures. (a) Se- parity check parity check
rial structure. (b) Parallel structure. (b)

6.3 Structured Sequences 321
























6.4.1 Vector Spaces

The set of all binary n-tuples, V,, is called a vector space over the binary field of
two elements (0 and 1). The binary field has two opﬁratmns addition and multipli-
cation, such that the results of all operations are in the same set of two elements.
The arithmetic operations of addition and multiplication are defined by the con-
ventions of the algebraic field [4). For example, in a binary field, the rules of addi-
tion and multiplication are as follows:

Addition Multiplication
0@ 0=0 0-0=0
0P 1=1 0-1=
1P0=1 1-0=0
1@®1=0 1-1=1

The addition operation, designated with the symbol @, is the same modulo-2
operation described in Section 2.9.3. The summation of binary n-tuples always
entails modulo-2 addition. However, for notational simplicity the ordinary + sign
will often be used.

6.4.2 Vector Subspaces

A subset S of the vector space V), is called a subspace if the following two condi-
tions are met:

1. The all-zeros vector is in S.
2. The sum of any two vectors in S is also in S (known as the closure property).

These properties are fundamental for the algebraic characterization of linear block
codes. Suppose that V; and V; are two codewords (or code vectors) in an (n, k) bi-
nary block code. The code is bdld to be linear if, and only if (V; ® V,) is also a code
vector. A linear block code, then, is one in which vectors outside thc subspace can-
not be created by the addition of legitimate codewords (members of the subspace).

For example, the vector space V, is totally populated by the following 2* =
sixteen 4-tuples:

0000 0001 0010 0011 0100 0101 0110 0111
1000 1001 1010 1011 1100 1101 1110 1111

An example of a subset of V, that forms a subspace is
0000 0101 1010 1111

It is easy to verify that the addition of any two vectors in the subspace can only
yield one of the other members of the subspace. A set of 2% n-tuples is called a lin-
ear block code if, and only if, it is a subspace of the vector space V,, of all n-tuples.
Figure 6.10 illustrates, with a simple geometric analogy, the structure behind linear
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Code vectors, by convention, are usually designated as row vectors. Thus, the mes-
sage m, a sequence of k message bits, is shown below as a row vector (1 x k matrix
having one row and k columns):

m = my, Ny, ..., M,

The generation of the codeword U is written in matrix notation as the product of m
and G, and we write :

U= mG (6.25)

where, in general, the matrix multiplication C = AB is performed in the usual way
by using the rule

lf:”': Eufkbkj f=l...f j='l,...,m
k

where A is an / X n matrix, B is an n x m matrix, and the result C is an / x /n matrix.
For the example introduced in the preceding section, we can fashion a generator
matrix as

1 1 0 1 0 0
G=|V,|=|l0 1 1 0 1 0 (6.26)
V, 1 0 1 0 0 1

where V., V,, and V, are three linearly independent vectors (a subset of the eight
code vectors) that can generate all the code vectors. Notice that the sum of any two
generating vectors does not yield any of the other generating vectors (opposite of
closure). Let us generate the codeword U, for the fourth message vector 1 1 0 in
Table 6.1, using the generator matrix of Equation (6.26):

Vi
U4:[1 1 0] Vz =1'V1+1’V2+U'V3
V;

=110100+011010+000000
=101110 (codeword forthe message vector 1 1 0)

Thus, the code vector corresponding to a message vector is a linear combination of
the rows of G. Since the code is totally defined by G, the encoder need only store
the k rows of G instead of the total 2* vectors of the code. For this example, notice
that the generator array of dimension 3 x 6 in Equation (6.26) replaces the original
codeword array of dimension 8 x 6 in Table 6.1, representing a reduction in system
complexity.
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6.4.5 Systematic Linear Block Codes

A systematic (n, k) linear block code is a mapping from a k-dimensional message
vector to an n-dimensional codeword in such a way that part of the sequence gener-
ated coincides with the k message digits. The remaining (n — k) digits are parity
digits. A systematic linear block code will have a generator matrix of the form

G=|P | I
[ . 7]
Piu Pn " P 100 0
B 0 1 0
LPr1 P2 " Prin-k o 0 - I

where P is the parity array portion of the generator matrix p; = (0 or 1), and I, is
the k x k identity matrix (ones on the main diagonal and zeros elsewhere). Notice
that with this systematic generator, the encoding complexity is further reduced
since it is not necessary to store the identity matrix portion of the array. By com-
bining Equations (6.26) and (6.27), each codeword is expressed as

_PH Pz " Piim-k 1 0 - 0]
" B 0 1 R U
uls”h‘ﬂ!”ﬂ = [ml'ml*"'!mk] X Ii:?.?’1 p~3 pll:” g .
LPa P2 " Pikm-ny O 0 -1
where
u;=nmypyt mypy+ - +mpy fori=1,... (n — k)
= M;_ i fori=(n—-—k+1),....n
Given the message k-tuple
m = my, m,,..., M,
and the general code vector n-tuple
U= Wy, Usy ... , U,
the systematic code vector can be expressed as
U= piupssPuko Mmyymy, .. .my
— PR S—  — (6.28)
parity bits message bits

where
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It is easy to verify that the product UH” of each codeword U, generated by G and
the H” matrix, yields

UHII:FI + Pis P2 +p2¢ cvvs Pn—k +pn—k =0

where the parity bits p,, p,, ... p,_ . are defined in Equation (6.29). Thus, once the
parity-check matrix H is constructed to fulfill the foregoing orthogonality require-
ments, we can use it to test whether a received vector is a valid member of the
codeword set. U is a codeword generated by matrix G if, and only if UH” = 0.

6.4.7 Syndrome Testing

Letr=r, r, ..., r, be a received vector (one of 2" n-tuples) resulting from the
transmission of U = uy, u,, ..., u, (one of 2* n-tuples). We can therefore describe
r as

r=U+e (6.34)
where e = ¢, e, ... , €, is an error vector or error pattern introduced by the

channel. There are a total of 2" — 1 potential nonzero error patterns in the space of
2" n-tuples. The syndrome of r is defined as

S =rH’ (6.35)

The syndrome is the result of a parity check performed on r to determine whether r
is a valid member of the codeword set. If, in fact, r is a member, the syndrome § has
a value 0. If r contains detectable errors, the syndrome has some nonzero value. If r
contains correctable errors, the syndrome (like the symptom of an illness) has some
nonzero value that can earmark the particular error pattern. The decoder, depend-
ing upon whether it has been implemented to perform FEC or ARQ, will then take
actions to locate the errors and correct them (FEC), or else it will request a retrans-
mission (ARQ). Combining Equations (6.34) and (6.35), the syndrome of r is seen
to be

S=(U+eHT
= UH" + eH” (6.36)
However, UH' = 0 for all members of the codeword set. Therefore,
S = eH’ (6.37)
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The foregoing development, starting with Equation (6.34) and terminating with
Equation (6.37), is evidence that the syndrome test, whether performed on either a
corrupted code vector or on the error pattern that caused it, yields the same syn-
drome. An important property of linear block codes, fundamental to the decoding
process, is that the mapping between correctable error patterns and syndromes 1S
one to one.

It is interesting to note the following two required properties of the parity-
check matrix.

1. No column of H can be all zeros, or else an error in the corresponding code-
word position would not affect the syndrome and would be undetectable.

2. All columns of H must be unique. If two columns of H were identical, errors
in these two corresponding codeword positions would be indistinguishable.

Example 6.3 Syndrome Test

Suppose that codeword U=1011 10 from the example in Section 6.4.3 is transmitted
and the vectorr =00 1 11 0 is received; that is, the leftmost bit is received in error.
Find the syndrome vector value 8§ = rH” and verify that it is equal to eH".

Solution
S =rH'

1 0 0

0O 1 0

_ 0O 0 1
=[001110] L1 0

0o 1 1

1 0 1

=[1, 1+1, 1 +1]=[100] (syndrome of corrupted code vector)

Next, we verify that the syndrome of the corrupted code vector is the same as
the syndrome of the error pattern that caused the error:

S=eH'=[100000/H"=[100] (syndrome of error pattern)

6.4.8 Error Correction

We have detected a single error and have shown that the syndrome test performed
on either the corrupted codeword, or on the error pattern that caused it, yields the
same syndrome. This should be a clue that we not only can detect the error, but
since there is a one-to-one correspondence between correctable error patterns and
syndromes, we can correct such error patterns. Let us arrange the 2" n-tuples that
represent possible received vectors in an array, called the standard array, such that
the first row contains all the codewords, starting with the all-zeros codeword, and
the first column contains all the correctable error patterns. Recall from the basic
properties of linear codes (see Section 6.4.2) that the all-zeros vector must be a
member of the codeword set. Each row, called a coset, consists of an error pattern
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in the first column, called the coset leader, followed by the codewords perturbed by
that error pattern. The standard array format for an (n, k) code is as follows:

u U, o, Uk
€- Uz + EZ Uf' + € T Uzk"{“ €4

E3 U2 + E:; T Uf + Eg_ e Uz"""l' E}

' I : (6.38)
€ U, + ¢ U e Ut +e

'Ez'”_k Ug + E‘-z" k U!- + Eg”_k UE'EH‘ Ezn_k

Note that codeword U, the all-zeros codeword, plays two roles. It is one of the code-
words, and it can also be thought of as the error pattern e,—the pattern that repre-
sents no error, such that r=U. The array contains all 2" n-tuples in the space V. Each
n-tuple appears in only one location—none are missing, and none are replicated.
Each coset consists of 2“ n-tuples. Therefore, there are (2"/2) = 2"~ cosets.

The decoding algorithm calls for replacing a corrupted vector (any n-tuple ex-
cluding those in the first row) with a valid codeword from the top of the column
containing the corrupted vector. Suppose that a codeword U, (i = 1, ..., 2%) is
transmitted over a noisy channel, resulting in a received (corrupted) vector U, + e;.
If the error pattern e; caused by the channel is a coset leader, where the index
j=1,...,2" % the received vector will be decoded correctly into the transmitted
codeword U,. If the error pattern is not a coset leader, then an erroneous decoding
will result.

6.4.8.1 The Syndrome of a Coset

If e; is the coset leader or error pattern of the jth coset, then U, + € 1s an
n-tuple in this coset. The syndrome of this n-tuple can be written

S=(U+e)H =UH"+¢H’
Since U; is a code vector, UH’ = 0, and we can write, as in Equation (6.37),
S=(U+e)H =eH (6.39)

The name coset is short for “a set of numbers having a common feature.” What do
the members of any given row (coset) have in common? From Equation (6.39) it is
clear that each member of a coset has the same syndronie. The syndrome for each
coset is different from that of any other coset in the code; it is the syndrome that is
used to estimate the error pattern.

6.4.8.2 Error Correction Decoding

The procedure for error correction decoding proceeds as follows:

1. Calculate the syndrome of r using S = rH”.
2. Locate the coset leader (error pattern) e;, whose syndrome equals rH'.
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3. This error pattern is assumed to be the corruption caused by the channel.

4. The corrected received vector, or codeword, is identified as U =r + ¢;. We can
say that we retrieve the valid codeword by subtracting out the identified
error; in modulo-2 arithmetic, the operation of subtraction is identical to that
of addition.

6.4.8.3 Locating the Error Pattern

Returning to the example of Section 6.4.3, we arrange the 2° = sixty-four
6-tuples in a standard array as shown in Figure 6.11. The valid codewords are the
eight vectors in the first row, and the correctable error patterns are the seven
nonzero coset leaders in the first column. Notice that all 1-bit error patterns are cor-
rectable. Also notice that after exhausting all 1-bit error patterns, there remains
some error-correcting capability since we have not yet accounted for all sixty-four
6-tuples. There is one unassigned coset leader; therefore, there remains the capa-
bility of correcting one additional error pattern. We have the flexibility of choosing
this error pattern to be any of the n-tuples in the remaining coset. In Figure 6.11
this final correctable error pattern is chosen, somewhat arbitrarily, to be the 2-bit
error pattern 0 1 0 0 0 1. Decoding will be correct if, and only if, the error pattern
caused by the channel is one of the coset leaders.

000000 110100 011010 101110 101001 0111017 110011 000111
000001 1101017 011011 101111 101000 011100 110010 000110
000010 110110 011000 101100 1010171 011111 110001 000101
000100 110000 011110 101070 1011017 011007 110111 000011
001000 111100 010010 100110 100001 010101 111011 001111
010000 100100 001010 111110 111001 001101 100011 010111
100000 010100 111010 001170 001001 111101 010011 100111
010001 100101 001011 111111 111000 001100 100010 010110

Figure 6.11 Example of a standard array for a (6, 3) code.

We now determine the syndrome corresponding to each of the correctable
error sequences by computing e H for each coset leader, as follows:
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The results are listed in Table 6.2. Since each syndrome in the table is unique, the
decoder can identify the.error pattern e to which it corresponds.

TABLE 6.2 Syndrome Look-Up Table

Error .patl,t:rn Syndrome
dooooo 000
000001 101
000010 011
000100 110
001000 001
010000 010

100000 100.
010001 111

6.4.8.4 Error Correction Example

As outlined in Section 6.4.8.2 we receive the vector r and calculate its syn-
drome using S = rH'. We then use the syndrome look-up table (Table 6.2), devel-
oped in the preceding section, to find the corresponding error pattern. This error
pattern is an estimate of the error, and we denote it é The decoder then adds é tor
to obtain an estimate of the transmitted codeword U:

-~

U=r+e=(U+e)+e=U+(e +e) (6.40)

If the estimated error pattern is the same as the actual error pattern, that is, if € = e,
then the estimate U is equal to the transmitted codeword U. On the other hand, if
the error estimate is incorrect, the decoder will estimate a codeword that was not
transmitted, and we have an undetectable decoding error.

Example 6.4 Error Correction

Assume that codeword U=10111 0, from the Section 6.4.3 example, is transmitted,
and the vector r =001 11 0is received. Show how a decoder, using the Table 6.2
syndrome look-up table, can correct the error.

Solution
The syndrome of r is computed:
S=[001110H =[100]

Using Table 6.2, the error pattern corresponding to the syndrome above is estimated
to be

e=100000

The corrected vector is then estimated by
U=r+é
=001110+100000

=101110
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Figure 6.12 Implementation of the (6, 3) decoder.

The corrupted signal enters the decoder at two places simultaneously. At the
upper part of the circuit, the syndrome is computed, and at the lower part, that
syndrome is transformed to its corresponding error pattern. The error is removed
by adding it back to the received vector yielding the corrected codeword.

Note that, for tutorial reasons, Figure 6.12 has been drawn to emphasize the
algebraic decoding steps—calculation of syndrome, error pattern, and corrected
output. In the real world, an (n, k) code is usually configured in systematic form.
The decoder would not need to deliver the entire codeword: its output would con-
sist of the data bits only. Hence, the Figure 6.12 circuitry becomes simplified by
eliminating the gates that are shown with shading. For longer codes, such an imple-
mentation is very complex, and the preferred decoding techniques conserve cir-
cuitry by using a sequential approach instead of this parallel method [4]. It is also
important to emphasize that Figure 6.12 has been configured to only detect and
correct single-error patterns for the (6, 3) code. Error control for a double-error
pattern would require additional circuitry.

6.4.9.1 Vector Notation

Codewords, error patterns, received vectors, and syndromes have been de-
noted by the vectors U, e, r, and S respectively. For notational simplicity, an index
to denote a particular vector has generally been left off. However, to be precise,
each of these vectors U, e, r, and S is one of a set having the general form
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Consider the range of the indices j and i in the context of the (6, 3) code in Table
6.1. For the codeword U, the index j=1, ..., 2% indicates that there are 2° = 8 dis-
tinct codewords, and the indexi=1, ..., n indicates that each codeword is made up
of n = 6 bits. For a correctable error pattern e, the indexj=1, ..., 2"~k indicates
that there are 2° = 8 coset leaders (7 nonzero correctable error patterns), and the
index i =1, ..., nindicates that each error pattern is made up of n = 6 bits. For the
received vector r;, the index j =1, ..., 2" indicates that there are 2° = 64 possible
n-tuples that can be received, and the index i =1, ..., n indicates that each received
n-tuple is made up of n = 6 bits. Finally, for the syndrome §;, the index j =1, ...,
2"~ ¥ indicates that there are 2° = 8 distinct syndrome vectors, and the index i = 1,
..., h — k indicates that each syndrome is made up of n — k = 3 bits. In this chapter,
the index is often dropped, and the vectors U, e, r;, and §, are denoted as U, e, r,
and S, respectively. The reader must be aware that for these vectors, an index is
always inferred, even when it has been left off for notational simplicity.

6.5 ERROR-DETECTING AND CORRECTING CAPABILITY
6.5.1 Weight and Distance of Binary Vectors

It should be clear that not all error patterns can be correctly decoded. The error
correction capability of a code will be investigated by first defining its structure.
The Hamming weight w(U) of a codeword U is defined to be the number of
nonzero elements in U. For a binary vector this is equivalent to the number of ones
in the vector. For example, if U=1001011 01, then w(U) = 5. The Hamming
distance between two codewords U and V, denoted d(U, V), is defined to be the
number of elements in which they differ—for example,

U=100101101
V=011110100
d(U, V) =6
By the properties of modulo-2 addition, we note that the sum of two binary vectors

is another vector whose binary ones are located in those positions in which the two
vectors differ—for example

U+v=111011001

Thus, we observe that the Hamming distance between two codewords 1s equal to
the Hamming weight of their sum: that is, d(U, V) = w(U + V). Also we see that the
Hamming weight of a codeword is equal to its Hamming distance from the all-zeros
vector.
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6.5.2 Minimum Distance of a Linear Code

Consider the set of distances between all pairs of codewords in the space V,. The
smallest member of the set is the minimum distance of the code and is denoted d,;,,.
Why do you suppose we have an interest in the minimum distance; why not the
maximum distance? The minimum distance, like the weakest link in a chain, gives
us a measure of the code’s minimum capability and therefore characterizes the
code’s strength.

As discussed earlier, the sum of any two codewords yields another codeword
member of the subspace. This property of linear codes is stated simply as: If U and
V are codewords, then W = U + V must also be a codeword. Hence the distance be-
tween two codewords is equal to the weight of a third codeword; that is, d(U, V) =
w(U + V) = w(W). Thus the minimum distance of a linear code can be ascertained
without examining the distance between all combinations of codeword pairs. We
only need to examine the weight of each codeword (excluding the all-zeros code-
word) in the subspace; the minimum weight corresponds to the minimum distance,
dmin- Equivalently, d,,;,, corresponds to the smallest of the set of distances between
the all-zeros codeword and all the other codewords.

6.5.3 Error Detection and Correction

The task of the decoder, having received the vector r, 1s to estimate the transmitted
codeword U,. The optimal decoder strategy can be expressed in terms of the maxi-
mum likelihood algorithm (see Appendix B) as follows: Decide in favor of U, if

P(r|U;) = max P(r|U)) (6.41)
over all U,

Since for the binary symmetric channel (BSC), the likelihood of U, with respect to r
is inversely proportional to the distance between r and U,, we can write: Decide in
favor of U; if

dir,U)=  min d(r, U) (6.42)
over all U, !

In other words, the decoder determines the distance between r and each of the

possible transmitted codewords U;, and selects as most likely a U, for which

d(r, U) =d(r,U) fori,j=1,...,M  and i 7] (6.43)

where M = 2* is the size of the codeword set. If the minimum is not unique, the
choice between minimum distance codewords is arbitrary. Distance metrics are
treated further in Chapter 7.

In Figure 6.13 the distance between two codewords U and V is shown using a
number line calibrated in Hamming distance. Each black dot represents a cor-
rupted codeword. Figure 6.13a illustrates the reception of vector r;, which is dis-
tance 1 from U and distance 4 from V. An error-correcting decoder, following the
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maximum likelihood strategy, will select U upon receiving r;. If r, had been the
result of a 1-bit corruption to the transmitted code vector U, the decoder has suc-
cessfully corrected the error. But if r; had been the result of a 4-bit corruption to
the transmitted code vector V, the result is a decoding error. Similarly, a double
error in transmission of U might result in the received vector r,, which is distance 2
from U and distance 3 from V, as shown in Figure 6.13b. Here, too, the decoder
will select U upon receiving r,. A triple error in transmission of U might result in a
received vector r; that is distance 3 from U and distance 2 from V, as shown in
Figure 6.13c. Here the decoder will select V upon receiving rs;, and will have made
an error in decoding. From Figure 6.13 it should be clear that if error detection and
not correction is the task, a corrupted vector—characterized by a black dot and
representing a 1-bit, 2-bit, 3-bit, or 4-bit error—can be detected. However, five
errors in transmission might result in codeword V being received when codeword
U was actually transmitted; such as error would be undetectable.

From Figure 6.13 we can see that the error-detecting and error-correcting ca-
pabilities of a code are related to the minimum distance between codewords. The
decision line in the figure serves the same purpose in the process of decoding as it
does in demodulation, to define the decision regions. In the Figure 6.13 example,
the decision criterion of choosing U if r falls in region 1, and choosing V if r falls in
region 2, illustrates that such a code (with d,;, = 5) can correct two errors. In gen-
eral, the error-correcting capability t of a code is defined as the maximum number
of guaranteed correctable errors per codeword, and is written [4]
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z—[@i”_]J 6.44
= | - (644)

where | x | means the largest integer not to exceed x. Often, a code that corrects all
possible sequences of ¢ or fewer errors can also correct certain sequences of £ + 1 er-
rors. This can be seen in Figure 6.11. In this example d,;, = 3, and thus from Equa-
tion (6.44), we can see that all 1 = 1 bit-error patterns are correctable. Also, a single
t + 1 or 2-bit error pattern is correctable. In general, a t-error-correcting (n, k)
linear code is capable of correcting a total of 2"~ * error patterns. If a f-error-
correcting block code is used strictly for error correction on a biary symmetric -
channel (BSC) with transition probability p, the message-error probability, P,,,
that the decoder commits an erroneous decoding, and that the n-bit block is in
error, can be calculated by using Equation (6.18) as an upper bound:

J=r+1 ]
The bound becomes an equality when the decoder corrects all combinations of er-
rors up to and including ¢ errors, but no combinations of errors greater than 1. Such
decoders are called bounded distance decoders. The decoded bit-error probability,
Pg, depends on the particular code and decoder. It can be expressed [5] by the
following approximation:

1 & (n . i !
Py =— 2 f()f-”r“ p)t (6.46)
o=\
=1

A block code needs to detect errors prior to correcting them. Or, it may be
used for error-detection only. It should be clear from Figure 6.13 that any received
vector characterized by a black dot (a corrupted codeword) can be identified as an

error. Therefore, the error-detecting capability is defined in terms of din A8

€ = lqFrnin — 1 (64?)

A block code with minimum distance d,,, guarantees that all error patterns of
din — 1 o1 fewer errors can be. detected. Such a code is also capable of detecting a
large fraction of error patterns with d,;, or more errors. In fact, an (n, k) code is ca-
pable of detecting 2" — 2 error patterns of length n. The reasoning is as follows.
There are a total of 2" — 1 possible nonzero error patterns in the space of 2
n-tuples. Even the bit pattern of a valid codeword represents a potential error pat-
tern. Thus there are 2* — 1 error patterns that are identical to the 2¥ — 1 nonzero
codewords. If any of these 2* — 1 error patterns occurs, it alters the transmitted
codeword U; into another codeword U;. Thus U; will be received and its syndrome
is zero. The decoder accepts U, as the transmitted codeword and thereby commits
an incorrect decoding. Therefore, there are 2* — 1 undetectable error patterns. If
the error pattern is not identical to one of the 2% codewords, the syndrome test on
the received vector r yields a nonzero syndrome, and the error is detected. There-
fore, there are exactly 2" — 2 detectable error patterns. For large n, where 25 << 2",
only a small fraction of error patterns are undetected.,
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6.5.3.1 Codeword Weight Distribution

Let A; be the number of codewords of weight j within an (n, k) linear code.
The numbers Ay, Ay, ..., A, are called the weight distribution of the code. If the
code is used only for error detection, on a BSC, the probability that the decoder
does not detect an error can be computed from the weight distribution of the
code [5] as

Py= 2 Ap/(1—p)y~’ (6.48)
i=1

where p 1s the transition probability of the BSC. If the minimum distance of the
code 1s d;,, the values of A, to A, . are zero.

Example 6.5 Probability of an Undetected Error in an Error Detecting Code

Consider that the (6, 3) code, given in Section 6.4.3, is used only for error detection,
Calculate the probability of an undetected error if the channel is a BSC and the transi-
tion probability is 1072,

Solution
The weight distribution of thiscode is Ay,=1. 4, =A,=0,4;=4, A,=3, A, =0, A, =0.

Therefore, we can write, using Equation (6.48),

Py =4p’(1 — p) + 3p*(1 = p)*

For p =107, the probability of an undetected error is 3.9 x 107°

6.5.3.2 Simultaneous Error Correction and Detection

It is possible to trade correction capability from the maximum guaranteed (1)
where 1 is defined in Equation (6.44), for the ability to simultaneously detect a class
of errors. A code can be used for the simultaneous correction of a errors and detec-
tion of B errors, where B = «, provided that its minimum distance is [4]

dmin =+ B +1 (ﬁ4q)

When ¢ or fewer errors occur, the code is capable of detecting and correcting them.
When more than ¢ but fewer than e + 1 errors occur, where e is defined in Equation
(6.47), the code is capable of detecting their presence but correcting only a subset
of them. For example, a code with d;, =7 can be used to simultaneously detect and
correct in any one of the following ways:

Detect (B) Correct (o)
3 3
4 2
5 1
6 0

Note that correction implies prior detection. For the above example, when there
are three errors, all of them can be detected and corrected. When there are five er-
rors, all of them can be detected but only a subset of them (one) can be corrected.
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6.5.4 Visualization of a 6-Tuple Space

Figure 6.14 i1s a visualization of the eight codewords from the example of Section
6.4.3. The codewords are generated from linear combinations of the three indepen-
dent 6-tuples in Equation (6.26); the codewords form a three-dimensional sub-
space. The figure shows such a subspace completely occupied by the eight
codewords (large black circles); the coordinates of the subspace have purposely
been drawn to emphasize their nonorthogonality. Figure 6.14 is an attempt to illus-
trate the entire space, containing sixty-four 6-tuples, even though there is no

011010

101110

110011

110100

011101

101001

Figure 6.14 Example of eight codewords in a 6-tuple space.
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a low-rate double-error correcting code as this (8, 2) code? No, it would be too
bandwidth expansive compared with more efficient codes that are available. It is
used here for tutorial purposes, because its standard array is of manageable size.

6.6.3 Designing the (8, 2) Code

A natural question to ask is, How does one select codewords out of the space of 2°
8-tuples? There is not a single solution, but there are constraints in how choices are
made. The following are the elements that help point to a solution:

1. The number of codewords is 2¢ =2 =4

2. The all-zeros vector must be one of the codewords.

3. The property of closure must apply. This property dictates that the sum of
any two codewords in the space must yield a valid codeword in the space.

4. Each codeword is 8 bits long. |

5. Since d;, = 5, the weight of each codeword (except for the all-zeros code-

word) must also be at least 5 (by virtue of the closure property). The weight
of a vector is defined as the number of nonzero components in the vector.

6. Assume that the code is systematic, and thus the rightmost 2 bits of each
codeword are the corresponding message bits.

The following is a candidate assignment of codewords to messages that meets all of
the preceeding conditions:

Messages Codewords
00 00000000
01 11110001
10 00111110
11 11001111

The design of the codeword set can begin in a very arbitrary way; it is only neces-
sary to adhere to the properties of weight and systematic form of the code. The se-
lection of the first few codewords is often simple. However, as the process
continues, the selection routine becomes harder, and the choices become more
constrained because of the need to adhere to the closure property.

6.6.4 Error Detection versus Error Correction Trade-offs

For the (8, 2) code system selected in the previous section, the (k x n) = (2 x 8)
generator matrix can be written as

C_[omuuo}
" l11110001

Decoding starts with the computation of a syndrome, which can be thought of as
learning the “symptom” of an error. For an (n, k) code, an (n — k)-bit syndrome S is
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Syndromes

000000
111100
001111
000001
000010
000100
001000
010000
100000
110011
111101
111110
111000
110100
101100
011100
001110
001107
001011
000111
01111
101111
000011
000101
001001
010001
100001
000110
001010
010010
100010
001100
010100
100100
011000
101000
110000
110010
110111
11101
100011
010011
111111
111001
110101
101101
011101
011110
101110
100101
011001
110001
011010
010110
100110
101010
101001
100111
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00000000
00000001
00000010
00000100
00001000
00010000
00100000
01000000
10000000
00000011
00000101
00001001
00010001
00100001
01000001
10000001
00000110
00001010
00010010
00100010
01000010
10000010
00001100
00010100
00100100
01000100
10000100
00011000
00101000
01001000
10001000
00110000
01010000
10010000
01100000
10100000
11000000
00000111
00010011
00100011

@ﬁﬂﬂﬁﬁt#

..............

ﬁl’tﬁﬁi}]w
10000110
1£GIB1GG
01100100
11000100
01101000
01011000
10011000
10101000

aaaaaaaaaaaaaaaaaa

Standard array

11110001
11110000
11110011
11110101
11111001
11100001
11010001
10110001
01110001
11110010
11110100
11111000
11100000
11010000
10110000
01110000
11110111
11111011
11100011
11010011
10110011
01110011
11111101
11100101
11010101
10110101
01110101
11101111
11011001
10111001
01111001
11000001
10100001
01100001
10010001
01010001
00110001
11110110
11100010
11010010
10110010
01110010
11111100
11100100
11010100
10110100
01110100
10110111
01110111
01100101
10010101
00110101
10011001
10101001
01101001
01011001
01010101
01010011

00111110
00111111
00111100
00111010
00110110
00101110
00011110
01111110
10111110
00111101
00111011
00110111
00101111
00011111
01111111
10111111
00111000
00110100
00101100
00011100
01111100
10111100
00110010
00101010
00011010
01111010
10111010
00100110
00010110
01110110
10110110
00001110
01101110
10101110
01011110
10011110
11111110
00111001
00101101
00011101
01111101
10111101
00110011
00101011
00011011
01111011
10111011
01111000
10111000
10101010
01011010
11111010
01010110
01100110
10100110
10010110
10011010
10011100

11001111
11001110
11001101
11001011
11000111
11011111
11101111
10001111
01001111
11001100
11001010
11000110
11011110
11101110
10001110
01001110
11001001
11000101
11011101
11101101
10001101
01001101
11000011
11011011
11101011
10001011
01001011
11010111
11100111
10000111
01000111
11111111

0011111

01011111
10101111
01101111
00001111
11001000
11011100
11101100

10001100

01001100
11ﬁﬂﬂﬁﬂﬁ
11011010
11101010
10001010
01001010
10001001
01001001
01011011
10101011
00001011
107100111
10010111
01010111
01100111
01101011
01101101
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Figure 6.15 The syndromes
and the standard array for the

(8, 2) code.
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only, the circuitry is very simple. The syndrome is computed and an error is de-
tected whenever a nonzero syndrome occurs.

For correcting single errors, the decoder can be implemented with gates [4],
similar to the circuitry in Figure 6.12, where a received code vector r enters at two
places. In the top part of the figure, the received digits are connected to exclusive-
OR gates, which yield the syndrome. For any given received vector, the syndrome
is obtained from Equation (6.35) as

Sf':erT fz:l,"',zn_k

Using the H” values for the (8, 2) code, the wiring between the received digits and
the exclusive-OR gates in a circuit similar to the one in Figure 6.12, must be con-
nected to yield

(100000
010000
001000
Si=1[r rpryryrsrgryrg 0OOT00
" - : 000010
000001
001111
(111100
Each of the s; digits (=1, ..., 6) making up syndrome S, (i =1, ..., 64) is related
to the input-received code vector in the following way:
Si=ntr Sy =1Fr T Iy Sy =ry+ 1+ 1y
S =rytr; oy Ss=rs+ 1y S =1+ 1y

To implement a decoder circuit similar to Figure 6.12 for the (8, 2) code necessi-
tates that the eight received digits be connected to six modulo-2 adders yielding the
syndrome digits as described above. Additional modifications to the figure need to
be made accordingly.

If the decoder is implemented to correct only single errors; that is a = 1 and
B = 3, then this is tantamount to drawing a line under coset 9 in Figure 6.15, and
error correction takes place only when one of the eight syndromes associated with
a single error appears. The decoding circuitry (similar to Figure 6.12) then trans-
forms the syndrome to its corresponding error pattern. The error pattern is then
modulo-2 added to the “potentially” corrupted received vector, yielding the cor-
rected output. Additional gates are needed to test for the case in which the
syndrome is nonzero and there is no correction designed to take place. For single-
error correction, such an event happens for any of the syndromes numbered 10
through 64. This outcome is then used to indicate an error detection.

If the decoder is implemented to correct single and double errors, which
means that § = 2 errors are detected and then corrected, then this is tantamount to
drawing a line under coset 37 in the standard array of Figure 6.15. Even though this
(8,2) code is capable of correcting some combination of triple errors corresponding
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=UMNX) + u,_ (X" + 1)
Since UM(X) is of degree n — 1, it cannot be divided by X" + 1. Thus, from Equa-
tion (6.55a), we can write
UY(X) = XU(X) modulo (X" + 1)
By extension, we arrive at Equation (6.56):
U(X) = X'U(X) modulo (X" + 1)
Example 6.7 Cyclic Shift of a Code Vector

Let U=1101, for n = 4. Express the codeword in polynomial form, and using
Equation (6.56), solve for the third end-around shift of the codeword.

Solution

Ux)=1+Xx+Xx° (polynomial is written low order to high order);
X'UX)=X"+ X"+ X®  wherei=3.
Divide X U(X) by X* + 1, and solve for the remainder using polynomial division:

X’ +1
X4+1 )X+ X4+ Xx°
X° + X?
X‘+ X'+ X
X4 + 1
X'+ Xx*+1 remainder UP/(X)

Writing the remainder low order to high order: 1 + X? + X*, the codeword UY =
1011 is three cyclic shifts of U =11 0 1. Remember that for binary codes, the
addition operation is performed modulo-2, so that + 1 = -1, and we consequently
do not show any minus signs in the computation.

6.7.2 Binary Cyclic Code Properties

We can generate a cyelic code using a generator polynomial in much the way that
we generated a block code using a generator matrix. The generator polynomial
g(X) for an (n, k) cyclic code is unique and is of the form

g(X) =gyt g X+ X + - + g, X" (6.57)

where g, and g, must equal 1. Every codeword polynomial in the subspace is of
the form U(X) = m(X)g(X), where U(X) is a polynomial of degree n — 1 or less.
Therefore, the message polynomial m(X) is written as

m(X)=my+mX+mX + - +m,_, X"P! (6.58)

There are 2" 7 codeword polynomials, and there are 2k code vectors in an (n, k)
code. Since there must be one codeword polynomial for each code vector,

n—p=k
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Figure 6.16 Circuit for dividing polynomials.

such that m 2 p, the divider circuit of Figure 6.16 performs the polynomial division
steps of dividing V(X) by g(X), thereby determining the quotient and remainder
terms:

VX) p(X)

gx) 15 e

The stages of the register are first initialized by being filled with zeros. The first
p shifts enter the most significant (higher-order) coefficients of V(X). After the pth
shift, the quotient output is g ;' v,,; this is the highest-order term in the quotient. For
each quotient coefficient g; the polynomial g,g(X) must be subtracted from the div-
idend. The feedback connections in Figure 6.16 perform this subtraction. The dif-
ference between the leftmost p terms remaining in the dividend and the feedback
terms g,g(X) is formed on each shift of the circuit and appears as the contents of
the register. At each shift of the register, the difference is shifted one stage; the
highest-order term (which by construction is zero) is shifted out, while the next sig-
nificant coefficient of V(X) is shifted in. After m + 1 total shifts into the register,
the quotient has been serially presented at the output and the remainder resides in
the register.

Example 6.9 Dividing Circuit

Use a dividing circuit of the form shown in Figure 6.16 to divide V(X) = X* + X5 + X*¢
(V=0001011) by g(X)=(1+ X+ X*. Find the quotient and remainder terms.
Compare the circuit implementation to the polynomial division steps performed by
hand.

Solution

The dividing circuit needs to perform the following operation:

X'+ X+ X5 ¥ p(X)
3 _Fq( )+ 3
1+ X+ X 1+ X+ X
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Feedback polynomial

e

X0 X' X? X3

Y

——+—» QOutput

Input
0001011

Figure 6.17 Dividing circuit for Example 6.9.

The required feedback shift register, following the general form of Figure 6.16. is
shown in Figure 6.17. Assume that the register contents are initially zero. The opera-
tional steps of the circuit are as follows:

Input queue Shift number Register contents Outout and Feedback
0001011 0 000 -
000101 1 100 0
00010 2 110 0
0001 3 011 0
000 4 011 1
00 5 111 1
0 6 101 1
—~ 7 100 1

After the fourth shift, the quotient coefficients {g,} serially presented at the output are
seen to be 1 111, or the quotient polynomial is q(X) =1+ X + X? + X°. The remainder
coefficients {p,} are 1 0 0, or the remainder polynomial p(X) = 1. In summary, the
circuit computation V(X)/g(X) is seen to be

X'+ X+ X° 1
X —=1+X+ X+ X+ ————
1+ X+ X- 1+ X+ X
The polynomial division steps are as follows:
Output after shift number:
4 5 6 7
[ A
| X+ X+ X + 1
X'+ X+1 X5+ X3 T X0
X0 + XY 4+ X - feedback after 4th shift
XS 4+ x4 register after 4th shift
X5 + X+ Xl feedback after Sth shift
X4+ X'+ X! - register after Sth shift
X4 + x? + ¥ -«—— feedback after 6th shift
X3 + X -«———— register after 6th shift
X’ + X+ 1 -e— feedback after 7th shift
| -«—— register after 7th shift

(remainder)
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6.7.5 Systematic Encoding with an
(n - k)-Stage Shift Register

The encoding of a cyclic code in systematic form has been shown, in Section 6.7.3,
to involve the computation of parity bits as the result of the formation of
X"~ *m(X) modulo g(X), in other words, the division of an upshifted (right shifted)
message polynomial by a generator polynomial g(X). The need for upshifting is to
make room for the parity bits, which are appended to the message bits, yielding the
code vector in systematic form. Upshifting the message bits by n — k positions is a
trivial operation and is not really performed as part of the dividing circuit. Instead,
only the parity bits are computed; they are then placed in the appropriate location
alongside the message bits. The parity polynomial is the remainder after dividing by
the generator polynomial; it is available in the register after n shifts through the
(n — k)-stage feedback register shown in Figure 6.17. Notice that the first n — k
shifts through the register are simply filling the register. We cannot have any feed-
back until the rightmost stage has been filled; we therefore can shorten the shifting
cycle by loading the input data to the output of the last stage, as shown in Figure
6.18. Further, the feedback term into the leftmost stage is the sum of the input and
the rightmost stage. We guarantee that this sum is generated by ensuring that
8o = &n - = 1 for any generator polynomial g(X). The circuit feedback connections
correspond to the coefficients of the generator polynomial, which is written as

gX) =1+ g X+ gX* + - +g, X014 xnk (6.66)

The following steps describe the encoding procedure used with the Figure 6.18
encoder:

Switch

f |

1

Po

| |

P2 L s s o Pr-k-1

- df)

3

n — k shift register stages - Output

Y

|
m(X) o

Switch 2

Figure 6.18 Encoding with an (n — k)-stage shift register.
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1. Switch 1 is closed during the first k& shifts, to allow transmission of the
message bits into the n — k stage encoding shift register.

2. Switch 2 is in the down position to allow transmission of the message bits
directly to an output register during the first k shifts.

3. After transmission of the kth message bit, switch 1 is opened and switch 2 is
moved to the up position.

4. The remaining n — k shifts clear the encoding register by moving the parity
bits to the output register.

5. The total number of shifts is equal to n, and the contents of the output regis-
ter is the codeword polynomial p(X) + X"~ *m(X).

Example 6.10 Systematic Encoding of a Cyclic Code

Use a feedback shift register of the form shown in Figure 6.18 to encode the message
vectorm =1 0 1 1 into a (7, 4) codeword using the generator polynomial g(X) =
1+ X+X°

Solution
m=1011
mX)=1+X"+X°
X" 'm(X) = X’'m(X) =X+ X"+ X°
X""m(X) = q(X)g(X) + p(X)

p(X) = (X* + X° + X®*) modulo (1 + X+ X7)

For the (n — k) = 3-stage encoding shift register shown in Figure 6.19, the operational
steps are as follows:

Assume: gX)=1+X+X3
and m = 1011

_—
-

Switch
1

mX)=1+X2+X3

Y

Input © |
Switch 2

Figure 6.19 Example of encoding a (7, 4) cyclic code with an
(n — k)-stage shift register.

364 Channel Coding: Part 1 Chap. 6






Switch

Received Switch o, Syndrome
vector 2 output

1001011

Figure 6.20 Example of syndrome calculation with an (n — k)-stage shift register.

tents of the register is the syndrome. Switch 1 is then opened and switch 2 is closed,
so that the syndrome vector can be shifted out of the register. The operational
steps of the decoder are as follows:

Input queue Shift number Register contents

1001011 0 000
100101 1 100
10010 2 110
1001 3 011
100 4 011
10 5 111
1 6 101

— 7 000| Syndrome

If the syndrome is an all-zeros vector, the received vector is assumed to be a valid
codeword. If the syndrome is a nonzero vector, the received vector is a perturbed
codeword and errors have been detected; such errors can be corrected by adding
the error vector (indicated by the syndrome) to the received vector, similar to the
procedure described in Section 6.4.8. This method of decoding is useful for simple
codes. More complex codes require the use of algebraic techniques to obtain prac-
tical decoders [6, 8]

6.8 WELL-KNOWN BLOCK CODES
6.8.1 Hamming Codes

Hamming codes are a simple class of block codes characterized by the structure
(n,k) =(@2" =127 —1—-m) (6.71)

where m = 2, 3,.... These codes have a minimum distance of 3 and thus, from
Equations (6.44) and (6.47), they are capable of correcting all single errors or de-
tecting all combinations of two or fewer errors within a block. Syndrome decoding
is especially suited for Hamming codes. In fact, the syndrome can be formed to act
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as a binary pointer to identify the error location [5]. Although Hamming codes are
not very powerful, they belong to a very limited class of block codes known as
perfect codes, described in Section 6.5.4,

Assuming hard decision decoding, the bit error probability can be written,
from Equation (6.46), as

1 < L TS n—j
Py=— J( .)P*’{l -p) (6.72)
h =" \]J
where p is the channel symbol error probability (transition probability on the
binary symmetric channel). In place of Equation (6.72) we can use the following
equivalent equation. Its identity with Equation (6.72) is proven in Appendix D,
Equation (D.16):

Py = p—p(l—-p)" (6.73)

Figure 6.21 is a plot of the decoded Py versus channel-symbol error probability,
illustrating the comparative performance for different types of block codes. For the

-2
10 11
Hamming (31, 26) ¢t = 1
103} Hamming (15, 11) ¢ = 1
™ ‘ Hamming (7, 4) t = 1
=
E
3 104}
o
- Extended Golay (24, 12) ¢t = 3
g % BCH (127, 64) £ = 10
£ ,“ BCH (127, 36) t = 15
o 107° '
]
=
o
Q
@
O
106 |- -
10—]" ] [ |
10-1 102 10-3 104

Channel symbol error probability, p

Figure 6.21 Bit error probability versus channel symbol error probability
for several block codes.
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Hamming codes, the plots are shown for m =3, 4, and 5, or (n, k) =(7,4), (15, 11),
and (31, 26). For performance over a Gaussian channel using coherently demodu-
lated BPSK, we can express the channel symbol error probability in terms of E_./Nj,

similar to Equation (4.79), as
Q(!Za) (6.74)
P = .
\ N,

where E./N, 1s the code symbol energy per noise spectral density, and where Q(x)
is as defined in Equation (3.43). To relate E./N, to information bit energy per noise

spectral density (E,/N,), we use
E, k\ E o
- = (—) - (6.75)

Ny n/ Ny
For Hamming codes, Equation (6.75) becomes

Eﬁ._E"’—l—mEb .
N{] B 2!?‘! - ] Nﬂ (6'?6)

Combining Equation (6.73), (6.74), and (6.76), P, can be expressed as a function of
E /N, for coherently demodulated BPSK over a Gaussian channel. The results are
plotted in Figure 6.22 for different types of block codes. For the Hamming codes,
plots are shown for (n, k) =(7,4), (15, 11), and (31, 26).

Example 6.11 Error Probability for Modulated and Coded Signals

A coded orthogonal BFSK modulated signal is transmitted over a Gaussian channel.
The signal is noncoherently detected and hard-decision decoded. Find the decoded bit
error probability if the coding is a Hamming (7, 4) block code and the received E,/N,
is equal to 20.

Solution

First we need to find £./N; using Equation (6.75):

e _ 2 00) = 1143

N, 7@ =1
Then, for coded noncoherent BFSK, we can relate the probability of a channel symbol
error to E_ /N, similar to Equation (4.96), as follows

1 ( &)
P =7 %P\ 72N,

1 11.43
= 5 €xp (-—T) =1.6 X107

Using this result in Equation (6.73), we solve for the probability of a decoded bit
error, as follows:

Pe=p—p(l —p)=16x10"°
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PROBLEMS

6.1. Design an (n, k) single-parity code that will detect all 1-, 3-, 5-, and 7-crror patterns
in a block. Show the values of n and &, and find the probability of an undetected
block error if the probability of channel symbol error is 1072,

6.2. Calculate the probability of message error for a 12-bit data sequence encoded with a
(24, 12) linear block code. Assume that the code corrects all 1-bit and 2-bit error pat-
terns and assume that it corrects no error patterns with more than two errors. Also,
assume that the probability of a channel symbol error is 107,

6.3. Consider a (127, 92) linear block code capable of triple error corrections.
(a) What 1s the probability of message error for an uncoded block of 92 bits if the
channel symbol error probability is 1072
(b) What is the probability of message error when using the (127, 92) block code if
the channel symbol error probability of 1077

6.4. Calculate the improvement in probability of message error relative to an uncoded
transmission for a (24, 12) double-error-correcting linear block code. Assume that
coherent BPSK modulation is used and that the received E,/N, =10 dB.

6.5. Consider a (24, 12) linear block code capable of double-error corrections. Assume
that a noncoherently detected binary orthogonal frequency-shift keying (BFSK)
modulation format is used and that the received E,/N, =14 dB.

(a) Does the code provide any improvement in probability of message error? If it
does, how much? If it does not, explain why not.
(b) Repeat part (a) with E,/N, =10 dB.

6.6. The telephone company uses a “best-of-five” encoder for some of its digital data
channels. In this system every data bit is repeated five times, and at the receiver, a
majority vote decides the value of each data bit. If the uncoded probability of bit
error is 107, calculate the decoded bit-error probability when using such a best-of-
five code.
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diagram shows that if the first input bit is a zero, the output branch word is 00 and,
if the first input bit is a one, the output branch word is 11. Similarly, if the first
input bit is a one and the second input bit is a zero, the second output branch word
is 10. Or, if the first input bit is a one and the second input bit is a one, the second
output branch word is 01. Following this procedure we see that the input sequence
11011 traces the heavy line drawn on the tree diagram in Figure 7.6. This path
corresponds to the output codeword sequence 1101010001.

The added dimension of time in the tree diagram (compared to the state dia-
gram) allows one to dynamically describe the encoder as a function of a particular
input sequence. However, can you see one problem in trying to use a tree diagram
for describing a sequence of any length? The number of branches increases as a
function of 2%, where L is the number of branch words in the sequence. You would
quickly run out of paper, and patience.

7.2.4 The Trellis Diagram

Observation of the Figure 7.6 tree diagram shows that for this example, the struc-
ture repeats itself at time ¢,, after the third branching (in general, the tree structure
repeats after K branchings, where K is the constraint length). We label each node in
the tree of Figure 7.6 to correspond to the four possible states in the shift register,
as follows: @ = 00, b = 10, ¢ = 01, and d = 11. The first branching of the tree struc-
ture, at time f;, produces a pair of nodes labeled a and b. At each successive
branching the number of nodes double. The second branching, at time #,, results in
four nodes labeled g, b, ¢, and d. After the third branching, there are a total of eight
nodes: two are labeled a, two are labeled b, two are labeled ¢, and two are labeled
d. We can see that all branches emanating from two nodes of the same state gener-
ate identical branch word sequences. From this point on, the upper and the lower
halves of the tree are identical. The reason for this should be obvious from exami-
nation of the encoder in Figure 7.3. As the fourth input bit enters the encoder on
the left, the first input bit is ejected on the right and no longer influences the output
branch words. Consequently, the input sequences 100 xy...and000xy...,
where the leftmost bit is the earliest bit, generate the same branch words after the
(K = 3)rd branching. This means that any two nodes having the same state label at
the same time 7, can be merged, since all succeeding paths will be indistinguishable.
If we do this to the tree structure of Figure 7.6, we obtain another diagram, called
the trellis diagram. The trellis diagram, by exploiting the repetitive structure, pro-
vides a more manageable encoder description than does the tree diagram. The trel-
lis diagram for the convolutional encoder of Figure 7.3 is shown in Figure 7.7.

In drawing the trellis diagram, we use the same convention that we intro-
duced with the state diagram—a solid line denotes the output generated by an
input bit zero, and a dashed line denotes the output generated by an input bit one.
The nodes of the trellis characterize the encoder states; the first row nodes corre-
spond to the state a = 00, the second and subsequent rows correspond to the states
b =10, ¢ =01, and d = 11. At each unit of time, the trellis requires 2X~ ! nodes to
represent the 2% ~' possible encoder states. The trellis in our example assumes a
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7.3 FORMULATION OF THE CONVOLUTIONAL
DECODING PROBLEM

7.3.1 Maximum Likelihood Decoding

If all input message sequences are equally likely, a decoder that achieves the mini-
mum probability of error is one that compares the conditional probabilities, also
called the likelihood functions P(Z|U"™), where Z is the received sequence and
U" is one of the possible transmitted sequences, and chooses the maximum. The
decoder chooses U™ if

P(Z|U"™)) = max P(Z|U"™)

over all U™ (7.1)

The maximum likelihood concept, as stated in Equation (7.1), is a fundamental
development of decision theory (see Appendix B); it is the formalization of a
“common-sense” way to make decisions when there is statistical knowledge of the
possibilities. In the binary demodulation treatment in Chapters 3 and 4 there were
only two equally likely possible signals, s,(¢) or s,(¢), that might have been transmit-
ted. Therefore, to make the binary maximum likelihood decision, given a received
signal, meant only to decide that s,(r) was transmitted if

pzlsy) > p(zlsz)

otherwise, to decide that s,(r) was transmitted. The parameter z represents z(7),
the receiver predetection value at the end of each symbol duration time ¢ = 7. How-
ever, when applying maximum likelihood to the convolutional decoding problem,
we observe that the convolutional code has memory (the received sequence repre-
sents the superposition of current bits and prior bits). Thus, applying maximum
likelihood to the decoding of convolutionally encoded bits is performed in the con-
text of choosing the most likely sequence, as shown in Equation (7.1). There are
typically a mulritude of possible codeword sequences that might have been trans-
mitted. To be specific, for a binary code, a sequence of L branch words is a member
of a set of 2* possible sequences. Therefore, in the maximum likelihood context, we
can say that the decoder chooses a particular U™ as the transmitted sequence if
the likelihood P(Z|U"") is greater than the likelihoods of all the other possible
transmitted sequences. Such an optimal decoder, which minimizes the error proba-
bility (for the case where all transmitted sequences are equally likely), is known as
a maximum likelihood decoder. The likelihood functions are given or computed
from the specifications of the channel.

We will assume that the noise is additive white Gaussian with zero mean and
the channel is memoryless, which means that the noise affects each code symbol
independently of all the other symbols. For a convolutional code of rate 1/n, we
can therefore express the likelihood as

o fl

P@U™) = TIP(Z U = T] TTP(duty) (72)

i=1 i=1 j=1
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one stage deeper, and again compute eight metrics, this time from t, through ¢,.
Having decoded the first two code symbols, we now slide over two code symbols to
the right and again compute the path metrics for six code symbols. This takes place
in the block marked B in Figure 7.25. Again, listing the metrics from top path to
bottom path, we find that they are

Upper-half metrics: 2,4, 3,3

Lower-half metrics: 3,1, 4,4

For the assumed received sequence, the minimum metric is found in the lower half
of block B. Therefore, the second decoded bit is one.

The same procedure continues until the entire message is decoded. The
decoder is called a feedback decoder because the detection decisions are fed back
to the decoder in determining the subset of code paths that are to be considered
next. On the BSC, the feedback decoder can perform nearly as well as the Viterbi
decoder [17] in that it can correct all the more probable error patterns, namely all
those of weight (d; — 1)/2 or less, where d; is the free distance of the code. An
important design parameter for feedback convolutional decoders is L, the look-
ahead length. Increasing L increases the coding gain but also increases the decoder
implementation complexity.

7.6 CONCLUSION

In the last decade, coding emphasis has been in the area of convolutional codes
since in almost every application, convolutional codes outperform block codes for
the same implementation complexity of the encoder—decoder. For satellite commu-
nication channels, forward error correction techniques can easily reduce the
required SNR for a specified error performance by 5 to 6 dB. This coding gain
can translate directly into an equivalent reduction in required satellite effective
radiated power (EIRP), with consequently reduced satellite weight and cost.

In this chapter we have outlined the essential structural difference between
block codes and convolutional codes—the fact that rate 1/n convolutional codes
have a memory of the prior K — 1 bits, where K is the encoder constraint length.
With such memory, the encoding of each input data bit not only depends on the
value of that bit but on the values of the K - 1 input bits that precede it. We pre-
sented the decoding problem in the context of the maximum likelihood algorithm,
examining all the candidate codeword sequences which could possibly be created
by the encoder, and selecting the one that appears statistically most likely; the deci-
sion is based on a distance metric for the received code symbols. The error perfor-
mance analysis of convolutional codes is more complicated than the simple
binomial expansion describing the error performance of many block codes. We laid
out the concept of free distance, and we presented the relationship between free
distance and error performance in terms of bounds. We also described the basic
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idea behind sequential decoding and feedback decoding and showed some compar-
ative performance curves and tables for various coding schemes.
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PROBLEMS

?I 1#

7.2

7.3.

74.

Draw the state diagram, tree diagram, and trellis diagram for the K = 3, rate 1 code
generated by

g(X) =X+ X°
g.,(X) =14+ X
giX) =1+ X+ X?

Given a K = 3, rate 3, binary convolutional code with the partially completed state
diagram shown in Figure P7.1, find the complete state diagram and sketch a diagram
for the encoder.

Draw the state diagram, tree diagram, and trellis diagram for the convolutional
encoder characterized by the block diagram in Figure P7.2.

Suppose that you were trying to find the quickest way to get from London to Vienna
by boat or train. The diagram in Figure P7.3 was constructed from various schedules.
The tabels on each path are travel times. Using the Viterbi algorithm, find the fastest
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route from London to Vienna. In a general sense, explain how the algorithm works,
what calculations must be made, and what information must be retained in the mem-
ory used by the algorithm.

7.5. Consider the convolutional encoder shown in Figure P7.4.

(a) Write the connection vectors and polynomials for this encoder.
(b) Draw the state diagram, tree diagram, and trellis diagram.

7.6. What is the impulse response of the encoder of Problem 7.57 Using the impulse

response, determine the output sequence when the input is 1 0 1. Verity by using
the generator polynomials.

7.7. Does the encoder of Problem 7.5 exhibit the properties of catastrophic error

propagation? Justify your answer with an example.

7.8. Find the free distance of the encoder of Problem 7.3 by the transfer function method.
7.9. Let the codewords of a coding scheme be

a=000000
b=101010
c=010101
d=111111

If the received sequence over a binary symmetric channel is 1 11 01 0 and a
maximum likelihood decoder is used, what will be the decoded symbol?

7.10. Consider that the K = 3, rate 5 encoder of Figure 7.3 is used over a binary symmetric

432

channel (BSC). Assume that the initial encoder state is the 00 state. At the output of
the BSC, the sequence Z=(110000101 1 rest all “0”) is received.

London 10 Amsterdam 9 MuEich 8 Vienna

Fa

Paris 8 Basel Figure P7.3
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Figure P7.4

(a) Find the maximum likelihood path through the trellis diagram, and determine
the first 5 decoded information bits. If a tie occurs between any two merged
paths, choose the upper branch entering the particular state.

(b) Identify any channel bits in Z that were inverted by the channel during
transmission.

7.11. Determine which of the following rate ; codes are catastrophic.
(a) g(X)=X, gX)=1+X+X
b) g(X)=1+X gX)=1+X°
(©) g(X)=1+X+X2, g(X)=1+X+X+X*
dgX)=1+X+X+X', gX)=1+X+Xx*
() g(X)=1+X'"+X"+X", gX)=1+X+X*
M g(X)=1+X+X", gX)=1+X+X+X*

7.12. (a) Consider a coherently detected BPSK signal encoded with the encoder shown in
Figure 7.3. Find an upper bound on the bit error probability, Py, if the available
E,/Nyis 6 dB. Assume hard decision decoding.
(b) Compare Py with the uncoded case and calculate the improvement factor.
7.13. Using sequential decoding, illustrate the path along the tree diagram shown in
Figure 7.22 when the received sequence is0 111000 11 1. The backup criterion
is three disagreements.

7.14. Repeat the decoding example of Problem 7.13 using feedback decoding, with a look-
ahead length of 3. In the event of a tie, select the upper half of the tree.

Input — "E"'—o Output

Figure P7.5
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diagram to decode the first three data bits. Assume that the encoder had started in
the 00 state, and that the decoding process is perfectly synchronized.

QUESTIONS

Tl-li

In convolutional encoding, why is flushing of the register periodically performed?
(See Sections 7.2.1 and 7.3.4.)

7.2. Define what is meant by the state of a machine. (See Section 7.2.2.)

7.3. What is a finite-state machine? (See Section 7.2.2.)

7.4. What arc soft decisions, and how much greater complexity is there in the process
of soft-decision Viterbi decoding as compared with hard decision decoding? (Sece
Sections 7.3.2 and 7.4.8.)

7.5. What is another (descriptive) name for a binary symmetric channel (BSC)? (See
Section 7.3.2.1.)

7.6. Describe the Add-Compare-Select (ACS) computations performed in the process of
Viterbi decoding. (See Section 7.3.5.)

7.7. On a trellis diagram, an error is associated with a surviving path that diverges from,
and then remerges to the correct path. Why is it necessary for the path to remerge?
(See Section 7.4.1.)

EXERCISES

Using the Companion CD, run the exercises associated with Chapter 7.
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8.1 REED-SOLOMON CODES

Reed-Solomon (R-S) codes are nonbinary cyclic codes with symbols made up of
m-bit sequences, where m is any positive integer having a value greater than 2.
R-S (n, k) codes on m-bit symbols exist for all » and k for which

0<k<n<2"+2 (8.1)

where k is the number of data symbols being encoded, and # is the total number of
code symbols in the encoded block. For the most conventional R-S (#, k) code,

(nk) = (2" —1,2" —1—2r) (8.2)

where t is the symbol-error correcting capability of the code, and n — k = 2t is the
number of parity symbols. An extended R-S code can be made up with n = 2" or
n =2"+1, but not any further.

Reed-Solomon (R-S) codes achieve the largest possible code minimum dis-
tance for any linear code with the same encoder input and output block lengths.
For nonbinary codes, the distance between two codewords is defined (analogous to
Hamming distance) as the number of symbols in which the sequences differ. For
Reed-Solomon codes the code minimum distance is given by [1]

dyn=n—k+1 (8.3)

The code is capable of correcting any combination of ¢ or fewer errors, where ¢
obtained from Equation (6.44), can be expressed as
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t:{dmmz-lJ:Ln;kJ (8:4)

where |x] means the largest integer not to exceed x. Equation (8.4) illustrates that

for the case of R-S codes, correcting ¢ symbol errors requires no more than 2¢

parity symbols. Equation (8.4) lends itself to the following intuitive reasoning. One

can say that the decoder has n — k redundant symbols “to spend,” which is twice the

amount of correctable errors. For each error, one redundant symbol is used to

locate the error, and another redundant symbol is used to find its correct value.
The erasure-correcting capability of the code is

p=dm,—1=n—k (8.5)

Simultaneous error-correction and erasure-correction capability can be
expressed by the requirement that

2ty <dg, <n-—k (8.6)

where « is the number of symbol error patterns that can be corrected, and vy is the
number of symbol erasure patterns that can be corrected. An advantage of nonbi-
nary codes such as a Reed-Solomon code can be seen by the following comparison.
Consider a binary (n, k) = (7, 3) code. The entire n-tuple space contains 2" = 27 =
128 n-tuples, of which 2 = 2*= 8 (or 1/16 of the n-tuples) are codewords. Next
consider a nonbinary (n, k) = (7, 3) code where each symbol comprises m = 3 bits.
The n-tuple space amounts to 2" = 2! = 2,097,152 n-tuples, of which 2" = 2° = 512
(or 1/4096 of the n-tuples) are codewords. When dealing with nonbinary symbols,
each made up of m bits, only a small fraction (i.e., 2" of the large number 2"™) of
possible n-tuples are codewords. This fraction decreases with increasing values
of m. The important point here is that, when a small fraction of the n-tuple space is
used for codewords, a large d,;, can be created.

Any linear code is capable of correcting n — k symbol erasure patterns if the
n — k erased symbols all happen to lie on the parity symbols. However, R-S codes
have the remarkable property that they are able to correct any set of n — k symbol
erasures within the block. R-S codes can be designed to have any redundancy.
However, the complexity of a high speed implementation increases with redun-
dancy. Thus, the most attractive R-S codes have high code rates (low redundancy).

8.1.1 Reed-Solomon Error Probability

The Reed-Solomon (R-S) codes are particularly useful for burst-error correction,
that is, they are effective for channels that have memory. Also, they can be used ef-
ficiently on channels where the set of input symbols is large. An interesting feature
of the R-S code is that as many as two information symbols can be added to an
R-S code of length n without reducing its minimum distance. This extended R-S
code has length n + 2 and the same number of parity check symbols as the original
code. From Equation (6.46), the R-S decoded symbol error probability, Pr. in
terms of the channel symbol error probability, p, can be written as follows [2]:
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where ¢ is the symbol-error correcting capability of the code, and the symbols are
made up of m bits each.

The bit error probability can be upper bounded by the symbol error probabil-
ity for specific modulation types. For MFSK modulation with M = 2", the relation-
ship between Py and P as given in Equation (4.1 12) is repeated here:

PB om= 1

P 2" -1
Figure 8.1 shows P, versus the channel symbol error probability p, plotted

from Equations (8.7) and (8.8) for various t-error-correcting 32-ary orthogonal
Reed-Solomon codes with n = 31 (thirty-one 5-bit symbols per code block).

zzm—lj:tEH]

(8.8)

Figure 8.1 Pgversus p for 32-ary
srthogonal signaling and n = 31,
~error-correcting  Reed-Solomon
zoding. (Reprinted with permission
‘rom Data Communications, Net-
works and Systems, ed. Thomas C.
Bartee, Howard W. Sams Com-
oany, Indianapolis, Ind., 1985,
0. 311. Originally published in J. P.
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Figure 8.2 shows Py versus E,/N, for such a coded system using 32-ary MFSK mod-
ulation and noncoherent demodulation over an AWGN channel {2]. For R-S
codes, error probability is an exponentially decreasing function of block length. n,
and decoding complexity is proportional to a small power of the block length [1].
The R-S codes are sometimes used in a concatenated arrangement. In such a
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Figure 8.2 Bit error probability versus E,/N, performance of several
n = 31, terror correcting Reed-Solomon coding systems with 32-ary
MFSK modulation over an AWGN channel. (Reprinted with permission
from Data Communications, Networks, and Systems, ed. Thomas C.
Bartee, Howard W. Sams Company, Indianapolis, Ind., 1985, p. 312.
Originally published in J. P. Odenwalder, Error Control Coding Hand-
book, M/A-COM LINKABIT, Inc. San Diego, Calif., July 15, 1976, p. 92.)
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system, an inner convolutional decoder first provides some error control by operat-
ing on soft-decision demodulator outputs; the convolutional decoder then presents
hard-decision data to the outer Reed—Solomon decoder, which further reduces the
probability of error. In Sections 8.2.3 and 8.3 we discuss further the use of concate-
nated and R-S coding as applied to the compact disc (CD) digital audio system.

8.1.2 Why R-S Codes Perform Well Against Burst Noise

Consider an (n, k) = (255, 247) R-S code, where each symbol is made up of m = 8
bits (such symbols are typically referred to as bytes). Since n — k = 8. Equation (8.4)
indicates that this code can correct any 4 symbol errors in a block of 255. Imagine
the presence of a noise burst, lasting for 25-bit durations and disturbing one block
of data during transmission, as illustrated in Figure 8.3. In this example, notice that
a burst of noise that lasts for a duration of 25 contiguous bits, must disturb exactly 4
symbols. The R-S decoder for the (255, 247) code will correct any 4-symbol errors
without regard to the type of damage suffered by the symbol. In other words, when
a decoder corrects a byte, it replaces the incorrect byte with the correct one,
whether the error was caused by one bit being corrupted or all 8 bits being cor-
rupted. Thus, if a symbol is wrong, it might as well be wrong in all of its bit posi-
tions. This gives a R-S code a tremendous burst-noise advantage over binary
codes, even allowing for the interleaving of binary codes. In this example, if the
25-bit noise disturbance had occurred in a random fashion rather than as a contigu-
ous burst, it should be clear that there would then be many more than 4 symbols
affected (as many as 25 symbols might be disturbed). Of course, that would be
beyond the capability of the (255, 247) code.

8.1.3 R-S Performance as a Function of Size, Redundancy,
and Code Rate

For a code to successfully combat the effects of noise, the noise duration has to rep-
resent a relatively small percentage of the codeword. To ensure that this happens
most of the time, the received noise should be averaged over a long period of time,
reducing the effect of a sudden or unusual streak of bad luck. Hence, one can ex-
pect that error-correcting codes become more efficient (error performance im-
proves) as the code block size increases, making R-S codes an attractive choice

25-Bit noise burst

SYMB 1 SYMB 2 SYMB 3 SYMB 4 SYMB 5 SYMB 6

OK HIT HIT HIT HIT OK

Figure 8.3 Data block disturbed by 25-bit noise burst.
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Figure 8.4 Reed-Solomon, rate 7/8, decoder performance as a
function of symbol size.

whenever long block lengths are desired [3]. This is seen by the family of curves in
Figure 8.4, where the rate of the code is held at a constant 7/8, while its block size
increases from n = 32 symbols (with m = 5 bits per symbol) to n =256 symbols (with
m = 8 bits per symbol). Thus, the block size increases from 160 bits to 2048 bits.

As the redundancy of an R-S code increases (lower code rate), its implemen-
tation grows in complexity (especially for high speed devices). Also, the bandwidth
expansion must grow for any real-time communications application. However, the
benefit of increased redundancy, just like the benefit of increased symbol size, is
the improvement in bit-error performance, as can be seen in Figure 8.5, where the
code length n is held at a constant 64, while number of data symbols decreases from
k =60 to k = 4 (redundancy increases from 4 symbols to 60 symbols).

Figure 8.5 represents transfer functions (output bit-error probability versus
input channel symbol-error probability) of hypothetical decoders. Because there is
no system or channel in mind {only an output-versus-input of a decoder), one
might get the idea that the improved error performance versus increased redun-
dancy is a monotonic function that will continually provide system improvement
even as the code rate approaches zero. However, this is not the case for codes oper-
ating in a real-time communication system. As the rate of a code varies from
minimum to maximum (0 to 1), it is interesting to observe the effects shown in
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Figure 8.5 Reed-Solomon (64, k) decoder performance as a function
of redundancy.

Figure 8.6. Here, the performance curves are plotted for BPSK modulation and an
R-S (31, k) code for various channel types. Figure 8.6 reflects a real-time commu-
nication system, where the price paid for error-correction coding is bandwidth ex-
pansion by a factor equal to the inverse of the code rate. The curves plotted show
clear optimum code rates which minimize the required E,/N [4]. The optimum
code rate is about 0.6 to 0.7 for a Gaussian channel, 0.5 for a Rician-fading channel
(with the ratio of direct to reflected received signal power, K = 7 dB), and 0.3 for a
Rayleigh-fading channel. (Fading channels are treated in Chapter 15.) Why is there
an E,/N, degradation for very large rates (small redundancy) and very low rates
(large redundancy)? It is easy to explain the degradation at high rates compared
with the optimum rate. Any code generally provides a coding gain benefit; thus, as
the code rate approaches unity (no coding), the system will suffer worse error per-
formance. The degradation at low code rates is more subtle because in a real-time
communication system using both modulation and coding, there are two mecha-
nisms at work. One mechanism works to improve error performance, and the other
works to degrade it. The improving mechanism is the coding; the greater the redun-
dancy, the greater will be the error-correcting capability of the code. The degrading
mechanism is the energy reduction per channel symbol (compared with the data
symbol) which stems from the increased redundancy (and faster signaling in a
real-time communication system). The reduced symbol energy causes the demodu-
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lator to make more errors. Eventually, the second mechanism wins out, and thus, at
very low code rates the system experiences error-performance degradation.

Let us see if we can corroborate the error performance versus code rate in
Figure 8.6 with the curves in Figure 8.2. The figures are really not directly compara-
ble because the modulation is BPSK in Figure 8.6, while it is 32-ary MFSK in Fig-
ure 8.2. However, perhaps we can verify that R-S error performance-versus-code
rate exhibits the same general curvature with MFSK modulation as it does with
BPSK. In Figure 8.2, the error performance over an AWGN channel, improves as
the symbol error-correcting capability ¢ increases from t =1 to 7 = 4; the t = 1 and
¢ = 4 cases correspond to R-S (31, 29) and R-S (31, 23) with code rates of 0.94 and
0.74, respectively. However at ¢ = 8, which corresponds to R-S (31, 15) with code
rate equal to 0.48, the error performance at Py = 10~ degrades by about 0.5 dB of
E,/N,, compared with the ¢ = 4 case. From Figure 8.2, we can conclude that if we
were to plot error performance versus code rate, the curve would have the same
general shape as it does in Figure 8.6. Note that this manifestation cannot be
gleaned from Figure 8.1, since that figure represents a decoder transfer function,
which provides no information about the channel and the demodulation. There-
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fore, of the two mechanisms at work in the channel, the Figure 8.1 transfer function
only presents the output-versus-input benefits of the decoder, and displays nothing
about the loss of energy as a function of lower code rate. More is said about choos-
ing a code in concert with a modulation type in Section 9.7.7.

8.1.4 Finite Fields

In order to understand the encoding and decoding principles of nonbinary codes.
such as a Reed-Solomon (R-S) codes, it is necessary to venture into the area of
finite fields known as Galois Fields (GF). For any prime number p there exists a
finite field denoted GF(p), containing p elements. It is possible to extend GF(p) to
a field of p™ elements, called an extension field of GF(p), and denoted by GF(p™),
where m is a nonzero positive integer. Note that GF(p™) contains as a subset the
clements of GF(p). Symbols from the extension field GF(2™) are used in the
construction of Reed-Solomon (R-S) codes.

The binary field GF(2) is a subfield of the extension field GF(2"), much the
same way as the real number field is a subfield of the complex number field. Be-
sides the numbers 0 and 1, there are additional unique elements in the extension
field that will be represented with a new symbol o. Each nonzero element in
GF(2") can be represented by a power of o. An infinite set of clements, F, is
formed by starting with the elements {0, 1, o} and generating additional elements
by progressively multiplying the last entry by o which yields

F=10,1,q, o2, o, 1 =40, ol el o, (8.9)

To obtain the finite set of elements of GF(2™) from F, a condition must be im-
posed on F so that it may contain only 2" elements and is closed under multiplica-
tion. The condition that closes the set of field elements under multiplication is
characterized by the irreducible polynomial

@+ 1=0
or equivalently,
@D =1=¢q° (8.10)

Using this polynomial constraint, any field element that has a power equal to
or greater than 2 — 1 can be reduced to an element with a power less than 27 — 1 as
follows:

Q@) = Q@M gl = gt (8.11)

Thus, Equation (8.10) can be used to form the finite sequence F** from the in-
finite sequence F, as follows:

Ff=1{0,1,a,0% o %o a2} (8.12)

2’”2012}

= 0 1 2 ... -
“{0,0L,OL,OL, , , 00, a0, an,

Therefore, it can be seen from Equation (8.12) that the elements of the finite
field GF(2)™ are given by
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GF(2") = {0,a", o', o2, -+, " 7%} (8.13)

8.1.4.1 Addition in the Extension Field GF(2™)

Each of the 2™ elements of the finite field GF(2") can be represented as a
distinct polynomial of degree m — 1 or less. The degree of a polynomial is the value
of its highest order exponent. We denote each of the nonzero elements of GF(2™)
as a polynomial a,(X), where at least one of the m coefficients of a,(X) is nonzero.
Fori=0,1,2,...,2" -2,

ai - a,-(X) = ai_yo + a“X+ a[.2X2 + -+ al'_,”,IX”,71 (814)

Consider the case of m = 3, where the finite field is denoted GF(2*). Figure
8.7 shows the mapping (developed later) of the seven elements {a'} and the zero el-
ement, in terms of the basis elements {X°, X', X?} described by Equation (8.14).
Since Equation (8.10) indicates that «” = o, there are seven nonzero elements or a
total of eight elements in this field. Each row in the Figure 8.7 mapping comprises a
sequence of binary values representing the coefficients o, ¢, a; ;. and ¢, , in Equa-
tion (8.14). One of the benefits of using extension field elements {«'} in place of bi-
nary elements is the compact notation that facilitates the mathematical
representation of nonbinary encoding and decoding processes. Addition of two ele-
ments of the finite field is then defined as the modulo-2 sum of each of the polyno-
mial coefficients of like powers, i.e.,

of +od = (ag+a; ) +(a, + @ )X+t (@ g, )X (815)

8.1.4.2 A Primitive Polynomial is Used to Define the Finite Field

A class of polynomials called primitive polynomials, is of interest because
such functions define the finite fields of GF(2™) which in turn are needed to define
R-S codes. The following condition is necessary and sufficient to guarantee that a

Basis elements

X0x" x?

F 0 0 0O
a1 0 0
e
I o 0 1 0
d

a2 0 0 1
? a1 1 0
e o 0 11
m
e 05 1 1 1
" af 1 0 1
t ; Figure 8.7 Mapping field elements in terms of basis elements
s o 1 00 for GF(8) with AX) =1+ X+ X2
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polynomial is primitive. An irreducible polynomial, f(X), of degree m is said to be
primitive, if the smallest positive integer n for which f(X) divides X"+ lisn=2"—1.
Note that an irreducible polynomial is one that cannot be factored to yield lower
order polynomials, and that the statement A divides B means that A divided into B
yields a nonzero quotient and a zero remainder. Polynomials will usually be shown
low order-to-high order. Sometimes, it is convenient to follow the reverse format
(e.g., when performing polynomial division).

Example 8.1 Recognizing a Primitive Polynomial

Based on the foregoing definition of a primitive polynomial, determine whether the
following irreducible polynomials are primitive:

(a) T+ X+X*
b)) I+X+ X+ X+ X

Solution

(a) We can verify whether or not this degree m = 4 polynomial is primitive by deter-
mining if it divides X" + 1 = X"~V + 1 = X + 1, but does not divide X" + 1, for
values of n in the range of 1 < n < 15. Tt is easy to verify that 1 + X + X* divides
X" + 1, and after repeated computations it can be verified that 1+ X + X* will not
divide X" + 1 for any n in the range of 1 < n < 15. Therefore,
1 + X+ X*is a primitive polynomial.

(b) It is simple to verify that the polynomial T+ X + X> + X° + X* divides X'* + 1. Test-
ing to see if it will divide X” + 1 for some # that is less than 15, yields the fact that it
also divides X° + 1. Thus, although 1 + X + X? + X° + X" is irreducible, it is not
primitive.

8.1.4.3 The Extension Field GF(2*)

Consider an example involving a primitive polynomial and the finite field that
it defines. Table 8.1 contains a listing of some primitive polynomials. We choose
the first one shown, f(X) = 1 + X + X which defines a finite field GF(2"), where
the degree of the polynomial is m = 3. Thus, there are 2” = 2° = 8 elements in the
field defined by f(X). Solving for the roots of f(X) means that the values of X that
correspond to f(X) = 0 must be found. The familiar binary elements 1 and 0 do not
satisfy (are not roots of) the polynomial f(X) =1+ X+ X3, since f(1) =1 and f(0) =
1 (using modulo-2 arithmetic). Yet, a fundamental theorem of algebra states that a
polynomial of degree m must have precisely m roots. Therefore for this example,
f(X) =0 must yield 3 roots. Clearly a dilemma arises, since the 3 roots do not lie in
the same finite field as the coefficients of f(X). Therefore, they must lie some-
where else; the roots lie in the extension field GF(2°). Let o, an element of the ex-
tension field, be defined as a root of the polynomial f(X). Therefore, it is possible
to write

1l+a+a®=0 (8.16)
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TABLE 8.1 Some Primitive Polynomials

m m

3 1+X+X° 14 T+ X+ X+ X104 x4
4 1+X+Xx* 15 1+X+X%

5 1+ X2+ X° 16 T+ X+ X+ XY+ X
6 1+X+X° 17 1T+ X+ X7

7 1+ X3+ X7 18 1+ X7+ X8

8 1+ X+ X+ X+ X 19 1+ X+ X+ X+ XY
9 1+ x4+ X° 20 1+ X+ X

10 1+ X+ Xx° 21 1+ X2+ X

11 1+ X2+ x1 2 1+ X+ X7

12 T+ X+ X+ X0+ X2 23 1+ X + X+

13 1+ X+ X+ X+ X" 24 1+ X+ X+ X +X¥

Since in the binary field +1 = -1, then o can be represented as
=1+a (8.17)

Thus, o is expressed as a weighted sum of a-terms having lower orders. In fact, all
powers of « can be so expressed. For example, consider

a=ad=a-(1+a)=a+d (8.18a)
Now consider
o =a-a'=a-(a+a) =+’ (8.18b)
From Equations (8.17) and (8.18b), we obtain
o =1+a+a (8.18¢)

Now, using Equation (8.18c), we obtain
d=add=a-l+a+a))=a++d=1+d (8.18d)
And using Equation (8.18d), we obtain

=aa=a-(l+a)=a+aP=1=a" (8.18e)

Note that o’ =", and therefore, the eight finite field elements of GF(2°) are
{0, 0% o, o, o, o, &, o’} (8.19)

The mapping of field elements in terms of basis elements, described by Equa-
tion (8.14) can be demonstrated with the linear feedback shift register (LFSR) cir-
cuit shown in Figure 8.8. The circuit generates (with m = 3) the 2" - 1 nonzero
elements of the field, and thus summarizes the findings of Figure 8.7 and Equations
(8.17) through (8.19). Note that in Figure 8.8, the circuit feedback connections cor-
respond to the coefficients of the polynomial f(X) =1+ X + X", just like for binary
cyclic codes. (See Section 6.7.5.) By starting the circuit in any nonzero state, say 1 0
0. and performing a right-shift at each clock time, it is possible to verify that each of
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Figure 8.8 Extension field elements
can be represented by the contents of
a binary linear feedback shift register
{LFSR) formed from a primitive poly- >

nomial.

X0 X X? X3

the field elements shown in Figure 8.7 (except the all-zeros element) will cyclicly
appear in the stages of the shift register. Two arithmetic operations, addition and
multiplication, can be defined for this GF(2°) finite field. Addition is shown in
Table 8.2, and multiplication is shown in Table 8.3 for the nonzero elements only.
The rules of addition follow from Equations (8.17) through (8.18e), and can be ver-
ified by noticing in Figure 8.7 that the sum of any field elements can be obtained by
adding (modulo-2) the respective coefficients of their basis elements. The multipli-
cation rules in Table 8.3 follow the usual procedure in which the product of the
field elements is obtained by adding their exponents modulo-(2” — 1), or for this
case, modulo-7.

TABLE 8.2 Addition Table for GF(8) with £(X) = 1 + X+ X°

o ol o o3 ot o of
o’ 0 o’ af ol o’ o o
o o 0 o a! o? ol o’
o af o 0 o’ ol o’ o
e o o o 0 o o2 ot
o o’ o’ al of 0 o o’
o’ o af o o o’ 0 ol
af o’ o’ a’ ot o al 0

TABLE 8.3 Multiplication Table for GF(8) with f(X) =1+ X+ X°

(XO OLI OL2 OL3 OL4 OLS (fo
OL“ (X() 0(1 OLZ OL3 OL4 0‘5 ()Lh
()Ll OL] 0L2 0(3 ()L4 OLS OLﬁ OL“
OLZ ()Lz 0L3 0L4 OLS 01.6 OLO OLI
(13 0(3 0L4 OLS 01.6 OL“ (Xl 01.2
OL4 0(4 (XS (16 OL“ ()Ll OLZ OL3
()LS 0(5 0(6 OL() 0L1 OL2 OL3 0L4
OL(’ OLﬁ 0(() 0(1 OLZ ()L3 (X4 0[5

8.1.4.4 A Simple Test to Determine if a Polynomial is Primitive

There is another way of defining a primitive polynomial that makes its verifi-
cation relatively easy. For an irreducible polynomial to be a primitive polynomial.
at least one of its roots must be a primitive element. A primitive element is one that
when raised to higher order exponents will yield all the nonzero elements in the
field. Since the field is a finite field, the number of such elements is finite.
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Example 8.2 A Primitive Polynomial Must Have at Least one Primitive Element

Find the m = 3 roots of f(X) =1+ X + X?, and verify that the polynomial is primitive
by checking that at least one of the roots is a primitive element. What are the roots?
Which ones are primitive?

Solution

The roots will be found by enumeration. Clearly, o” = 1 is not a root because fla") = 1.
Now use Table 8.2 to check if a o' is a root. Since f(a) =1 +a+a’ =1+a’=0, then «
is a root. Now check if «® is a root. f(a?) =1+ o>+ a® =1+ «” = 0. Hence, o? is a root.
Now check if o’ is aroot. f(a¥) =1+’ +a’=1+a’+a’=1+a =a*#0. Hence. o’ is
notaroot. Is ot aroot? fla) =a?+a*+ 1=’ +a*+1=1+a"=0. Yes. it is a root.
Hence, the roots of fAX) =1+ X + X°, are a, o, and &*. It is not difficult to verify that
starting with any one of these roots and generating higher order exponents yields all of
the 7 nonzero elements in the field. Hence, each of the roots is a primitive element.
Since our verification requires that at least one root be a primitive element. the poly-
nomial is primitive.

A relatively simple method to verify if a polynomial is primitive can be de-
scribed in a manner that is related to this example. For any given polynomial under
test, draw the LFSR, with the feedback connections corresponding to the polynomial
coefficients as shown by the example of Figure 8.8. Load into the circuit-registers any
nonzero setting, and perform a right shift with each clock pulse. If the circuit generates
each of the nonzero field elements within one period, then the polynomial that defines
this GF(2™) field is a primitive polynomial.

8.1.5 Reed-Solomon Encoding

Equation (8.2) expresses the most conventional form of Reed-Solomon (R-S)
codes in terms of the parameters n, k, ¢, and any positive integer m > 2. Repeated
here, that equation is

(n,ky=(@" —1,2" =1 —2r) (8.20)

where n — k =2t is the number of parity symbols, and ¢ is the symbol-error correct-
ing capability of the code. The generating polynomial for an R-S code takes the fol-
lowing form:

gX)=go+ g X+ g X+ 4 gy X' + X (8.21)

The degree of the generator polynomial is equal to the number of parity
symbols. R-S codes are a subset of the BCH codes described in Section 6.8.3 and
Table 6.4. Hence, it should be no surprise that this relationship between the degree
of the generator polynomial and the number of parity symbols holds just as it does
for BCH codes. This can be verified by checking any of the generator polynomials
in Table 6.4. Since the generator polynomial is of degree 2¢, there must be precisely
2t successive powers of « that are roots of the polynomial. We designate the roots
of g(X) as: o, o%, ..., a”. It is not necessary to start with the root «; starting with
any power of « is possible. Consider as an example, the (7, 3) double-symbol error
correcting R-S code. We describe the generator polynomial in terms of its 27 =
n—k =4 roots, as follows:
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g(X) = (X— o) (X— o) (X— o) (X— o)
=X’ —(a+ o)X+ )X — (@@ + o) X+ o)
= (X? - o*X+ o) (X - "X+ oY)
=X - (@ +a) X+ (@@ + ) X - (0t o) X+ o
=X*'— X3+ "X - odX + o

Following the format of low order to high order, and changing negative signs to
positive, since in the binary field + 1 =—1, the generator g(X') can be expressed as

g(X) =+ alX+ "X + X + X* (8.22)

8.1.5.1 Encoding in Systematic Form

Since R-S codes are cyclic codes, encoding in systematic form is analogous to
the binary encoding procedure established in Section 6.7.3. We can think of shifting
a message polynomial m(X) into the rightmost k stages of a codeword register and
then appending a parity polynomial p(X) by placing it in the leftmost n — k stages.
Therefore we multiply m(X) by X" %, thereby manipulating the message polyno-
mial algebraically so that it is right-shifted n — k positions. In Chapter 6, this is
shown in Equation (6.61) in the context of binary encoding. Next, we divide X"~ k
m(X) by the generator polynomial g(X ), which is written as

X" m(X) = q(X) g(X) + p(X) (8.23)

where q(X) and p(X) are quotient and remainder polynomials, respectively. Asin the
binary case, the remainder is the parity. Equation (8.23) can also be expressed as

p(X) = X" *m(X) modulo g(X) (8.24)

The resulting codeword polynomial U(X), shown in Equation (6.64), is
rewritten as

U(X) = p(X) + X" *m(X) (8.25)
We demonstrate the steps implied by Equations (8.24) and (8.25) by encoding

the three-symbol message

010 110 111
[ S

— 3 5
Otl o o

with the (7, 3) R-S code whose generator polynomial is given in Equation (8.22).
We first multiply (upshift) the message polynomial o' + &’X + &’ X by X" % = X*,
yielding o' X* + o X° + &> X%, We next divide this upshifted message polynomial by
the generator polynomial in Equation (8.22), o® + a'X + o’X? + o’ X* + X *. Polyno-
mial division with nonbinary coefficients is more tedious than its binary counter-
part (sece Example 6.9), because the required operations of addition (subtraction)
and multiplication (division) must follow the rules in Tables 8.2 and 8.3,
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respectively. It is left as an exercise for the reader to verify that this polynomial di-
vision results in the following remainder (parity) polynomial:

pX) =’ + 2 X+ o X7 + X
Then, from Equation (8.25), the codeword polynomial can be written as

UX) =o' + X+ X + X + o' X' + o’X° + o'X°

8.1.5.2 Systematic Encoding with an (n — k)-Stage Shift Register

Using circuitry to encode a 3-symbol sequence in systematic form with the
(7, 3) R-S code described by g(X) in Equation (8.22) requires the implementation
of a LFSR, as shown in Figure 8.9. It can be easily verified that the multiplier terms
in Figure 8.9 taken from left to right correspond to the coefficients of the polyno-
mial in Equation (8.22) (low order to high order). This encoding process is the non-
binary equivalent of the cyclic encoding that was described in Section 6.7.5. Here,
corresponding to Equation (8.20), the (7, 3) R-S nonzero codewords are made up
of 2" — 1 =7 symbols, and each symbol is made of m = 3 bits.

Notice the similarity amongst Figures 8.9, 6.18, and 6.19. In all three cases the
number of stages in the shift register is # — k. The figures in Chapter 6 illustrate
binary examples where each shift-register stage holds 1 bit. Here the example is
nonbinary, so that each stage in the shift register of Figure 8.9 holds a 3-bit symbol.
In Figure 6.18, the coefficients labeled g, g,, . . . are binary. Therefore, they take on
values of 1 or 0, simply dictating the presence or absence of a connection in the
LFSR. However in Figure 8.9, since each coefficient is specified by 3-bits, it can
take on one of 8 values.

The nonbinary operation implemented by the encoder of Figure 8.9, forming
codewords in a systematic format, proceeds in the same way as the binary one. The
steps can be described as follows:

1. Switch 1 is closed during the first k clock cycles to allow shifting the message
symbols into the (n — k)-stage shift register.

X0 X! X2 X3 X4
Bl Feedback
o o® o3 Switch 1

D Output

symbot

sequence
Input message symbol sequence
010 110 M1 — Switch 2

ol os ob
Figure 8.9 LFSR Encoder for a (7,3) R—S code.
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2. Switch 2 is in the down position during the first k clock cycles in order to
allow simultaneous transfer of the message symbols directly to an output
register (not shown in Figure 8.9).

3. After transfer of the kth message symbol to the output register, switch 1 is
opened and switch 2 is moved to the up position.

4. The remaining (n — k) clock cycles clear the parity symbols contained in the
shift register by moving them to the output register.

5. The total number of clock cycles is equal to n, and the contents of the output
register is the codeword polynomial p(X) + X"~ *m(X), where p(X) repre-
sents the parity symbols, and m(X) the message symbols in polynomial form.

We use the same symbol sequence that was chosen as a test message in
Section 8.1.5.1, and we write

010 110 111
—— e e
0Ll 0(3 OLS

where the rightmost symbol is the earliest symbol, and the rightmost bit is the
earliest bit. The operational steps during the first k = 3 shifts of the encoding circuit
of Figure 8.9 are as follows:

CLOCK
INPUT QUEUE CYCLE REGISTER CONTENTS FEEDBACK
al o’ o’ 0 0 0 0 0 o’
al o’ 1 o af o’ al o’
ol 2 o’ 0 o? o? o
— 3 o’ o? ot al —

After the third clock cycle, the register contents are the 4 parity symbols, o,
o2, of, and °, as shown. Then, switch 1 of the circuit is opened, switch 2 is toggled
to the up position, and the parity symbols contained in the register are shifted to
the output. Therefore the output codeword, written in polynomial form, can be ex-
pressed as

U(X) = iunX"

Ux) = o + o2 X + ot X2 + ofX3 + ol Xt + CX° + oCXC (8.26)
= (100) + (001) X + (011) X* + (101) X? + (010) X* + (110) X* + (111) X

The process of verifying the contents of the register at various clock cycles is some-
what more tedious than in the binary case. Here, the field elements must be added
and multiplied by using Table 8.2 and Table 8.3, respectively.

The roots of a generator polynomial g(X ) must also be the roots of the code-
word generated by g(X ), because a valid codeword is of the form

U(X) = m(X) g(X) (827)
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Therefore an arbitrary codeword, when evaluated at any root of g(X'), must
yield zero. It is of interest to verify that the codeword polynomial in Equation
(8.26) does indeed yield zero when evaluated at the 4 roots of g(X). In other

words, this means checking that

U(a)

U(e?) = U(@’) =U() =0

Evaluating each term independently yields

U(a) =

R R R R
wn

Il
R R R R

[*8)

+

W o= o
R L R R
i8] =) (5
i+ +

R R Q R

fan T el
FH++ A+ o+
R R R R
=
I+ + +

—

[

L I S e e |
I+ + +

R, R R, R

R R R R
[= N A T N e )
R R R R
DN N D
I+ + +

o+ o'+ o+ o+
@’ +a?+ o+ o + o
af + ot

0

of + a2+ o + o+ o
al+ o+ +al+ o’

o + ot

0

al® + o5 + a® + o' + o2
o+ o'+ o+ ot + ol
o’ + o

0

a2+ a4+ a7 + o+ o
& +at ot o+ al

o + ol

0

This demonstrates the expected results that a codeword evaluated at any root of

g(X') must yield zero.

8.1.6 Reed-Solomon Decoding

In Section 8.1.5, a test message encoded in systematic form using a (7, 3) R-S code,
resulted in a codeword polynomial described by Equation (8.26). Now, assume that
during transmission, this codeword becomes corrupted so that 2 symbols are
received in error. (This number of errors corresponds to the maximum error-
correcting capability of the code.) For this 7-symbol codeword example, the error
pattern can be described in polynomial form as

e(X) = é e, X" (8.28)
n=0

For this example, let the double-symbol error be such that

e(X) =0+ 0X+ 0X2 + o2X° + °X* + 0X° + 0X° (8.29)

= (000) + (000)X + (000)X? + (001)X* + (111)X* + (000)X> + (000).X°
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In other words, one parity symbol has been corrupted with a 1-bit error (seen
as o), and one data symbol has been corrupted with a 3-bit error (seen as o’). The
received corrupted-codeword polynomial r(X) is then represented by the sum of
the transmitted-codeword polynomial and the error-pattern polynomial as follows:

r(X) = UX) + e(X) (8.30)

Following Equation (8.30), we add U(X) from Equation (8.26) to e(X ) from
Equation (8.29) to yield

r(X) = (100) + (001)X + (011)X? + (100)X> + (101)X* + (110)X° + (111)X°
=+ X+ X+ X+ X + X+ X (8.31)

In this 2-symbol error-correction example, there are four unknowns—two
error locations and two error values. Notice an important difference between the
nonbinary decoding of r(X) that we are faced with in Equation (8.31) and the bi-
nary decoding that was described in Chapter 6. In binary decoding, the decoder
only needs to find the error locations. Knowledge that there is an error at a particu-
lar location dictates that the bit must be “flipped” from a 1 to a 0, or vice versa. But
here, the nonbinary symbols require that we not only learn the error locations, but
that we also determine the correct symbol values at those locations. Since there are
four unknowns in this example, four equations are required for their solution.

8.1.6.1 Syndrome Computation

Recall from Section 6.4.7, that the syndrome is the result of a parity check
performed on r to determine whether r is a valid member of the codeword set. If in
fact r is a member, then the syndrome S has value 0. Any nonzero value of S indi-
cates the presence of errors. Similar to the binary case, the syndrome S is made up
of n— k symbols, {S;} (i=1,...,n—k). Thus, for this (7, 3) R-S code, there are four
symbols in every syndrome vector; their values can be computed from the received
polynomial r(X). Note how the computation is facilitated by the structure of the
code, given by Equation (8.27) and rewritten as

UX) = m(X) g(X)

From this structure it can be seen that every valid codeword polynomial
U(X) is a multiple of the generator polynomial g(X). Therefore, the roots of g(X)
must also be the roots of U(X). Since r(X) = U(x) + e(X), then r(X) evaluated at
each of the roots of g(X) should yield zero only when it is a valid codeword. Any
nonzero result is an indication that an error is present. The computation of a syn-
drome symbol can be described as

S =r(X) =ro) i=1,,n—k (8.32)
X=al

where r(X) contains the postulated 2-symbol errors as shown in Equation (8.29). If

r(X) were a valid codeword, it would cause each syndrome symbol S; to equal 0.

For this example, the four syndrome symbols are found as follows:
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Sl:l'(OL):OLO+OL3+OL6+OL3+OL10+OL8+OLU
=+ +a®+ o+ +al +at (8.33)
— 3
=«

S;=r(@®) =+ o' +a® +a® + ot +a o

o +at+al+ab+a+af+ (8.34)

I

3

Sy=r@) =a’+ o’ + o + o’ + o+ a® + o’
="+’ +at+al+at+at+ ol (8.35)
_ 6
=q

S4=l‘(a4)=0L0+a6+a12+a12+a22+a23+0¢29

o +al+a’+ o’ +al+ o’ +a (8.36)

=0

The results confirm that the received codeword contains an error (which we

inserted) since S = 0.

Example 8.3 A Secondary Check on the Syndrome Values

456

For the (7, 3) R-S code example under consideration, the error pattern is known since
it was chosen earlier. Recall the property of codes presented in Section 6.4.8.1
when describing the standard array. Each element of a coset (row) in the standard
array has the same syndrome. Show that this property is also true for the R-S code by
evaluating the error polynomial e(.X') at the roots of g(X) to demonstrate that it must
yield the same syndrome values as when r(X) is evaluated at the roots of g(X). In
other words, it must yield the same values obtained in Equations (8.33) through
(8.36).

Solution

X:ai
S;=r(e) = U(a) + e(e) = 0 + e(a)
From Equation (8.29), e(X) = o® X* + &® X*; therefore,
Si=e(@) =0 +a
= + o
S, =e(a?) = of + "
=al +af

Sy =e(a®) = ot + o
=o'+’
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S =e(a?) = o' + o
=a' +a’
=0
These results confirm that the syndrome values are the same, whether obtained by
evaluating e(X') at the roots of g(X ), or r(X) at the roots of g(X).

8.1.6.2 Error Location

Suppose there are v errors in the codeword at location X1, X2, . .. X». Then,
the error polynomial shown in Equations (8.28) and (8.29) can be written as

e(X)=€,-1Xj1+ ejzX’2+ +e/-VX"V (8.37)

The indices 1, 2, ..., v refer to the 1%, 2™ ..., v'! errors, and the index
j refers to the error location. To correct the corrupted codeword, each error value
€, and its location X’e, where €=1,2,...vmust be determined. We define an error
locator number as 3, = o/¢. Next, we obtain the n — k = 2f syndrome symbols by sub-

stituting o’ into the received polynomial fori=1,2, ..., 2¢:
S =r{a) = €, By + €, B, + -+ + e B.
S, = r{a?) :ejIB%+ejZB%+ e p? (8.38)

— () = 2 2 2
Sy =w(a”) =e; Bi' e, B + 0t BY

There are 2t unknowns (¢ error values and ¢ locations), and 2z simultaneous
equations. However, these 2¢ simultaneous equations cannot be solved in the usual
way because they are nonlinear (as some of the unknowns have exponents). Any
technique that solves this system of equations is known as a Reed-Solomon decod-
ing algorithm.

When a nonzero syndrome vector (one or more of its symbols are nonzero)
has been computed, it signifies that an error has been received. Next, it is necessary
to learn the location of the error or errors. An error-locator polynomial can be de-
fined as

o(X) = (1+ BX) (1 + BX) (1 + B, X) (8.39)
=1l+0X+0X+ - +0 X"

The roots of o(X ) are 1/8,, 1/B,, . . ., 1/B,. The reciprocal of the roots of o(X)

are the error-location numbers of the error pattern e(X). Then using autoregres-

sive modeling techniques [5], we form a matrix from the syndromes, where the first
t syndromes are used to predict the next syndrome. That is,

Sy AP S; S -1 S, gy =5,
S S3 Ss S, Si 41 g -1 =S
: : = : (8.40)
Si- S Sivr v Suz Sy 02 =S
S, Sier Siva o Sua Suo gy =Sy
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We apply the autoregressive model of Equation (8.40) by using the largest
dimensioned matrix that has a nonzero determinant. For the (7. 3) double symbol
error-correcting R-S code, the matrix size is 2 x 2, and the model is written as

S Sif|o2| _ISs
|:S2 53} [o‘l} - {:54} (8.4])

o o 02] {a(’}
= 8.42
Lxs a6} |:0'] 0 ( )
To solve for the coefficients o; and o, of the error-locator polynomial o(X).

we first take the inverse of the matrix in Equation (8.42). The inverse of a matrix
[A] is found as follows:

cofactor [A]

Inv[A] =
WA= e A
Therefore,
ot o’
det [ 5 6} = o’a® — o’a’® = o’ + ! (8.43)
o o
=al+ o’ =0
o a5:| {ae OLS}
fact =| 5 8.44
cofac orLs =] (8.44)
and
a® o
o 045} Lcs ovJ [(x“ as}
I = =a 8.45
v [as o o’ Y let o (845)

2[0‘6 OLS:| |:0L8 OL7] |:OLI O(O:|
= Q = = -
o8 o of o ol o
Safety Check. 1f the inversion was performed correctly. then the multiplica-
tion of the original matrix by the inverted matrix should yield an identity matrix:

{oﬁ OLS:I {al ao} et + o o + alo} _ {1 O} (8.46)
@ oflla® o] laf+a® oo’ 0 1 '

Continuing from Equation (8.42), we begin our search for the error locations
by solving for the coefficients of the error-locator polynomial o(X). as follows:

3 571116 1 0 6 7 0
i o P S Y et 8 e P B
From Equations (8.39) and (8.47),
o(X) =o' + o X+ 0,X° (8.48)
=a’ + a°X + o"X?
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The roots of o(X) are the reciprocals of the error locations. Once these roots
are located, the error locations will be known. In general, the roots of o(X') may be
one or more of the elements of the field. We determine these roots by exhaustive
testing of the o(X) polynomial with each of the field elements. as shown below.
Any element X that vields o(X) = 0 is a root, and allows us to locate an error:

gy =a’"+a"+a’=a"#0

o Y=d"+ad"+a’=a’#0

o) =o'+ +a'=a"#0

o) =o'+ o’ + «®* = 0= ERROR
o(a') = o’ + o' + o = 0= ERROR
o) =ad"+a"+at+t?=a>#0
o0 =+ a? + a? = a £ 0

As seen in Equation (8.39), the error locations are at the inverse of the roots
of the polynomial. Therefore o(a®) = 0 indicates that one root exits at 1/8, = .
Thus, B, = 1/a® = «*. Similarly, o(«*) = 0 indicates that another root exits at 1/f, =
1/a* = o, where (for this example) € and € refer to the 1" and 2™ error respec-
tively. Since there are 2-symbol errors here, the error polynomial is of the form

e(X)=¢; X+e, X (8.49)
The two errors were found at locations o’ and «®. Note that the indexing of

the error-location numbers is completely arbitrdry Thus, for this example, we can

designate the B, = o/t values as B, =/t = o* and B, = a/2 = o*.

8.1.6.3 Error Values

An error had been denoted e;,, where the index j refers to the error location
and the index € identifies the €th error. Since each error value is coupled to a par-
ticular location, the notation can be simplified by denoting e;, simply as e,. Now
preparing to determine the error values e; and e,, associated w1th locations B, = o’
and B, = o, any of the four syndrome equations can be used. From Equation
(8.38), let us use S; and S,:

Sy =r(a) =e B + €8, (8.50)
S, = r(a?) = eBi + e,p3

We can write these equations in matrix form as follows:

Bl Bz €| _ S1
{B? B%} LJ - {SJ (8.51)

o o]l 5
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To solve for the error values e, and e,, the matrix in Equation (8.52) is in-
verted in the usual way, yielding

6 | 3
a’ ool — afat

ol ot
{013 0(4} OL(’ 0&3
Inv ="

ot + o

ol
o o o o
Now, we solve Equation (8.52) for the error values, as follows:

2 5 3 5 10 2

e o a o o T+ a Qo
= = = = < 8.54
Lj Lo oﬁ} LS} {of + ag} L"} (8.54)

8.1.6.4 Correcting the Received Polynomial with Estimates
of the Error Polynomial

{(xl 044}

6 3 ! 1

-2 %S a{a aﬂ} = 0({04 al (8.53)
k o

o + o

o + o

From Equation (8.49) and (8.54), the estimated error polynomial is formed,
to yield

e(X) = e, X1+ e, X" (8.55)
= o’X* + o X?

The demonstrated algorithm repairs the received polynomial yielding an esti-
mate of the transmitted codeword, and ultimately delivers a decoded message.
That is,

U(X) = 1(X) + é(X) = U(X) + e(X) + é(X) (8.56)
(X 011X 2 + (100)X3 + (101)X* + (110)X° + (111)X°

) =

) ( (

é(X) = (000) + (000)X + (000)X? + (001)X* + (111)X* + (000)X” + (000)X°
) ) (

= (100) + (001)X +

(X (100) + (001)X + (011)X% + (101)X* + (010)X" + (110)X° + (111 x°
=o'+ 2N+ ot X+ X+ X+ X+ X (8.57)

Since the message symbols constitute the rightmost k = 3 symbols. the de-
coded message i3

010 110 111
NI
(03 Q o

which is exactly the test message that was chosen in Section 8.1.5 for this example.
(For further reading on R-S coding, see the collection of papers in reference [6].)
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8.2 INTERLEAVING AND CONCATENATED CODES

Throughout this and earlier chapters we have assumed that the channel is memory-
less, since we have considered codes that are designed to combat random indepen-
dent errors. A channel that has memory is one that exhibits mutually dependent
signal transmission impairments. A channel that exhibits multipath fading, where
signals arrive at the receiver over two or more paths of different lengths, is an ex-
ample of a channel with memory. The effect is that the signals can arrive out of
phase with each other, and the cumulative received signal is distorted. Wireless
mobile communication channels, as well as ionospheric and tropospheric propaga-
tion channels, suffer from such phenomena. (See Chapter 15 for details on fading
channels.) Also, some channels suffer from switching noise and other burst noise
(e.g.. telephone channels or channels disturbed by pulse jamming). All of these
time-correlated impairments result in statistical dependence among successive
symbol transmissions. That is, the disturbances tend to cause errors that occur in
bursts, instead of as isolated events.

Under the assumption that the channel has memory, the errors no longer can
be characterized as single randomly distributed bit errors whose occurrence is inde-
pendent from bit to bit. Most block or convolutional codes are designed to combat
random independent errors. The result of a channel having memory on such coded
signals is to cause degradation in error performance. Coding techniques for chan-
nels with memory have been proposed, but the greatest problem with such coding
is the difficulty in obtaining accurate models of the often time-varying statistics of
such channels. One technique, which only requires a knowledge of the duration or
span of the channel memory, nof its exact statistical characterization, is the use of
time diversity or interleaving.

Interleaving the coded message before transmission and deinterleaving after
reception causes bursts of channel errors to be spread out in time and thus to be
handled by the decoder as if they were random errors. Since, in all practical cases,
the channel memory decreases with time separation, the idea behind interleaving is
to separate the codeword symbols in time. The intervening times are similarly filled
by the symbols of other codewords. Separating the symbols in time effectively
transforms a channel with memory to a memoryless one, and thereby enables the
random-error-correcting codes to be useful in a burst-noise channel.

The interleaver shuffles the code symbols over a span of several block lengths
(for block codes) or several constraint lengths (for convolutional codes). The span
required is determined by the burst duration. The details of the bit redistribution
pattern must be known to the receiver in order for the symbol stream to be deinter-
leaved before being decoded. Figure 8.10 illustrates a simple interleaving example.
In Figurc 8.10a we sce seven uninterleaved codewords, A through G. Each code-
word is comprised of seven code symbols. Let us assume that the code has a single-
crror-correcting capability within each seven-symbol sequence. If the memory span
of the channel is one codeword in duration, such a seven-symbol-time noise burst
could destroy the information contained in one or two codewords. However, sup-
pose that, after having encoded the data, the code symbols were then interleaved or
shuffled, as shown in Figure 8.10b. That is, each code symbol of each codeword is

8.2 Interleaving and Concatenated Codes 461



"s|oquiAs apod paaeapalu| (g) 'S|IoqWAS 9poo uaAss Jo pasuduwoo
yoes ‘spJomepod peAespauiun eulbuO (e) -e|dwexs Buinespsiu]  gL'g ainbi4

(q)
L 9 g v € 4 L
SpJom
ot |t a\alfolta v Pl PaPaPo Pa Py ol (S [fa|fo | |V |0\ | A | a "o [Fa [Py [EolSd [Pa (Falto P Py [Po|d [faftaleolfa v | ol |a | a |0 | a 'Y nm>wm_§c_
XXX XXXX
~—1S4NQ 10043 —|
(e)
spiom
hcmgmmvvg mmv NU —U nr»N @k m,m v,m mnN wnw {N h.@wm Sl vr& €7 Nm _.,‘W mQ@QquQmQNQ —Q mo wO mU vO M_U NU fU \.mwmmm ﬁm‘mm Nm —m h<m<m<v<m<w<q _.A\ papod
jeuibuQ
9 A i} a 0 q \4




separated from its preinterleaved neighbors by a span of seven symbol times. The
interleaved stream is then used to modulate a waveform that is transmitted over
the channel. A contiguous channel noise burst occupying seven symbol times is
seen in Figure 8.10b, to affect one code symbol from each of the original seven
codewords. Upon reception, the stream is first deinterleaved so that it resembles
the original coded sequence in Figure 8.10a. Then the stream is decoded. Since
cach codeword possesses a single-error-correcting capability, the burst noise has no
degrading effect on the final sequence.

Interleaving techniques have proven useful for all the block and convolu-
tional codes described here and in earlier chapters. Two types of interleavers are
commonly used, block interleavers and convolutional interleavers. They are each
described below.

8.2.1 Block Interleaving

A block interleaver accepts the coded symbols in blocks from the encoder, per-
mutes the symbols, and then feeds the rearranged symbols to the modulator.
The usual permutation of the block is accomplished by filling the columns of an
M-row-by N-column (M x N} array with the encoded sequence. After the array is
completely filled, the symbols are then fed to the modulator one row at a time and
transmitted over the channel. At the receiver, the deinterleaver performs the in-
verse operation; it accepts the symbols from the demodulator, deinterleaves them,
and feeds them to the decoder. Symbols are entered into the deinterleaver array by
rows, and removed by columns. Figure 8.11a illustrates an example of an inter-
leaver with M = 4 rows and N = 6 columns. The entries in the array illustrate the
order in which the 24 code symbols are placed into the interleaver. The output
sequence to the transmitter consists of code symbols removed from the array by
rows, as shown in the figure. The most important characteristics of such a block
interleaver are as follows:

1. Any burst of less than N contiguous channel symbol errors results in isolated
errors at the deinterlever output that are separated from each other by at
least M symbols.

2. Any bN burst of errors, where b > 1, results in output bursts from the deinter-
leaver of no more than [ ] symbol errors. Each output burst is separated
from the other bursts by no less than M — | b symbols. The notation [x]
means the smallest integer no less than x, and | xJ means the largest integer
no greater than x.

3. A periodic sequence of single errors spaced N symbols apart results in a
single burst of errors of length M at the deinterleaver output.

4. The interleaver/deinterleaver end-to-end delay is approximately 2MN symbol
times. To be precise, only M(N — 1) + 1 memory cells need to be filled before
transmission can begin (as soon as the first symbol of the last column of the
M x N array is filled). A corresponding number needs to be filted at the re-
ceiver before decoding begins. Thus the minimum end-to-end delay is
(2MN —2M + 2) symbol times, not including any channel propagation delay.
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N =6 colums

1 5 9 13 17 2
2 6 10 14 18 22
M =4 rows
3 7 11 15 19 23
4 8 12 16 20 24
Interleaver
output sequence: 1,5,9,13,17,21, 2,6,
{a)
1 5 9 13 17 21
2 6 10 (22)
3 (@) 1 15 19 23
4 8 12 16 20 24
(b)
1 5 9 13 17 21
2 6 10 (22)
DO H®m® @
4 8 12 16 20 24
(c)
1 5 @ 13 17 21
2 6 14 18 22
3 7 (1) 15 19 23
a 8 (12 16 20 24
(d)
464

Figure 8.11 Block interleaver ex-
ample. (@) M x N block interleaver.
(b) Five-symbol error burst. (c) Nine-
symbol error burst. (d) Periodic single-
error sequence spaced N = 6 symbols
apart.
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5. The memory requirement is MN symbols for each location (interleaver and
deinterleaver). However, since the M x N array needs to be (mostly) filled be-
fore it can be read out, a memory of 2MN symbols is generally implemented
at each location to allow the emptying of one M x N array while the other is
being filled, and vice versa.

Example 8.4 Interleaver Characteristics
Using the M = 4, N = 6 interleaver structure of Figure 8.11a, verify each of the block
interleaver characteristics described above.
Solution

1. Let there be a noise burst of five symbol times. such that the symbols shown
e¢ncircled in Figure 8.11b experience errors in transmission. After deinterleaving at
the receiver, the sequence is

12 ® 456 @ 8§ 9 10 11 12

134 15 16 17 @ 19 20 21 @ 23 24

where the encircled symbols are in error. It is seen that the smallest separation
between symbols in error is M =4.

2. Let b = 1.5 so that bN = 9. Figure 8.11¢ illustrates an example of nine-symbol error
burst. After deinterleaving at the recciver, the sequence is

120 456 @89 10 @ 12
130 @ 16 17 @ @ 2021 @ @ 24

Again, the encircied symbols are in error. It is seen that the bursts consist of no
more than [1.5] = 2 contiguous symbols and that they are scparated by at least
M —[1.5]=4-1=3symbols.

3. Figure 8.11d illustrates a scquence of single errors spaced by N = 6 symbols apart.
After deinterleaving at the receiver, the sequence is

12 3456 780 3O

13 14 15 16 17 18 19 20 21 22 23 24

It is seen that the deinterleaved sequence has a singe error burst of length M =4
symbols.

4. End-to-end delay: The minimum end-to-end delay due to the interleaver and dein-
terleaver is (2MN — 2M + 2) = 42 symbol times.

5. Memory requirement: The interleaver and the deinterleaver arrays are each of
size M x N. Therefore, storage for MN = 24 symbols is required at each end of the
channel. As mentioned earlier, storage for 2MN = 48 symbols would generally be
implemented.

Typically, for use with a single-error-correcting code the interleaver parame-
ters are selected such that the number of columns N overbounds the expected burst
length. The choice of the number of rows M is dependent on the coding scheme
used. For block codes, M should be larger than the code block length, while for
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convolutional codes, M should be larger than the constraint length. Thus a burst of
length N can cause at most a single error in any block codeword: similarly, with
convolutional codes, there will be at most a single error in any decoding constraint
length. For r-error-correcting codes, the choice of N need only overbound the
expected burst length divided by .

8.2.2 Convolutional Interleaving

Convolutional interleavers have been proposed by Ramsey [7] and Forney [8]. The
structure proposed by Forney appears in Figure 8.12. The code symbols are se-
quentially shifted into the bank of N registers; each successive register provides
J symbols more storage than did the preceding one. The zeroth register provides no
storage (the symbol is transmitted immediately). With each new code symbol the
commutator switches to a new register, and the new code symbol is shifted in while
the oldest code symbol in that register is shifted out to the modulator/transmitter.
After the (N — 1)th register, the commutator returns to the zeroth register and
starts again. The deinterleaver performs the inverse operation, and the input
and output commutators for both interleaving and deinterleaving must be
synchronized.

Figure 8.13 illustrates an example of a simple convolutional four-register
(J = 1) interleaver being loaded by a sequence of code symbols. The synchronized
deinterleaver is shown simultaneously feeding the deinterleaved symbols to the de-
coder. Figure 8.13a shows symbols 1 to 4 being loaded; the xs represent unknown
states. Figure 8.13b shows the first four symbols shifted within the registers and the
entry of symbols 5 to 8 to the interleaver input. Figure 8.13¢ shows symbols 9 to 12
entering the interleaver. The deinterleaver is now filled with message symbols, but
nothing useful is being fed to the decoder yet. Finally, Figure 8.13d shows symbols

Commutator

switches
(N-1)JH—0

I
:

O— (N -2)J—0O

O
H
O

J

To
decoder

From

han
encoder Channel

J

O
H I N I
O

O (N-2)J—0

|

(N-1J—0

Interleaver Deinterleaver

Figure 8.12 Shift register implementation of a convolutiona!
interleaver/deinterleaver.
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Interleaver Deinterleaver

From C To
encoder ommutator decoder
switches
1 1 X
. " H .
3 X X
4 X o o X
(a)

5 5 X
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8 X e} -0 X
{b)
X
X
X
X
(c)

Figure 8.13 Convolutional interleaver/deinterleaver example.
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13 to 16 entering the interleaver, and at the output of the deinterleaver. symbols
1 to 4 are being passed to the decoder. The process continues in this way until the
entire codeword sequence, in its original preinterleaved form, is presented to the
decoder.

The performance of a convolutional interleaver is very similar to that of a
block interleaver. The important advantage of convolutional over block interleav-
ing is that with convolutional interleaving the end-to-end delay is M(N — 1) sym-
bols, where M = NJ, and the memory required is M(N — 1)/2 at both ends of the
channel. Therefore, there is a reduction of one-half in delay and memory over the
block interleaving requirements [9].

8.2.3 Concatenated Codes

A concatenated code is one that uses two levels of coding. an inner code and an
outer code, to achieve the desired error performance. Figure 8.14 illustrates the
order of encoding and decoding. The inner code, the one that interfaces with
the modulator/demodulator and channel, is usually configured to correct most of
the channel errors. The outer code, usually a higher-rate (lower-redundancy) code.
then reduces the probability of error to the specified level. The primary reason for
using a concatenated code is to achieve a low error rate with an overall implemen-
tation complexity which is less than that which would be required by a single cod-
ing operation. In Figure 8.14 an interleaver is shown between the two coding steps.
This is usually required to spread any error bursts that may appear at the output of
the inner coding operation.

One of the most popular concatenated coding systems uses a Viterbi-decoded
convolutional inner code and a Reed-Solomon (R-S) outer code, with interleaving
between the two coding steps [2]. Operation of such systems with E,/N, in the
range 2.0 to 2.5 dB to achieve Pz = 107 is feasible with practical hardware [9]. In
this system, the demodulator outputs soft quantized code symbols to the inner con-
volutional decoder, which in turn outputs hard quantized code symbols with bursty
errors to the R-S decoder. (In a Viterbi-decoded system, the output errors tend to

Input — Outer »{ Interleave »| Inner —{ Modulate
data encode encode

Interference —={ Channel

/

Decoded Outer | Deinterleave | Inner Demodulate

data decode decode

Figure 8.14 Block diagram of a concatenated coding system.
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occur in bursts.) The outer R-S code is formed from m-bit segments of the binary
data stream. The performance of such a (nonbinary) R-S code depends only on the
number of symbol errors in the block. The code is undisturbed by burst errors
within an m-bit symbol. That is, for a given symbol error, the R-S code perfor-
mance is the same whether the symbol error is due to one bit being in error or m
bits being in error. However, the concatenated system performance is severely de-
graded by correlated errors among successive symbols. Hence interleaving between
codes at the symbol level (not at the bit level) needs to be provided. Reference [10]
presents a review of concatenated codes that have been investigated for deep-space
communications. In the next section we consider a popular consumer application of
symbol interleaving in a concatenated system.

8.3 CODING AND INTERLEAVING APPLIED TO THE COMPACT DISC
DIGITAL AUDIO SYSTEM

In 1979, Philips Corp. of the Netherlands and Sony Corp. of Japan defined a stan-
dard for the digital storage and reproduction of audio signals, known as the com-
pact disc (CD) digital audio system. This CD system has become the world standard
for achieving fidelity of sound reproduction that far surpasses any other available
technique. A plastic disc 120 mm in diameter is used to store the digitized audio
waveform. The waveform is sampled at 44.1 kilosamples/s to provide a recorded
bandwidth of 20 kHZ; each audio sample is uniformly quantized to one of 2'® levels
(16 bits/sample), resulting in a dynamic range of 96 dB and a total harmonic distor-
tion of 0.005%. A single disc (playing time approximately 70 minutes) stores about
10" bits in the form of minute pits that are optically scanned by a laser.

There are several sources of channel errors: (1) small unwanted particles or
air bubbles in the plastic material or pit inaccuracies arising in manufacturing, and
(2) fingerprints or scratches during handling. It is difficult to predict how, on the
average, a CD will get damaged; but in the absence of an accurate channel model,
it is safe to assume that the channel mainly has a burstlike error behavior, since a
scratch or fingerprint will cause several consecutive data samples to be in error. An
important aspect of the system design contributing to the high-fidelity performance
is a concatenated error-control scheme cailed the cross-interleave Reed-Solomon
code (CIRC). The data are rearranged in time so that digits stemming from con-
tiguous samples of the waveform are spread out in time. In this way, error bursts
are made to appear as single random events (see the earlier sections on interleav-
ing). The digital information is protected by adding parity bytes derived in two
Reed-Solomon (R-S) encoders. Error control applied to the compact disc depends
mostly on R-S coding and multiple layers of interleaving.

In digital audio applications, an undetected decoding error is very serious
since it results in clicks, while occasional detected failures are not so serious because
they can be concealed. The CIRC error-control scheme in the CD system involves
both correction and concealment of errors. The performance specifications for the
CIRC are given in Table 8.4. From the specifications in the table it would appear
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TABLE 8.4 Specifications for the CD Cross-Interleave Reed—Solomon Code

Maximum correctable burst length = 4000 bits (2.5-mm track length on the disc)
Maximum interpolatable burst length = 12,000 bits (8 mm)
Sample interpolation rate One sample every 10 hours at Py = 107

1000 samples/min at Pg = 107~

Undetected error samples (clicks) Less than one every 750 hours at Pg =107
Negligible at Py < 107

New discs are characterized by Py =~ 10"

that the CD can endure much damage (e.g., 8-mm holes punched in the disc) with-
out any noticeable effect on the sound quality.

The CIRC system achieves its error control by a hierarchy of the following
techniques:

1. The decoder provides a level of error correction.

2. If the error correction capability is exceeded, the decoder provides a level of
erasure correction (see Section 6.5.5).

3. If the erasure correction capability is exceeded, the decoder attempts to con-
ceal unreliable data samples by interpolating between reliable neighboring
samples.

4. If the interpolation capability is exceeded, the decoder blanks out or mutes
the system for the duration of the unreliable samples.

8.3.1 Circ Encoding

Figure 8.15 illustrates the basic CIRC encoder block diagram (within the CD
recording equipment) and the decoder block diagram (within the CD player equip-
ment). Encoding consists of the encoding and interleaving steps designated as A
interleave, C, encode, D* interleave, C; encode, and D interleave. The decoder
steps, consisting of deinterleaving and decoding, are preformed in the reverse
order of the encoding steps and are designated as D deinterleave, C; decode, D*
deinterleave, C, decode, and A deinterleave.

Figure 8.16 illustrates the basic system frame time, comprising six sampling
periods, each made up of a stereo sample pair (16-bit left sample and 16-bit right
sample). The bits are organized into symbols or bytes of 8 bits each. Therefore,
each sample pair contains 4 bytes, and the uncoded frame contains k = 24 bytes.
Figure 8.16a—e summarizes the five encoding steps that characterize the CIRC sys-
tem. The function of each of these steps will best be understood when we consider
the decoding operation. The steps are as follows:

(a) A interleave. Even-numbered samples are separated from odd-numbered

samples by two frame times in order to scramble uncorrectable but detectable
byte errors. This facilitates the interpolation process.
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Encoder

Encoder A Cy _ D Cq D
input interleave encode interleave encode interleave
Encoder
output

|

Decoder
Decoder input
Decoder A Cy D* Cq D
output deinterleave decode deinterleave decode deinterleave

Figure 8.15 CIRC encoder and decoder.

(b) C, encode. Four Reed-Solomon (R-S) parity bytes are added to the
A-interleaved 24-byte frame, resulting in a total of n = 28 bytes. This (28, 24)
code is called the outer code.

(¢) D* interleave. Here each byte is delayed a different length, thereby spreading
errors over several codewords. C, encoding together with D* interleaving
have the function of providing for the correction of burst errors and error pat-
terns that the C,; decoder cannot correct.

(d) C, encode. Four R-S parity bytes are added to the k = 28 bytes of the
D*-interleaved frame, resulting in a total of n = 32 bytes. This (32, 28) code is
called the inner code.

(e) D interleave. The purpose is to cross-interleave the even bytes of a frame with
the odd bytes of the next frame. By this procedure, two consecutive bytes on
the disc will always end up in two different codewords. Upon decoding, this
interleaving, together with the C; decoding, results in the correction of most
random single errors and the detection of longer burst errors.

8.3.1.1 Shortening the R-S Code

In Section 8.1 an (n, k) R-S code is expressed in terms of n = 2" — 1 total sym-
bols and k& = 2" — 1 — 2¢ data symbols, where m1 is the number of bits per symbol and
t is the error-correcting capability of the code in symbols. For the CD system,
where a symbol is made up of 8 bits, a 2-symbol error-correcting code can be con-
figured as a (255, 251) code. However, the CD system uses a considerably shorter
block length. Any block code (in systematic form) can be shortened without affect-
ing the number of errors that can be corrected within a block length. In terms of
the (255, 251) R-S code, imagine that 227 of the 251 data symbols are a set of all-
zero symbols (which are not actually transmitted and hence are not subject to any
errors). Then the code is really a (28, 24) code with the same 2-symbol error-
correcting capability. This is what is done in the C, encoder of the CD system.
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«———— Frame time = 6 sampling periods —————

[LIL[RIR[L[L[R[R]L[L[R[R]L[L[R[R]L[L]R]R]L]L[R]R]

(a) Ainterleave |

One codeword
(28 symbols)

{b) C; encode % %
\ /

Parity bytes

{c) D* interleave

One codeword
(32 symbols)

(d) C1encode l W W
arit tes
N

(e} D interleave

Contains 6 sample pairs
(24 symbols or bytes)

Scrambles
uncorrectable but
detectable byte errors
to facilitate
interpolation between
reliable samples

For the correction of
burst errors and error
patterns that the C,
decoder cannot
correct

For the correction of
most random single-
byte errors and the
detection of the
longer burst errors

Figure 8.16 Compact disc encoder. (a) A interleave. (b) C, encode.

(c) D* interleave. (d) C, encode. (e) D interleave.

We can think of the 28 total symbols out of the C, encoder as the data sym-
bols into the C; encoder. Again, we can configure a shortened 2-symbol error-
correcting (255, 251) code by throwing away 223 data symbols—the result being a

(32, 28) code.

8.3.2 CIRC Decoding

The inner and outer R-S codes with (n, k) values (32, 28) and 28, 24) each use four
parity bytes. The code rate of the CIRC is (k/n)(ky/n,) = 24/32 = 3/4. From Equa-
tion (8.3) the minimum distance of the C; and C, R-S codes is d,,;,, =n —k+1=35.

From Equations (8.4) and (8.5)
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o[t

p=dym— 1 (8.59)

and

where ¢ is the error-correcting capability and p is the erasure-correcting capability,
it is seen that the C, or C, decoder can correct a maximum of 2 symbol errors or
4 symbol erasures per codeword. Or, as described by Equation (8.6). it is possible
to correct any pattern of « errors and y erasures simultaneously, provided that

20+ vy <dp, <n—k (8.60)

There is a trade-off between error correction and erasure correction; the larger
the error correcting capability used, the smaller will be the erasure correcting
capability.

The benefits of CIRC are best seen at the decoder, where the processing
steps, shown in Figure 8.17 are in the reverse order of the encoder steps. The
decoder steps are as follows:

1. D deinterleave. This function is performed by the alternating delay lines

marked D. The 32 bytes (Bj,...,Biy) of an encoded frame are applied in
D Deinterleaver C4 Decoder D* Deinterleaver C, Decoder A Deinterleaver
—r — — ——r
By ————"] e Di e -
I S -
o 0 e [ e N s b4 =
. = — =
Flag signal -
line pp—
E] A
C1 CZ
—_—
BOZLL
] L _ Dy | o ____ - L

B;3n —‘[_D—’_>

Figure 8.17 Compact disc decoder.
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parallel to the 32 inputs of the D deinterleaver. Each delay is equal to the
duration of 1 byte, so that the information of the even bytes of a frame is
cross-deinterleaved with that of the odd bytes of the next frame.

2. C, decode. The D deinterleaver and the C; decoder are designed to correct
a single byte error in the block of 32 bytes and to detect larger burst errors.
If multiple errors occur, the C; decoder passes them on unchanged, attaching
to all 28 remaining bytes an erasure flag, sent via the dashed lines (the four
parity bytes used in the C| decoder are no longer retained).

3. D* deinterleave. Due to the different lengths of the deinterleaving delay lines
D*(1, ..., 27), errors that occur in one word at the output of the C; decoder
are spread over a number of words at the input of the C, decoder. This results
in reducing the number of errors per input word of the C, decoder, enabling
the C, decoder to correct these errors.

4. C, decode. The C, decoder is intended for the correction of burst errors that
the C; decoder could not correct. If the C, decoder cannot correct these
errors, the 24-byte codeword is passed on unchanged to the A deinterleaver
and the associated positions are given an erasure flag via the dashed output
lines, B, . . ., By

S. A deinterleave. The final operation deinterleaves uncorrectable but detected
byte errors in such a way that interpolation can be used between reliable
neighboring samples.

Figure 8.18 highlights the decoder steps 2, 3, and 4. At the output of the C,
decoder is seen a sequence of four 28-byte codewords that have exceeded the 1
byte per codeword error correction design. Therefore, each of the symbols in these
codewords is tagged with an erasure flag (shown with circles). The D* deinter-
leaver provides a staggered delay for each byte of a codeword, so that the bytes of a
given codeword arrive in different codewords at the input to the C, decoder. If we
assume that the delay increments of the D* deinterleaver in Figure 8.18 are 1 byte,
it would be possible to correct error bursts of as many as four consecutive C, code-
words (since the C, decoder is capable of four erasure corrections per codeword).
In the actual CD system, the delay increments are 4 bytes; therefore, the maximum
burst error correction capability consists of 16 consecutive uncorrectable C, words.

8.3.3 Interpolation and Muting

Samples that cannot be corrected by the C, decoder could cause audible distur-
bances. The function of the interpolation process is to insert new samples, esti-
mated from reliable neighbors, in place of the unreliable ones. If an entire C, word
is detected as unreliable, this would make it impossible to apply interpolation with-
out additional interleaving, since both even- and odd-numbered samples are unreli-
able. This can happen if the C; decoder fails to detect an error but the C, decoder
detects it. It is the purpose of A deinterleaving (over a span of two frame times) to
obtain a pattern where even-numbered samples can be interpolated from reliable
odd-numbered samples, or vice versa.

474 Channel Coding: Part 3 Chap. 8




28 bytes , /B//j

&
i 1 | | 1 1 P , .7
per A T
S
codeword e
// // // // //
A
Z}ﬁ//
C1 output codewords After deinterleaving:
after 4 consecutive assuming delay increments
burst detections of 1 byte

Figure 8.18 Example of 4-byte erasure capability. (Rightmost event is
at the earliest time.)

Two successive unreliable words consisting of 12 sample pairs are shown
in Figure 8.19. A sample pair consists of a sample (2 bytes) from the right audio
channel and a sample from the left audio channel. The numbers indicate the
ordering of the sets of samples. An encircled sample set denotes an erasure flag.
After A deinterleaving, the unreliable samples shown in the figure are estimated by
a first-order linear interpolation between neighboring samples that stem from a
different location on the disc.

In CD players, another level of error control is provided in case a burst length
of 48 frames is exceeded and 2 or more consecutive unreliable samples result. In
this case the system is muted (audio is softly blanked out), which is not discernible
to the human ear if the muting time does not exceed a few milliseconds. For a more
detailed treatment of the CIRC coding scheme in the CD system, see References
[11-15].

8.4 TURBO CODES

Concatenated coding schemes were first proposed by Forney [16} as a method for
achieving large coding gains by combining two or more relatively simple building-
block or component codes (sometimes called constituent codes). The resulting
codes had the error-correction capability of much longer codes, and they were
endowed with a structure that permitted relatively easy to moderately complex
decoding. A serial concatenation of codes is most often used for power-limited
systems such as transmitters on deep-space probes. The most popular of these
schemes consists of a Reed-Solomon outer (applied first, removed last) code
followed by a convolutional inner (applied last, r