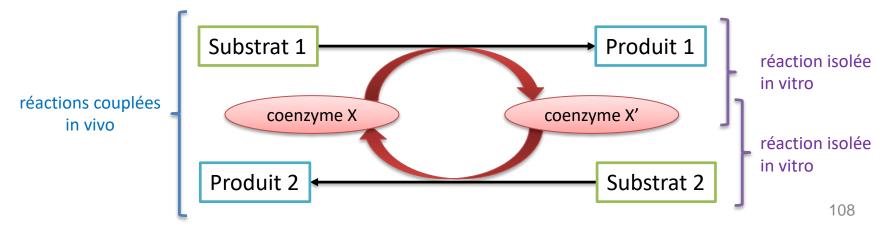


4. Mécanismes enzymatiques avec coenzymes (cofacteurs)

- a) <u>Généralités</u>
- b) Enzymes à pyrophosphate de thiamine (TPP)
- c) Enzymes à phosphate de pyridoxal (PLP)
 - i. réactions sur le carbone α
 - ii. réactions sur le carbone β
 - iii. réactions sur le carbone γ
- d) Enzymes à S-adénosyl-L-méthionine (SAM)

« aldimine interne »



a) **Généralités**

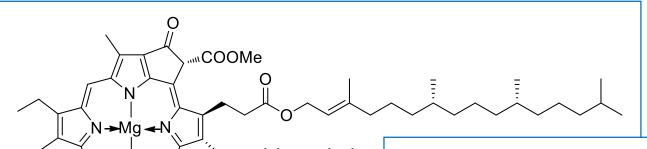
- Un *coenzyme* est une molécule indispensable au fonctionnement de certaines enzymes.
- Il existe plusieurs coenzymes et chaque coenzyme peut être *spécifique* de *différentes* enzymes.
- Au terme du processus catalytique, certains coenymes restent inchangés : ce sont de véritables co-catalyseurs :

• D'autres coenzymes, à l'inverse, sont transformés au terme du processus catalytique (mais régénérés in vivo par une réaction complémentaire)

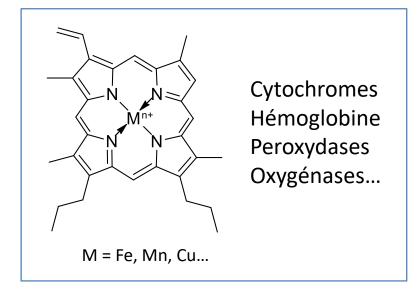
Coenzymes transformés au terme d'un cycle catalytique

Coenzymes transformés au terme d'un cycle catalytique

FAD : Flavine Adénine Dinucléotide SAM : S-Adénosyl-L-Méthionine FMN : Flavine MonoNucléotide

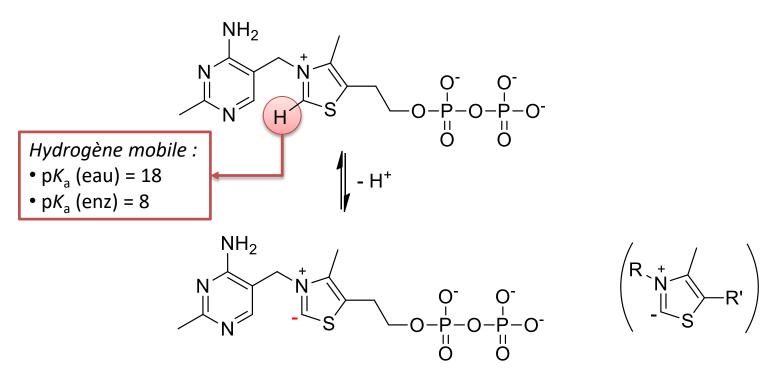

Coenzymes inchangés au terme d'un cycle catalytique

Phosphate de pyridoxal : PLP (Vitamine B6 : forme active)


Pyrophosphate de thiamine : TPP (provient de la Vitamine B1 : thiamine)

Co-enzymes dont le métal peut être *oxydé* ou *réduit* au cours d'un cycle catalytique

Chlorophyle


R = 5'-désoxyadénosyl, Me, OH, CN

Cobalamines (Vitamine B12)

b) Enzymes à pyrophosphate de thiamine (TPP)

Le coenzyme TPP (Thiamine PyroPhosphate)

ylure de TPP : forme réactive

1. Pyruvate décarboxylase de levure

(ou quoi faire des électrons...)

Réaction globale :

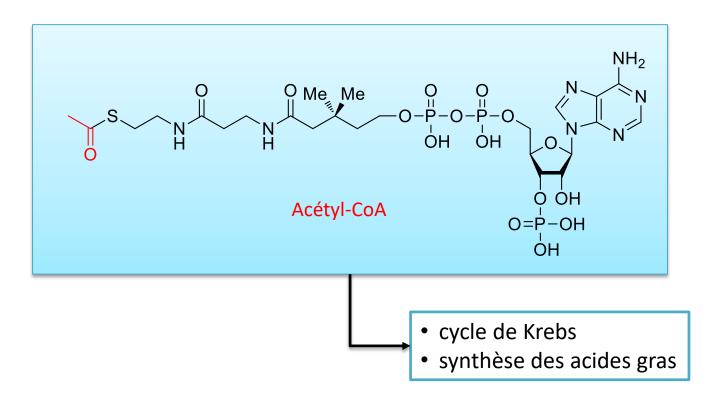
Mécanisme :

2. Acétolactate synthase

-biosynthèse BCAA (Val, Leu, Ile) chez les plantes

Réaction globale :

Mécanisme :

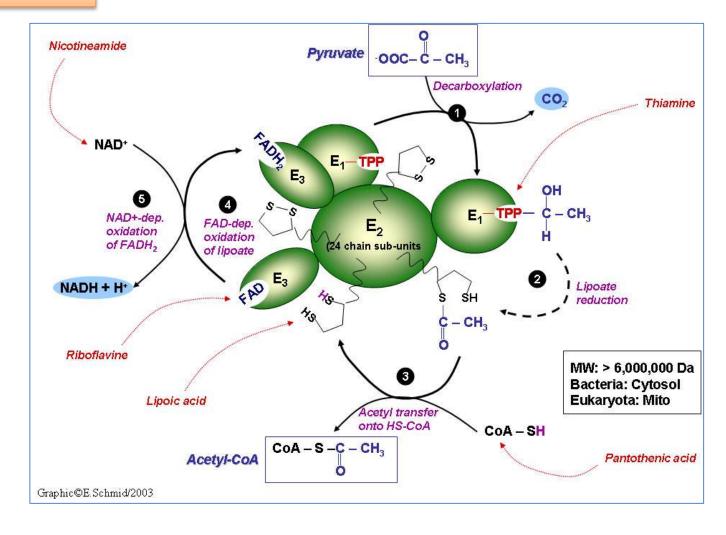


3. Pyruvate déshydrogénase

-complexe multi-enzymatique (PDC)

-implication dans la synthèse de l'acétyl-CoA

Réaction globale :



3. Pyruvate déshydrogénase

-complexe multi-enzymatique (PDC) -implication dans la synthèse de l'acétyl-CoA

Schéma global:

3. Pyruvate déshydrogénase

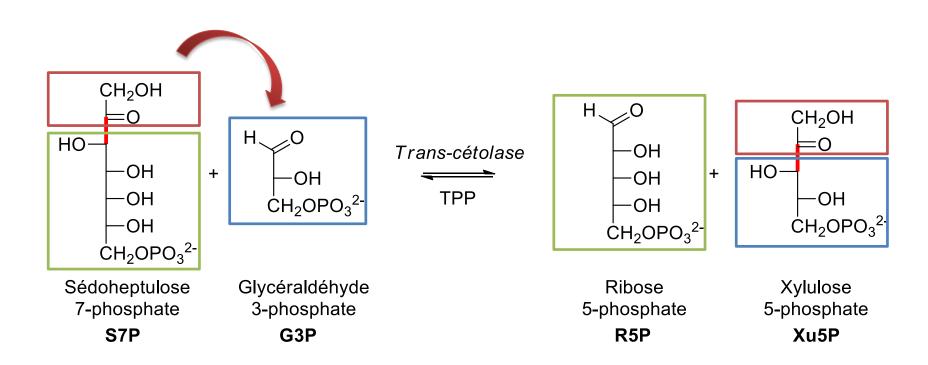
-complexe multi-enzymatique (PDC)

-implication dans la synthèse de l'acétyl-CoA

Mécanisme :

E1 : Pyruvate décarboxylase (TPP)

E2 : Dihydrolipoyl transacétylase (ac. lipoïque)


E3: Dihydrolipoyl déshydrogénase (FAD)

E4: Déshydrogénase (NADH)

4. Trans-cétolase

Réaction globale :

Mécanisme :

La trans-cétolase, une enzyme qui intéresse les chimistes...

$$CH_2OH$$
 HO
 $*$
 R_1
 CH_2OH
 HO
 $*$
 R_2
 TPP
 R_1
 R_2
 TPP
 R_1
 R_2
 R_2
 R_2
 R_2
 R_2
 R_2
 R_2
 R_2
 R_3
 R_4
 R_4
 R_5
 R_5
 R_5
 R_5
 R_5
 R_5
 R_5
 R_6
 R_7
 R_7

...mais qui a le tort de catalyser une réaction réversible!

✓ Astuce : essayer d'utiliser une réaction irréversible pour fournir « l'hydroxyéthyle »

décarboxylation de l'hydroxy-pyruvate :

Conclusion enzymes à TPP

- pyruvate décarboxylase
- acétolactate synthase
- pyruvate déshydrogénase
- trans-cétolase

- > des réactions très différentes,
- > des mécanismes très semblables

- le thiazolium sert de *puit à électrons* :

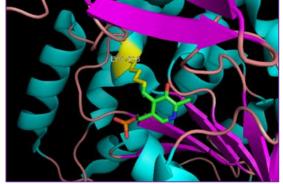
$$R \rightarrow R'$$
 $R \rightarrow R'$
 R

- l'énamine (nucléophile) résultante réagit sur différents électrophiles :

c) Enzymes à phosphate de pyridoxal (PLP)

Le coenzyme PLP (Pyridoxal Phosphate)

• dérivés apparentés, phosphorylés ou non (extraits cellulaires) :


Pyridoxine ou pyridixol (phosphate) (Vitamine B₆ : forme administrée)

Pyridoxamine (phosphate) (Vitamine B₆: autre forme)

- La grande majorité des réactions concerne le métabolisme des acides aminés
- Les réactions catalysées vont concerner selon les cas les carbones α , β ou γ

• Les réactions commencent toujours par une *trans-aldimination*

Le système « pyridoxalique » permet la stabilisation des espèces anioniques se formant au cours des réactions catalysées par les enzymes à PLP

- 1. Réactions « en α »
- Racémisation (ex. : alanine racémase)

✓ mécanisme :

(composant clé du peptidoglycane bactérien) -B coo COO PLP-enz $\mathsf{-BH}^{+}$ Si Re NH_3^+ COO PO L-Ala PO —В COO⁻ ▲HCOOinterm. quinonique PLP-enz $\dot{N}H_3^+$ PO **D-Ala**

1. Réactions « en α »

Décarboxylation

(ex.: histidine décarboxylase)

NH3⁺ enzyme NH3⁺ + CO₂ NH3⁺ H histamine

✓ mécanisme :

(médiateur chimique : système immutaire, digestion, allergies...)

1. Réactions « en α »

Transamination (ex. : *glutamate transaminase*)

Le glutamate sert de donneur d'amine pour de nombreux acides aminés :

 $\mathbf{R} = \mathbf{CH}_3$: pyruvate \longrightarrow alanine

 $\mathbf{R} = \mathrm{CH_2COO^-}$: α -cétosuccinate \longrightarrow aspartate

 $\mathbf{R} = \mathbf{CH_2SH}$: 3-mercapto-pyruvate \longrightarrow cystéine

 $\mathbf{R} = \mathbf{H}$: acide glyoxilique \longrightarrow glycine

 $\mathbf{R} = \mathbf{CH_2}$ iPr : acide 2-céto-4-méthyl-pentanoïque \longrightarrow leucine

 $\mathbf{R} = \mathbf{CH_2PhOH}$: acide *p*-hydroxy-phényl pyruvique \longrightarrow tyrosine

✓ mécanisme :

- 2. Réactions « en β »
- La sérine hydroxyméthyl transférase :

HO
$$\sim$$
 COO- \sim PLP H \sim O + \sim NH₃⁺ \sim COO- NH₃⁺ \sim COO- \sim In the second of the seco

√ mécanisme :

2. Réactions « en β »

·•

La tryptophane synthase :

 $\beta\text{-substitution}: \quad 1.- \text{H}^{\scriptscriptstyle +} \text{ en } \text{C}\alpha$

 $2. - OH^- en C\beta$

3. + Ind. en C β

4. + H^+ en $C\alpha$

indole
$$H_2O$$
 H_3^+ H_3^+

✓ mécanisme :

130

3. Réactions « en γ »

La cystathionine synthase :

γ-substitution : 1. – H⁺ en C α 4. + cystéine en C γ

 $2. - H^+ en C\beta$ $5. + H^+ en C\beta$

3. – succinate en C γ 6. + H⁺ en C α

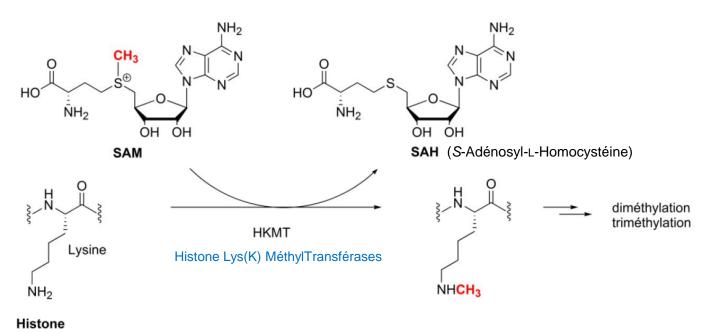
(biosynthèse bactérienne de la méthionine)

γ-substitution : $1. - H^+$ en $C\alpha$

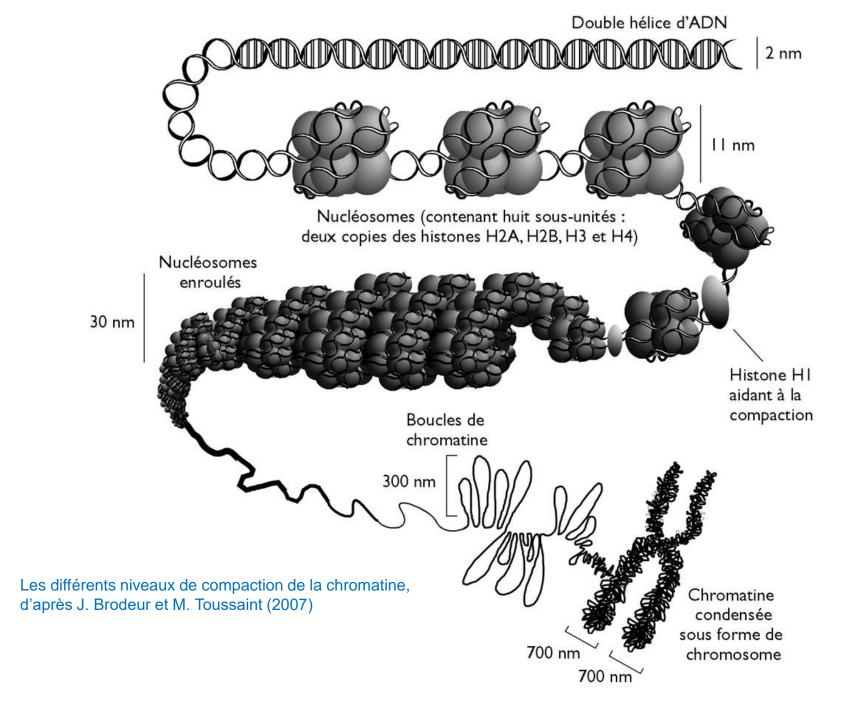
2. – H⁺ en Cβ

4. + cystéine en C γ 5. + H⁺ en C β

3. – succinate en Cγ


6. + H^+ en $C\alpha$

L-cystathionine


d) Enzymes à S-adénosyl-L-méthionine (SAM)

Le coenzyme SAM (S-Adenosyl-L-Methionine)

Thèse A. Désert (Sorbonne Univ., 2021)

- modifications épigénétiques :
 - o acétylations, méthylation, phosphorylation, ubiquitination...
- méthylation des histones :
 - o rôle sur la compaction de l'ADN, et donc, sur l'expression des gènes

