
Nature Chemistry | Volume 14 | December 2022 | 1421–1426 1421

nature chemistry

https://doi.org/10.1038/s41557-022-01048-2Article

Practical synthesis of the therapeutic leads 
tigilanol tiglate and its analogues

Paul A. Wender    1,2 , Zachary O. Gentry1, David J. Fanelli    1, 
Quang H. Luu-Nguyen    1, Owen D. McAteer    1 and Edward Njoo1

Tigilanol tiglate is a natural product diterpenoid in clinical trials for the 
treatment of a broad range of cancers. Its unprecedented protein kinase 
C isoform selectivity make it and its analogues exceptional leads for 
PKC-related clinical indications, which include human immunodeficiency 
virus and AIDS eradication, antigen-enhanced cancer immunotherapy, 
Alzheimer’s disease and multiple sclerosis. Currently, the only source of 
tigilanol tiglate is a rain forest tree, Fontainea picrosperma, whose limited 
number and restricted distribution (northeastern Australia) has prompted 
consideration of designed tree plantations to address supply needs. Here 
we report a practical laboratory synthesis of tigilanol tiglate that proceeds 
in 12 steps (12% overall yield, >80% average yield per step) and can be used 
to sustainably supply tigilanol tiglate and its analogues, the latter otherwise 
inaccessible from the natural source. The success of this synthesis is based 
on a unique strategy for the installation of an oxidation pattern common to 
many biologically active tiglianes, daphnanes and their analogues.

Ligands that modulate protein kinase C (PKC) signalling1 have been 
implicated in therapeutic approaches to human immunodeficiency 
virus and AIDS eradication2, antigen-enhanced antibody and chimeric 
antigen receptor (CAR) T-cell therapies3,4, suppression of T-cell exhaus-
tion in cancer immunotherapy5, Alzheimer’s disease6 and multiple scle-
rosis7. Some modulators have advanced towards clinical evaluation8,9, 
such as tigilanol tiglate (1, EBC-46), a naturally occurring tigliane diter-
penoid recently evaluated in phase I clinical trials for the treatment of 
a broad range of cancers in humans and currently in trials for head and 
neck squamous cell carcinomas10. Intratumoural injection of EBC-46 
induces rapid tumour ablation, in part by a proposed isoform-selective 
modulation of PKC11,12. After administration, EBC-46 induces a localized 
immune response and rupture of tumour vasculature, which leads to 
haemorrhagic necrosis, subsequent clearance of the solid tumour and 
facilitated wound healing13,14. Recently, EBC-46, branded Stelfonta, 
received approval by the US Food and Drug Administration15 for the 
treatment of non-metastatic mast cell tumours in canines. In a recent 
clinical study, a 75% complete response was observed in canines after a 
single intratumoural injection and 88% remission after a second dose16, 
which prompted its current evaluation in human trials.

Currently, the only source of EBC-46 is the dioecious blushwood 
tree (Fontainea picrosperma), a rainforest Euphorbiaceae, limited in 
number and endemic to a small region of northeastern Australia17,18. 
As reported, to access EBC-46 and ester variants from rain forest tree 
seeds, the seeds are extracted with ethanol and the resultant extract 
is partitioned between petroleum ether and water. The contents of 
the organic phase are then converted into EBC-46 using six chromato-
graphic purifications and five low-yielding synthetic steps (~5% yield)19. 
Prompted by its limited natural source, environmental considerations 
and its emerging clinical value, efforts to improve EBC-46 production 
have been directed at cultivating its source plant, F. picrosperma, in 
designed plantations17. However, this source, although it avoids rain 
forest harvesting, is still pollinator limited and at risk of disruption by 
climate variations and invasive pathogens18,20. More geographically 
distributed and diverse sources would offer a more sustainable supply 
for research and clinical needs.

Given the immediate clinical and research value of EBC-46 and 
its analogues, a practical and more sustainable solution to the supply 
problem could be realized through a time- and step-economical21 
semisynthesis from a more available and diversified source22. Similar 
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the starting material (Fig. 1). To obtain this material efficiently, we 
developed an improved scalable isolation protocol building on prior 
work32,33 that, on average, afforded >10 g of phorbol (2) from 3 kg of 
seeds (Supplementary page SI-5). This isolation protocol consists of 
grinding the seeds and base-mediated removal of the C20, C12 and 
C13 esters in the extract to produce an oil from which phorbol (2) is 
purified by column chromatography.

A key challenge associated with synthetically accessing EBC-46 
and many related, biologically active tigliane and daphnane natural 
products is the construction of their common B-ring 5β-hydroxy-
6α,7α-epoxy functionality (Fig. 2a)30,34

. Based on our original pharma-
cophore model, we expect that this functionality, among other B-ring 

strategies that combine the power of biological and chemical synthe-
sis enable rapid access to other clinical candidates, such as Taxol and 
prostratin and their analogues22–26. Towards this end, phorbol esters 
represent potential precursors to EBC-46. Although available through 
total synthesis27–29, they are even more readily accessed from more than 
7,000 species of the globally distributed Euphorbiaceae and Thyme-
laeceae plant families30. Although plant cultivars vary in phorbol ester 
content, the seeds of the Croton tiglium plant of the Euphorbiaceae 
family supply upwards of 1.6% w/w of phorbol (2) upon extraction 
and ester hydrolysis31. Given the low cost (~US$40 kg–1) of these seeds 
and the diverse geographical distribution of their varied sources, we 
set out to design a synthetic route to EBC-46 based on phorbol (2) as 
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Fig. 1 | Structural analysis of tigilanol tiglate (1) and a retrosynthetic analysis 
of its synthesis from phorbol (2). Over 10 g of diversifiable intermediate 7 was 
prepared from phorbol (2), which was isolated in decagram quantities from 

C. tiglium seeds. The three-dimensional structure of 1 was calculated using 
Macromodel (Schrödinger Suite 2016) and optimized with density functional 
theory (M06-2X3).
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Fig. 2 | Overview of the importance of the B-ring oxidation pattern in 
tigliane and daphnane natural products and the pharmacophore model. 
a, The structures of phorbol 13-acetate and of representative members of the 
tigliane and daphnane families with a shared B-ring functionality. b, X-ray crystal 

structure of phorbol 13-acetate bound to the C1 domain of PKC-δ35,36. c, Predicted 
binding mode of EBC-46 to the C1 domain of PKC-δ. Dotted lines represent 
hydrogen bonds.
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functional groups, influences PKC affinity, selectivity and function 
(Fig. 2b)35,36. Thus, the core of this problem is oxy-functionalization of 
the β-C5 allylic hydrogen in the presence of other allylic hydrogens at 
C8, C20, C10 and C19. This problem is further exacerbated by phorbol’s 
sensitivity to heat, light, acid, base and air oxidation37. Attempts at 
direct CH activation at C5 have thus far failed33,38. With a scalable source 
of phorbol (2) in hand, we now describe a solution to this problem that 
provides, in six steps, scalable access to a highly diversifiable intermedi-
ate 7 (Fig. 3) from which EBC-46 and new analogues are readily derived.

Results and discussion
Anticipating that esters at C12 and C13 could be exchanged by late-stage 
diversification and would minimize interference with B-ring modifica-
tions, we opted to start with the simple diacetate 3, which is prepared 
from phorbol (2) with an 82% yield via t-butyldimethylsilyl protection 
at C20 followed by acetylation at C12 and C13 and a desilylative workup 
(Fig. 3). Efforts to convert this two-step process into one step via tria-
cetylation and selective deprotection of the C20 acetate gave lower 
yields (~65%) and was not utilized on large scale.

Chemo-, regio- and stereoselective oxidation at C5 of diacetate 3 
in the presence of potentially oxidizable allylic sites at C8, C10, C19 and 
C20 was efficiently realized using a photosensitized singlet oxygen ene 
reaction with Rose bengal as the photosensitizer, green light-emitting 

diodes (λ = 535 nm) as the photon source39,40 and methanol-d4 as the 
solvent, which minimizes singlet oxygen destruction40. In situ reduc-
tion of the resultant hydroperoxide initially produced allylic alcohol 
4 in moderate yield (66%). Although this reaction can be routinely 
performed batch-wise on small scales (<500 mg), large-scale batch 
reactions suffered from light penetration issues and raised concerns 
about the accumulation of the potentially unstable hydroperoxide 
intermediate39. To address these scalability problems, we assembled a 
cyclic flow photoreactor that utilized a peristaltic pump and Tygon tub-
ing (Supplementary Figs. 3 and 4)41. Using this apparatus, we produced 
the ene product 4 on a decagram scale (for example, 19 g) in an 88% 
yield as determined by quantitative NMR. Although further purified 
for characterization purposes, this compound was sufficiently pure 
to be used directly in the following step thereby avoiding chromato-
graphic purification.

It was envisioned that 4 could be converted into the C5 alcohols 
6 or 7 via rhenium-catalysed allylic transposition42,43. However, the 
reaction of 4 using literature conditions was sluggish and provided 
only minor amounts of the undesired C5α-hydroxy-C6,C20 alkene. 
As an effective alternative route to 6, we found that epoxidation of the 
C5,C6 alkene in 4 with m-chloroperbenzoic acid (mCPBA) proceeded 
preferentially from the sterically more accessible β-face to give epox-
ide 5, with the desired C5β-O bond, in 77% yield. N-methylimidazole 
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Fig. 3 | Reaction sequence from phorbol (2) to tigilanol tiglate (1). Reagents 
and conditions. (1) C20 silylation: tert-butyldimethylsilyl chloride (TBSCl) (7 
equiv.), imidazole (15 equiv.), dimethylformamide, 0 °C. (2) C12,C13 acetylation 
and C20 desilylation: acetic anhydride (Ac2O) (15 equiv.), triethylamine (NEt3) 
(15 equiv.), 4-dimethylaminopyridine (0.3 equiv.), CH2Cl2; then MeOH, 0 °C to 
room temperature; then HClO4 (25 equiv.). (3) C7 singlet oxygen ene reaction 
(cyclic flow, approximately 100 cycles of 5 min, reaction progress tracked by 
thin-layer chromatography and/or NMR spectroscopy; for more information, 
see Supplementary pages SI-13 and SI-14.); Rose bengal (1.5 mM), O2, CD3OD, 
20 °C; then thiourea (3 equiv.). (4) C5,C6 epoxidation: mCPBA (2 equiv.), 3:1 
CH2Cl2:ether, 4 °C. (5) C20 tosylation and reductive epoxide opening: p-
toluenesulfonyl chloride (TsCl) (1.2 equiv.), NMI (0.1 equiv.), NEt3 (1.5 equiv.), 
acetonitrile, 0 °C; then H2O; then sodium iodide (NaI) (3 equiv.), 60 °C. (6) 

C7,C20 allylic transposition: rhenium(VII) oxide (Re2O7), (0.10 equiv.), THF, 
4 °C. (7) C5,C20 acetonide protection: 2,2-dimethoxypropane (300 equiv.), 
pyridinium p-toluenesulfonate (PPTS) (0.15 equiv.), acetone; then rotovap; then 
acetone (8) C6,C7 epoxidation: dimethyldioxirane (DMDO) (3 equiv.), acetone. 
(9) C12,C13 deacetylation: Cs2CO3 in methanol (pH = 11). (10) C13 esterification: 
(S)-2-methylbutanoic acid (3 equiv.), 1-ethyl-3-(3- dimethylaminopropyl)
carbodiimide (EDC) (3.15 equiv.), NEt3 (3.30 equiv.), 4-dimethylaminopyridine 
(DMAP) (0.2 equiv.), CH2Cl2. (11) C12 esterification: tiglic acid (2.2 equiv.), 
2,4,6-trichlorobenzoyl chloride (Yamaguchi reagent) (2 equiv.), NEt3 
(4 equiv.), DMAP (2.6 equiv.), toluene. (12) C5,C20 acetonide deprotection: 
p-toluenesulfonic acid in water (1 M), acetonitrile. b.r.s.m., based on recovered 
starting material.
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(NMI)-catalysed chemoselective tosylation of the primary C20 alcohol 
and subsequent reaction with sodium iodide gave exclusively the 
desired β-C5 alcohol 6 in 88% yield44.

On treatment with catalytic Re2O7, the bis-allylic alcohol 6 under-
went a highly chemoselective 1,3-allylic alcohol transposition42,43 to 
afford C5β-hydroxy phorbol diacetate 7 in a 76% yield (90% based on 
recovered 6), which serves as a diversification node21,24 to access unex-
plored B-ring analogues of 1. Other rhenium catalysts led to complex 
mixtures or a lower conversion (Supplementary Table 1).

Subsequent epoxidation of the C6,C7 alkene of 7 occurred only 
on the sterically more accessible (undesired) β-face, as expected from 
our previous work45,46. Although chiral catalyst-controlled epoxidation 
might address this selectivity problem46, we found a more effective 
solution; specifically, the facial selectivity exhibited by 7 can be dra-
matically reversed by the conversion of 7 into its acetonide 8 (92%). 
Models suggest that the acetonide between the C5 and C20 alcohols 
induces a conformational change in the B-ring that makes the β-face 
more sterically encumbered and the α-face less so. Additionally, this 
protection of the C5 and C20 alcohols serves to simplify subsequent 
functionalization of the C12 and C13 alcohols. Although the initial 
epoxidation of acetonide 8 with mCPBA under a variety of conditions 
(Supplementary Table 2) was slow and low yielding, we found that 
treatment with the sterically smaller and more reactive dimethyldiox-
irane (DMDO) stereoselectively gave α-epoxide 9 in a 63% yield. This 
substrate-controlled facially selective epoxidation is unprecedented 
for this class of compounds and thus provides a potentially general 
method to access other structurally similar and biologically active 
tigliane and daphnane diterpenoids30,34.

Deacetylation of diester 9 provided the corresponding C12,C13 
diol 10 in an 86% yield as determined by quantitative NMR. Although 
further purified for characterization purposes, this compound was 
sufficiently pure to be used directly in the following step thereby avoid-
ing chromatographic purification. Diol 10 serves as a second point 
of diversification for C12,C13 derivatization, now with the desired 

C5β-hydroxy-C6α,C7α-epoxy B-ring in place11,24,36. From 10, EBC-46 
was prepared on gram scale via selective diesterification47 and acidic 
deprotection of the acetonide. In our laboratory, this overall route and 
greatly improved final esterification sequence delivered over 2.5 g of 
EBC-46 (Supplementary Fig. 7). All the steps were performed by two 
or more investigators to ensure reproducibility. Collectively, our syn-
thetic strategy provides access to B-ring analogues from intermediate 
7, A-ring analogues from intermediates 7–12 and C-ring analogues 
from intermediate 10.

Although a comprehensive analysis of the binding, selectivity 
and biological activities of various analogues will be disclosed sepa-
rately, it is noteworthy that even modest structural changes dramati-
cally affect PKC affinity and selectivity. To begin our investigation 
into the role of the C5β-hydroxy-C6α,C7α-epoxy functionality and 
the C12,C13 esters in determining PKC affinity and selectivity, we 
prepared an initial series of analogues (Fig. 4a). These analogues, 
along with EBC-46, were tested for their affinity to PKC-βI and PKC-θ, 
representative conventional and novel isoforms of PKC, respectively 
(Fig. 4b). Specifically, to determine the role of the C6α,C7α-epoxide in 
PKC binding and selectivity, we synthesized a C6,C7-alkene analogue 
(13, SUW400), otherwise inaccessible from EBC-46. Interestingly, 
this analogue exhibited a nearly identical binding affinity and selec-
tivity to PKC-βI and PKC-θ when compared with that of EBC-46. This 
finding suggests that the C6α,C7α-epoxide is not necessary for the 
isoform-selective binding exhibited by EBC-46. Similarly, to deter-
mine the role of the C5β-alcohol in the PKC binding and selectivity, 
we synthesized a C5-deoxy-C6,C7-alkene analogue (15, SUW402). This 
analogue showed a stronger but less selective binding than that of 
both EBC-46 and SUW400. This finding suggests that the C5β-alcohol 
plays an important role in isoform binding selectivity. Finally, to begin 
investigating the role of the C12,C13 esters in PKC binding and selectiv-
ity, we synthesized a diacetate analogue (14, SUW401). This analogue 
showed a very low PKC binding affinity when compared with that of 
EBC-46. This finding suggests that the C12,C13 esters also play an 
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important role in PKC binding. Given the potent PKC affinity of EBC-
46, SUW400 and SUW402, these compounds were tested in vitro 
for their ability to permeate CHO-K1 (Chinese hamster ovary factor 
K1) cells and translocate, in real time, an optically tagged PKC fusion 
protein (PKC-GFP; GFP, green fluorescent protein) from the cytosol 
to the membrane—the hallmark of PKC activation1 (Supplementary 
Fig. 8). The details and experimental procedures for this assay were 
published previously48. EBC-46 showed a modest translocation of 
PKC-βI-GFP at low (200 nM) concentrations and a robust translocation 
at high (1,000 nM) ones (Fig. 4c). Interestingly, the more synthetically 
accessible SUW400 and SUW402 showed a comparable translocation 
to that of EBC-46 at low (200 nM) as well as high (1,000 nM) concen-
trations. Future studies on these and other analogues, readily acces-
sible from our synthetic route, are directed at the elucidation of the 
structural basis for isoform-selective PKC modulation and the role of 
isoform selectivity in human immunodeficiency virus and AIDS latency 
reversal, tumour ablation, antigen enhancement for antigen-targeted 
antibody and chimeric antigen receptor cell therapies, suppression 
of T-cell exhaustion and neurological disorders.

In summary, we describe a scalable laboratory preparation of 
tigilanol tiglate (1, EBC-46), an approved veterinary therapeutic and 
a human clinical lead for cancer and other indications. Previously, 
tigilanol tiglate was considered synthetically inaccessible and only 
available from a limited natural source, the latter raising environmental 
concerns. Our synthetic strategy also enables access to numerous bio-
logically active tiglianes, daphnanes and their analogues. This strategy 
will accelerate future studies directed at the structural basis for PKC 
isoform selectivity and its role in mode of action and disease-specific 
activities.

Online content
Any methods, additional references, Nature Research reporting sum-
maries, source data, extended data, supplementary information, 
acknowledgements, peer review information; details of author contri-
butions and competing interests; and statements of data and code avail-
ability are available at https://doi.org/10.1038/s41557-022-01048-2.
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Methods
As the hazard of new compounds is unknown, all the procedures were 
conducted with full personal protective equipment in a way that avoids 
exposure. CHO-K1 (ATCC) was the cell line used for translocation exper-
iments. No commonly misidentified cell lines were used in this study. 
None of the cell lines used were authenticated. No statistical methods 
were used to predetermine sample sizes, but our sample sizes are 
similar to those reported in previous publications4.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability
The data supporting the findings of this study are available within 
the article and its Supplementary Information. The X-ray structure of 
phorbol-13-acetate bound to the PKC-C1 domain was obtained from 
the structure reported by Hurley (Protein Data Bank: 1PTR).
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