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Abstract: The first total synthesis of the caged monoterpene
indole alkaloid cymoside is reported. This natural product
displays a unique hexacyclic-fused skeleton whose biosynthesis
implies an early oxidative cyclization of strictosidine. Our
approach to the furo[3,2-b]indoline framework relied on an
unprecedented biomimetic sequence which started by the
diastereoselective oxidation of the indole ring into a hydrox-
yindolenine which triggered the addition of an enol ether and
was followed by the trapping of an oxocarbenium intermediate.

The very large family of monoterpene indole alkaloids,
which encompasses more than 3000 compounds, is biosyn-
thetically derived from an enzyme-catalyzed Pictet–Spengler
reaction between secologanin (2), a glycosylated monoter-
pene, and tryptamine (1) to deliver strictosidine (3).[1] From
this point, divergent biosynthetic pathways lead to several
sub-families with skeletons of high structural diversity
(Scheme 1). The main biosynthetic routes imply a cyclization
event between the quinolizidine nitrogen N4 and an aldehyde
arising from the deglucosylation of the secologanin subunit.
For instance, strictosidine (3) is transformed into 4,21-
dehydrocorynantheine aldehyde (4) and the corynanthe
skeleton through the condensation of the released aldehyde
at C21 with N4. Then, oxidative cyclization and/or skeletal
rearrangement could occur to produce the yohimban, sarpa-
gan, akuammilan, excelsidines, mavacuran, strychnan, ibogan
or aspidosperman alkaloids among others. For instance, we
have recently described the bioinspired divergent oxidative
cyclization of the geissoschizine (corynanthe) skeleton into
the excelsinidine or mavacuran frameworks.[2]

In contrast to this general pathway, an oxidative cycliza-
tion of strictosidine could also take place as observed from the
frameworks of few monoterpene indole alkaloids.[3,4] Among
them, cymoside (6) caught our attention owing to its unique
structure, although no biological activity has been reported.[4]

This natural product was isolated by Kritsanida, Grougnet,
and co-workers from crushed leaves collected from the tree
Chimarrhis cymosa (Rubiaceae) in the French Caribbean

island Martinique. Cymoside (6) displays an unprecedented
caged hexacyclic fused-skeleton which still possesses the
glucose moiety and encompasses a rare furo[3,2-b]indoline
motif. In natural products, the latter is only related to the
benzofuro[3,2-b]indoline of phalarine[5] or the furo[3,2-
b]indolone of lapidilectin B, grandilodine C and their con-
geners.[6, 7] Biosynthetically, this high degree of complexity
was proposed to arise from the intramolecular oxidative
coupling between the enol ether of the monoterpene subunit
and the indole by oxidation of the latter into hydroxyindo-
lenine intermediate 5.[4]

Cymoside (6) appeared to us as a challenging target in
relation with our interest in dearomatization of indoles.[8–12]

Notably, we have recently developed bioinspired oxidative
strategies to access the iso-chromeno[3,4-b]indoline and
benzofuro[2,3-b]indoline moieties of bipleiophylline.[9]

Closer to our target, we reported the synthesis of the
benzofuro[3,2-b]indoline framework of phalarine through
an oxidative coupling between N-Ac indoles and phenols[10] or
an interrupted Fischer indolization.[11] We accessed, as well,
the furano[3,2-b]indoline skeleton encountered in cymoside
through a [3++2] annulation between N-Ac indoles and
oxyallyl cations.[12]

In this context, we decided to adopt a bioinspired
approach toward cymoside (Scheme 2). We planned to
obtain the furo[3,2-b]indoline-containing hexacyclic fused-

Scheme 1. Biosynthesis of monoterpene indole alkaloids and of cymo-
side.
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skeleton by an oxidative cyclization of a strictosidine deriv-
ative 7.[13, 14] Indeed, the latter would arise from the Pictet–
Spengler reaction[15] of a secologanin derivative 8 which
would be obtained as described by Tietze three decades
ago.[16–18] It involved a domino sequence of a Knoevenagel
condensation between monoprotected malondialdehyde 9
and 3-formyl-1,1,1-trichloroacetone 10 followed by an
inverse-demand hetero Diels–Alder cycloaddition between
generated enal 11 and enol ether 12.[16a] Methanolysis,
sulfoxide elimination, and release of the aldehyde from the
dithiane furnished secologanin aglycon 8.

In order to assess, the viability of the oxidative cyclization
approach, we started to synthesize a simplified analog 17 a of
secologanin lacking the vinyl substituent (Scheme 3). The
Pictet–Spengler reaction between tryptamine 1 and secolo-
ganin analog 15 lacking the vinyl moiety[16b,c] delivered 17a,b
as a 1:1 ratio of epimers and 16 which arose from the
lactonization of the undesired epimer. The observed diaste-
reoselectivity is in accord with all observations in the
literature since only the use of the enzyme strictosidine
synthase can stereoselectively produce strictosidine deriva-
tives.[15] With 17 in hand, the stage was set to evaluate the key
oxidative cyclization. Unfortunately, the desired framework
of cymoside could not be obtained despite intensive efforts.
With most of the oxidants tried,[14] unidentified over-oxida-
tion products were observed. The free secondary amine N4
appeared to be rather fragile to oxidative conditions. There-
fore, we decided to protect it with a para-nosyl group to yield
18a and its epimer 18 b as a 1.06:1 mixture. Subsequently, we
were pleased to identify oxaziridine 19[14b] in acidic conditions
as a suitable oxidant to promote the desired oxidative
cyclization of 18 a and deliver the intricate fused-hexacyclic

skeleton 20 of cymoside in 45 % from the epimeric mixture of
18a/18 b which represents an 88% yield from the adequate
epimer 18 a.[19] It is presumed that oxaziridine 19 induced the
epoxidation of the C2 = C7 double bond of the indole of 18 a
which is followed by a cascade of cyclizations. The removal of
the nosyl group is a trivial operation which delivered free
secondary amine 21.

The arylsulfonyl protecting group of the quinolizidine
nitrogen N4 is crucial to allow this complex transformation to
happen. Indeed, the nosyl group masks the reactivity of N4
towards oxidants. Moreover, we postulate that it would also
shield one of the faces to control the diastereoselectivity of
the epoxidation. DFT-computations were carried out to
determine the best possible conformation of 18 a
(Scheme 4). This analysis shows that to minimize steric
interactions between the nosyl group and the dihydropyran
substituent at C3 of 18a, the phenyl ring of the nosyl group is
forced to lie under the indole ring without p-staking
interactions. The structure is rigidified by an intramolecular
hydrogen bond between the carbonyl of the methyl ester and
the hydrogen borne by the indolic nitrogen. Consequently, the
face encumbered by the nosyl group appears to be blocked
and the epoxidation would occur on the less hindered face
(Scheme 4). Therefore, after opening of epoxide 22 by the
lone pair of the indolic nitrogen, the dihydropyran at C3 and
the hydroxyl group at C7 of hydroxyindolenine 23 are cis to
each other which is required to continue the domino
cyclization. Accordingly with the biosynthetic hypothesis of
Kritsanida and Grougnet, the enol ether could then add to the
imine part of 23 and generate oxocarbenium 24 which could
be trapped by the hydroxyl group at C7, thus completing the
furo[3,2-b]indoline moiety of 20.

Having established the proof of concept of the key
oxidative intramolecular coupling, we directed our efforts
towards the total synthesis of cymoside (6) itself. Unevent-
fully, the Pictet–Spengler reaction of the Tietze secologanin
aglycon 8 and tryptamine (1) followed by protection of the

Scheme 2. Bioinspired retrosynthesis of cymoside.

Scheme 3. Development of the key oxidative cyclization on a model
substrate.
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secondary amine with a para-nosyl group yielded protected
strictosidine aglycon ethyl ether 7a in a 1.4:1 mixture with its
epimer 7b.

Gratefully, the key biomimetic domino sequence of
oxidation with oxaziridine 19 and cyclization of strictosidine
derivative 7a successfully proceeds in the presence of the
vinyl substituent (Scheme 5). The complete framework 25 of
cymoside was thus obtained in 42% from the epimeric
mixture of 7a/7 b which represents a 72 % yield from 7a.[19]

Indeed, the ethyl ether aglycon 26 of cymoside was obtained
in 71% yield after removal of the nosyl group with thiophenol
in basic conditions.

In order to achieve the total synthesis of 6, the main event
remaining was the introduction of the b-d-glucose moiety.
This operation would also allow us to separate the two
enantiomers of the racemic mixture of 25 since we would use
a highly enantioenriched glycosyl reagent. Hydrolysis of the
acetal of 25 produced hemiacetal 27 in a 9:1 mixture of
epimers. The Schmidt glycosylation of 27 with glycosyl
trichloroacetimidate 28[20] in presence of trifluoroborane
yielded the expected protected glycosylated compound 29 a
in mixture with two minor isomers[21] (ratio 2:1:1) as well as
the glycosylated product 29b of the enantiomer of the
cymoside scaffold. Finally, we achieved the first total synthesis
of cymoside (6) after the successive removal of the nosyl
group from the quinolizidine nitrogen and hydrolysis of the
four acetates of the glycosyl moiety in 47 % over two steps
from the mixture of 29a and its isomers.[22, 23] It is noteworthy
that we were also able to effect this double deprotection on
29b to obtain 30 which is a diastereoisomer of cymoside.

In conclusion, we performed the first total synthesis of the
caged natural product cymoside (6). Unlike many other

Scheme 4. Bottom and side views of DFT-minimized conformation of
18a in CH2Cl2 (Gaussian09 software package, M06 functional and 6-
31G(d,p) basis set for all atoms) and mechanistic hypothesis for the
conversion of 18a into 20.

Scheme 5. Total synthesis of cymoside.
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monoterpene alkaloids, the biosynthesis of hexacyclic-fused
cymoside (6) involves a unique oxidative cyclization cascade
from strictosidine. Inspired by this biosynthetic consideration,
we achieved this unprecedented transformation from an
adequately protected strictosidine aglycone in the presence of
an oxaziridine. Key to the success of this biomimetic reaction
is the use of a nosyl protecting group of the N4 secondary
amine, which masks the reactivity of the latter and directs the
facial selectivity of the oxidation of the indole nucleus into
a hydroxyindolenine. Addition of the enol ether of the
terpenic moiety to this imine was followed by the trapping of
the generated oxocarbenium by the hydroxyl to deliver the
furo[3,2-b]indoline framework of the natural product. The
total synthesis of cymoside (6) was finally achieved by a late
stage introduction of the b-d-glucose.
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