UE de L3 - Biol303 **Biologie moléculaire des génomes** Christian VÉLOT Généficien Moléculaire • Université Paris Saclay, Centre scientifique d'Orsay •

Avenue Jean Perrin - Bât. 350 - RdC Tél. : 01 69 15 82 95

Courriel : christian.velot@universite-paris-saclay.fr

Le réseau métabolique

Biologie moléculaire des génomes

Rappels : structure des acides nucléiques

Topologie de l'ADN circulaire •

Réplication •

Les constituants des acides nucléiques (ADN et ARN)

Les constituants des acides nucléiques (ADN et ARN)

Assemblage des constituants des acides nucléiques

Assemblage des constituants des acides nucléiques

Synthèse d'un polynucléotide

La double hélice d'ADN

La deux principales formes d'ADN double-brin

<u>ADN A</u> :

- Hélices droites
- Condition de faible humidité
- 11 résidus par tour
- Diamètre : 2,3 nm

ADN B (forme la plus répandue) :

- Hélices droites
- Condition de forte humidité
- 10,5 résidus par tour
- Diamètre : 2 nm

Les doubles-hélices ARN-ADN et ARN-ARN sont exclusivement de forme A

Hélices droites et gauches

ADNZ

On le trouve le plus souvent au niveau de séquences présentant une alternance de bases puriques et pyrimidiques :

> Exemple : CGCATGTATACGCACG GCGTACATATGCGTGC

ADNs A et B : toutes les bases sont dans l'orientation anti

ADN Z : - les bases pyrimidiques sont dans l'orientation *anti* - les bases puriques sont dans l'orientation *syn*

Aspect en Zig-Zag

- Hélices gauches - 12 résidus par tour - Diamètre : 1,8 nm

Les molécules d'ADN circulaire : notion de surenroulement

> Cas de l'ADN chromosomique procaryote, de l'ADN mitochondrial, des plasmides

d'ADN mitochondrial (16500 pb)

La façon dont ces deux anneaux sont enlacés est quantifiée par « Lk » : Lk ("Linking number") = nombre d'enlacements

Tw ("Twisting number") = nombre de tours d'hélice

Wr ("Writhing number") = nombre de surenroulements (vrillages)

Lk = Tw + Wr = Cste (tant que les deux brins restent intacts = absence de cassure)

 $Tw = N/h_0 \quad \text{où} = \begin{cases} N = \text{Nombre de paires de base en double hélice} \\ h_0 = \text{Nombre de paires de bases par tour d'hélice (pas de l'hélice)} \end{cases}$

Tw > 0 Wr > 0 ou Wr < 0

N.B. : **Lk** et **Wr** : grandeurs spécifiques des molécules circulaires **Tw** : grandeur concernant aussi bien les molécules linéaires que les molécules circulaires

Wr = 0

Lk varie $(Lk_2 \neq Lk_1)$ 2

|Wr| >> 0

Tw = Cste et Lk = Tw + Wr

=> Lk varie comme Wr

Topoisomérases

Si $Wr_2 < 0 \Rightarrow Lk_2 < Lk_1 \Rightarrow La$ molécule 2 présente un défaut d'enlassement Si $Wr_2 > 0 \Rightarrow Lk_2 > Lk_1 \Rightarrow La$ molécule 2 présente un excès d'enlassement

 $\frac{Lk \text{ varie}}{(Lk_2 \neq Lk_1)}$

Tw = Cste => Lk varie comme Wr

2

|Wr| >> 0

Topoisomérase I

 $\frac{Lk \text{ varie}}{(Lk_2 \neq Lk_1)}$

Tw = Cste => Lk varie comme Wr

2

|Wr| >> 0

Gyrase (Topoisomérase II)

(-)

 (\pm)

- 1 : ADN circulaire relaxé
- 2 : ADN circulaire surenroulé + Topoisomérase I
- 3 : ADN circulaire relaxé + Gyrase 10 secondes
- 4 : ADN circulaire relaxé + Gyrase 20 secondes
- 5 : ADN circulaire relaxé + Gyrase 40 secondes

Wr = 0

G₁

 $\frac{Lk \text{ varie}}{(Lk_2 \neq Lk_1)}$

Tw = Cste => Lk varie comme Wr

Topoisomérases

 $G_1 < G_2$

 G_2

2

|Wr| >> 0

Organisation de l'ADN des organismes eucaryotes : la chromatine

La réplication de l'ADN : les différents modèles

Différents mécanismes de réplication semi-conservative

Différents mécanismes de réplication semi-conservative

Réplication bi-directionnelle : la plus répandue

Différents mécanismes de réplication semi-conservative

Réplication unidirectionnelle à partir d'une même origine

Différents mécanismes de réplication semi-conservative

Réplication unidirectionnelle à partir d'une origine par brin

ADN linéaire de certains virus et ADN mitochondrial

Cas de l'ADN mitochondrial

Différents mécanismes de réplication semi-conservative

Réaction catalysée par l'ADN polymérase

Les ADN (et ARN) polymérases synthétisent de 5' vers 3'

=> Le brin matrice est lu de 3' vers 5'

La fourche de réplication

Les deux brins d'un duplex d'ADN étant anti-parallèles, leur réplication simultanée au niveau d'une même fourche de réplication implique que l'un deux soit synthétisé de façon discontinue

N.B. : Les enzymes dont les noms figurent sur ce schéma sont celles d'Escherichia coli.

Représentation schématique de la fourche de réplication

Modèle d'action de l'hélicase Rep de E. coli

Contrairement à DnaB (héxamérique), Rep est dimérique

Représentation schématique de la fourche de réplication

Holoenzyme ADN polymérase III de E. coli

Représentation schématique de la fourche de réplication eucaryote

Caractéristiques des ADN polymérases

Caractéristique	Polymérase I		Polymérase II	Polymérase III	
Gène de structure Masse moléculaire (kDa) Nombre de molécules /cellule V _{max} (nucléotides/seconde) Activité 3' exonucléasique Activité 5' exonucléasique Processivité Fonction biologique	<i>polA</i> 103 400 16-20 Oui Oui 3-200 Elimination des amorces d'ARN Réparation de	s N, I'ADN	<i>polB</i> 90 100 2-5 Oui Non 10.000 Réparation de l'ADN ?	<i>polC</i> 130 10 250-1000 Non ^a Non 500.000 Elongation des b retardé	orins avancé et
			Chez <i>E. coli</i>		
	α	β	γ	δ	8
Compartiment cellulaire Association à la primase Fonction biologique Nombre de sous-unités	Noyau Oui Réplication du brin retardé 4	Noyau Non Réparation de l'ADN 1	Mitochondries Non Réplication de l'ADN mitochondrial 4 (identiques)	Noyau Non Réplication du brin retardé/avancé 2	Noyau Non Réplication ?
Nr de la sous-unité catalytique (kDa) Processivité intrinsèque Processivité avec PCNA Activité 3' exonucléasique	Modérée Modérée Non	40 Basse Basse Non	Haute Haute Oui	Basse Haute Oui	Haute Haute Oui

Chez les eucaryotes

Modèle pour la réplication de la chromatine

Paramètres quantitaifs de la réplication

	E. coliª	Humain ^b
Contenu en ADN (nombre de pb par cellule)	3,9 X 10 ⁶	3,4 X 10 ⁹
Vitesse de progression de la fourche de réplication (um/min)	30	3
Vitesse de réplication (nucléotides/sec/fourche de réplication)	850	60-90
Nombre d'origines de réplication/cellule	1	10 ³ -10 ⁴
Temps requis pour la réplication totale du génome (heures)	0,33	8
Temps requis pour une division cellulaire complète (heures)	0,67	27

^a Données pour *E. coli* cultivé dans les conditions optimales (milieu riche à 37°)

^b Données pour cellules Hela (lignée cellulaire cancéreuse)

Cas de l'ADN linéaire (chez les eucaryotes : pourquoi la réplication des télomères pose problème ?

5' 3'

5' 3'

Cas de l'ADN linéaire (chez les eucaryotes : pourquoi la réplication des télomères pose problème ?

Action de la télomérase : réplication des télomères

Le réseau métabolique

