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A B S T R A C T

Group discussions and assignments play a pivotal role in the classroom and online study. Existing research has
mainly focused on exploring the educational impact of group learning, while the study on automated grouping
still remains under-explored. This paper proposes a principled method that aims to achieve personalized,
accurate, and efficient grouping outcomes. Dubbed as Personas-based Student Grouping (PSG), our method
first applies unsupervised clustering techniques to assign personas to students based on their behavioral
characteristics. Based on their personas, we then utilize deep reinforcement learning to search for appropriate
grouping rules and perform linear programming to obtain a suitable grouping scheme. Finally, the teaching
effectiveness is fed back as the rewards to the reinforcement learning model to optimize future grouping
scheme selections. Extensive experiments conducted on MOOCs datasets show that PSG can achieve more
advantageous performance in both efficiency and effectiveness compared to the manual or random grouping
mechanism. We hope PSG can provide students with a more enhanced learning experience and contribute to
the future development of education. Our project homepage is available at https://PSG-project.pages.dev.
1. Introduction

Group discussions and assignments are indispensable in the modern
classroom and online study paradigms. Proper grouping can effec-
tively facilitate collaborative learning, uncover students’ potential and
enhance their teamwork abilities, thus promoting their all-round devel-
opment [1–3]. In traditional classroom scenarios, experienced teachers
often rely on their familiarity with students’ personalities, strengths,
and weaknesses to manually compose groups [4]. However, teachers
can hardly recognize every student’s characteristics and requirements
accurately in large classrooms or remote learning environments, such as
Massive Open Online Courses (MOOCs), making manual personalized
grouping at scale impractical. This limitation has sparked research into
using advanced algorithms and big student data to automate grouping.

Over the past few decades, research on computer-assisted instruc-
tion has emerged with the advancement of computer technology. One
such area of investigation is Computer-Supported Collaborative Learn-
ing (CSCL), which encompasses using technology to analyze, compre-
hend, and enhance collaborative learning processes. CSCL research
focuses on developing algorithms to automatically form effective stu-
dent groups based on available data, enabling data-driven personal-
ized grouping [5]. However, CSCL primarily focuses on incorporating
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computer-assisted steps into collaborative teaching, serving only as a
part of human instruction and providing supplementary assistance [6–
8]. As a result, these methods heavily rely on human control and cannot
automatically improve based on teaching outcomes once detached
from human intervention. These limitations have restricted the further
advancement of research related to CSCL.

In this paper, we aim to design an intelligent method that facil-
itates large-scale and personalized grouping. Different from vanilla
CSCL studies, we propose a Personas-based Student Grouping (PSG)
method, which harnesses the strengths of deep reinforcement learn-
ing (DRL) and linear programming (LP) to devise a comprehensive,
fully automated process that can operate without human intervention.
Specifically, PSG first applies unsupervised clustering techniques to
assign personas to students based on their behavioral characteristics.
Next, we utilize reinforcement learning techniques to select appropriate
grouping rules and perform linear programming to obtain a suitable
grouping scheme. Finally, the teaching effectiveness can be fed back to
the reinforcement learning model to optimize future grouping scheme
selections.

PSG is particularly well-suited for teaching scenarios with many
students and a few teachers, such as in MOOCs. It greatly simplifies
vailable online 14 October 2023
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teachers’ workload and only requires specific rules based on their
expertise at the outset of the algorithm’s operation. After teaching,
teachers can also evaluate the teaching effectiveness and obtain insight
from the grouping results for self-improvement. The internal workings
of the algorithm do not depend on human involvement, resulting
in improved efficiency and scalability of the grouping process. Our
contributions can be summarized as follows:

• Personas-based Clustering: By clustering students in terms of per-
sonas, PSG projects the high-dimensional behavioral embeddings
into personas prototypes, which greatly simplifies the state space
of deep reinforcement learning. The assigned personas also offer
valuable insight to teachers on further manual grouping scenarios.

• Integration of Reinforcement Learning and Linear Programming:
The linear programming component computes optimal grouping
solutions based on certain predefined rules, while the reinforce-
ment learning component learns from linear programming re-
sults and teaching feedback to generate gradually better grouping
rules, leading to more enhanced teaching outcomes. To our best
knowledge, we are the first to harness the strengths of deep rein-
forcement learning and linear programming in student grouping
tasks.

• Efficient and Effective Student Grouping: Extensive experiments
conducted on MOOCs datasets show that PSG can achieve more
advantageous performance in both efficiency and effectiveness
compared to the manual or random grouping mechanism.

. Related work

.1. Collaborative learning

Collaborative learning offers an effective way to improve student
ngagement and study outcomes. Researchers have reviewed the effec-
iveness of cooperative learning in higher education, studied the impact
f different goals on adolescents’ achievement and relationships, and
xplored the influence of partnerships on programming teaching effec-
iveness [1–3]. In a general collaborative learning scenario, teachers
ay group students based on various attributes, including academic
erformance, gender, personality traits, and friendship preferences.
ommon grouping approaches include ability-based grouping, mixed
bility grouping, interest-based grouping, and random assignment [4,
,10]. Ability grouping involves grouping students by perceived aca-
emic capabilities, often using test scores or grades Chiu et al. [11].
ixed ability grouping combines students with diverse skill levels and

s often favored for promoting peer learning and modeling Murphy
t al. [12]. Additional work has studied the impact of homogeneous
ersus heterogeneous grouping on collaborative learning outcomes [9,
3,14].

Previous research has also employed various techniques to facilitate
tudent grouping and performance prediction in Computer-Supported
ollaborative Learning environments. Spoelstra et al. [15] and Moreno
t al. [16] used questionnaires to gather student characteristics and
mployed genetic algorithms for team formation. Cen et al. [17] em-
loyed collaborative learning platform log data and classification and
egression algorithms to forecast group performance. These diverse
pproaches have demonstrated the effectiveness of leveraging vari-
us data sources and algorithms to enhance CSCL interactions and
erformance prediction.

Recent research has explored how different grouping schemes can
ptimize collaborative learning. Li and Shan [18] proposed an al-
orithm considering communication capacities and social networks,
nabling user feedback to improve groups iteratively. However, this
as tailored to something other than classroom environments. Haq
t al. [19] demonstrated the potential of knowledge-based dynamic
rouping to improve collaborative learning by forming initial groups
ased on assessed learning styles and knowledge, then dynamically
2

rebalancing groups based on relative knowledge levels. Zheng et al. [7]
designed an integrated mathematical model and an improved genetic
algorithm to solve the model and obtain optimal learning groups to
meet various grouping requirements for different educational contexts.
In the research of Xu et al. [8], different grouping schemes were
investigated to understand their influences on promoting active learn-
ing and enhancing student programming skills through peer learning.
Their research highlighted the positive impact of thoughtfully designed
grouping schemes compared to other grouping methods. However, they
still need to present a complete automated grouping scheme since the
grouping process relies on manual operations. Reinforcement learning
(RL) provides a potential solution where agents learn optimal grouping
behaviors through ongoing environment interactions [6].

In PSG, we follow the insight of [6] to employ RL as our student
grouping mechanism generator. However, PSG goes beyond it by com-
bining reinforcement learning and a simplex algorithm instead of a
genetic algorithm to achieve better performance.

2.2. Reinforcement learning

Reinforcement learning (RL) has demonstrated remarkable achieve-
ments in educational contexts, ranging from intelligent tutoring systems
to personalized learning platforms. Notably, Chi et al. [20] conducted
empirical research evaluating the application of RL to induce effec-
tive and adaptive pedagogical strategies. Similarly, Iglesias et al. [21]
contributed to the field by developing RL-based pedagogical policies
for adaptive and intelligent educational systems. Additionally, through
their modular RL framework, Rowe and Lester [22] made significant
strides in enhancing student problem-solving within narrative-centered
learning environments. These studies collectively underscore the poten-
tial of RL as a valuable tool for revolutionizing educational practices
and promoting personalized, effective learning experiences.

For grouping problems precisely, reinforcement learning has shown
promise for adapting group configurations over time. Panait and Luke
[23] used reinforcement learning for cooperative multi-robot learning,
showing how it enables robots to learn varying group sizes and spe-
cialization of roles. Bassen et al. [24] demonstrates an RL model to
schedule real-time educational activities for an extensive online course
through active learning. Omidshafiei et al. [25] used decentralized
multi-agent RL to learn complex grouping behaviors.

These studies above demonstrate reinforcement learning’s capabil-
ities for automated grouping tasks. However, RL for online grouping
still needs to be further explored, especially for evolving classroom
conditions. Our proposed approach aims to leverage the benefits of RL
for education grouping.

2.3. Clustering algorithms

Clustering algorithms have become essential for exploratory data
analysis across many domains. These unsupervised methods aim to
organize unlabeled data into meaningful groups or clusters based on
similarity to uncover hidden structures in the data, from Xu and Wun-
sch [26]. Clustering has a long history spanning computer science,
statistics, and machine learning, with linkage to fields like biology,
psychology, and economics [27–29].

Plenty of clustering-based machine learning algorithms have been
proposed in history, wherein K-means is one of the most popular
and widely used clustering algorithms due to its simplicity and ef-
ficiency [27]. This prototypical partitioning technique minimizes the
squared error objective between points and their cluster centroids [30].
Limitations of K-means include sensitivity to initialization, convergence
to local optima, and bias toward spherical clusters of similar size [31].
Recent advances focus on seeding strategies, handling constraints, the-
oretical analysis, and scalability via sampling and parallelization [32].
X-means is an extended version of K-means that estimates the number
of clusters K based on Bayesian Information Criterion (BIC) [33]. The
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more recent work such as CAS, supports inheritance and exceptions
without probabilistic assumptions [34], and GBS, a graph-based sys-
tem for multi-view clustering [35]. Additionally, new dissimilarity
measures have been defined, including one based on biological tax-
onomy and rough set theory [36], and attribute selection methods
like MDA, considering attribute dependency [37]. Moreover, heuristic
algorithms have been introduced, incorporating prior knowledge of
cluster size [38], and fuzzy k-prototypes algorithms have been designed
to handle mixed numeric and categorical data [39].

In a more specific domain, e.g. education, as our focus in this paper,
clustering method helps analyze patterns in student data to improve
learning and institutional effectiveness [40]. For example, clustering
student usage logs from learning management systems can inform
personalized e-learning tools [41]. In intelligent tutoring systems, clus-
tering student problem-solving steps aids knowledge tracing [42]. Clus-
tering also enables analyzing social networks, collaboration styles, and
discussion forum patterns, [43].

Overall, clustering research continues to expand into new disci-
plines with novel data types and goals. Key directions include scala-
bility, robustness, emerging data sources like text and social networks,
integrative clustering of varied data, and interpretability for real-world
impact.

3. Methodology

3.1. Overview

PSG adopts a two-step structure, as illustrated in Fig. 1. In Step
1, we collect students’ multidimensional behavioral information from
the MOOCs platform as input data. After processing this information,
personas labels like ‘‘leader’’ or ‘‘collaborator’’ are assigned for different
clusters.

In Step 2, we propose to combine reinforcement learning and linear
programming for grouping. Initially, we design a DQN model where
the state (observation) contains various grouping rules and the action
output) represents the chosen rule. These rules are generated based
n the personas labels obtained in Step 1. Once we have a good subset
f rules for selecting groupings, we perform linear programming with
hese rules. The output of the linear programming gives us the final
rouping scheme, which is then implemented in classroom teaching.
uring classroom teaching, we observe the teaching outcomes of differ-
nt grouping rules (i.e. different types of groups). This information is
tilized to provide feedback as the reward to the reinforcement learning
odel and simultaneously update rule scores. Through multiple itera-

ions, PSG gradually generates grouping rules more suited for effective
eaching.

.2. Generate personas labels

In previous student grouping practices, some experienced teachers
ave demonstrated proficient skills in manually composing student
roups. They first assess students’ traits and accordingly assign personas
abels like ‘‘leader’’, ‘‘executor’’ or ‘‘coordinator’’. Subsequently, using
hese personas labels, they group students based on certain rules. For
xample, forming a group of four with one leader, two executors,
nd one coordinator. This process is reasonable since it simplifies the
omplexity of grouping by utilizing simple rules while considering
he individual traits of students for a personalized approach. Teach-
rs would summarize some rules from past teaching experience, for
nstance:

leader + 2 executors + 1 coordinator = good group
3

leaders + 1 observer = bad group
These rules provide valuable and straightforward guidelines for the
eacher.

To better leverage teachers’ expertise, we referred to this methodol-
gy. We adopt a clustering-based approach to assign personas labels to
tudents. With students’ personas labels obtained, we can then utilize
he grouping experience accumulated by teachers. Specifically, we
tilize the k-means algorithm for clustering. We first cluster students
ased on their behavioral features and then annotate different clusters
ccording to teacher experience. For input features, we select students’
istorical performance data on the MOOCs platform as relevant fea-
ures, including scores, in-class performance, participation level, etc. To
nsure meaningful clustering, we perform feature engineering on these
ultidimensional data and utilize the z-score standardization method

o standardize each feature dimension.
The choice of cluster number 𝐾 directly influences the final cluster-

ng outcome. To determine the optimal 𝐾, we referred to the XMeans
ethod by Pelleg and Moore [33]. XMeans is a k-Means-based auto-
atic clustering algorithm that incrementally splits clusters using BIC

riteria to determine the optimal number of clusters. Once the cluster
umber 𝐾 is selected, we apply the k-means algorithm for clustering,
ividing students into 𝐾 clusters. The k-means algorithm minimizes
otal within-cluster variance by iteratively updating cluster centers.

Specifically, we randomly select 𝐾 samples as initial cluster centers,
enoted as 𝐶1, 𝐶2,… , 𝐶𝐾 . At each iteration, for every data point 𝑥 in

the dataset, we compute its distance to each cluster center and assign
it to the cluster with minimum distance:

𝑐𝑙𝑎𝑠𝑠(𝑥) = argmin
𝑖

|𝑥 − 𝐶𝑖|. (1)

The cluster centers are then updated by calculating the mean of
samples in each cluster, obtaining new cluster centers:

𝐶𝑖 =
1
𝑁𝑖

∑

𝑥∈𝐶𝑙𝑢𝑠𝑡𝑒𝑟𝑖

𝑥, (2)

where 𝑁𝑖 denotes the number of samples in the 𝑖th cluster. Thus, the
average of all samples in a class becomes the new cluster center. This
process is repeated multiple times until the cluster centers no longer
change or a pre-defined iteration limit is reached.

After completing the clustering process, the clusters are mapped to
personas labels. Based on teachers’ expertise, we label the 𝐾 clusters
s personas like ‘‘leader’’, ‘‘executor’’ or ‘‘coordinator’’. Teachers can
nspect the clustering results and assess the distribution of features in
lusters to determine reasonable personas mappings.

.3. Deep reinforcement learning loop design

Through clustering, we have assigned each student a personas label,
llowing us to leverage some human-summarized prior knowledge. PSG
ill generate all possible rules, and score them based on the human-

ummarized rules. However, the number of generated groupings can
e huge (reaching 𝐴𝑁 scale), making it infeasible to directly use in the
ubsequent optimizer.

To address the combinatorial explosion of grouping rules, we pro-
ose a deep reinforcement learning-based automatic rule selection
ethod. We introduce this reinforcement learning-based algorithm in

ive parts: state space, action space, deep Q network, reward function,
nd training process.
Action Space: The action space consists of all candidate rules,

hich we denote as an linear set 𝐴 = 1, 2,… , 𝐶, where each linear
epresents the index of a corresponding candidate rule. An action 𝑎 ∈ 𝐴

represents selecting to add a new rule on top of the current rule set.
That is, the actions represent picking a new additional rule from the
pool of candidate rules to include in the current set. Initially, the rule
set is empty. Complete rule subsets are formed through the cumulative
addition of multiple actions.

State Space: Each state 𝑠 represents the current chosen subset of
rules. The state can be represented as a 𝐶-dimensional 0–1 vector,
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Fig. 1. Flowchart of PSG.
where the 𝑖th position being 1 indicates rule 𝑖 has been selected. The
initial state 𝑠0 is an all-0 vector, denoting an empty rule set. After taking
an action, the corresponding rule position is updated to 1, indicating
its addition to the set.

Reward Function: We designed a polynomial reward function with
three terms:

𝑟(𝑠, 𝑎) = 𝑟𝑒𝑣𝑎𝑙 − 𝑟𝑟𝑒𝑝𝑒𝑎𝑡 − 𝑟𝑓𝑎𝑖𝑙 , (3)

where 𝑟𝑒𝑣𝑎𝑙 represents the score based on evaluating the linear program-
ming grouping outcome using the current rule subset, rewarding better
combinations; 𝑟𝑟𝑒𝑝𝑒𝑎𝑡 is a penalty term for repeatedly selecting the same
rule; 𝑟𝑓𝑎𝑖𝑙 is a penalty when grouping fails.

Deep Q Network: We construct a multilayer perceptron to approx-
imate the state–action value function 𝑄(𝑠, 𝑎). The network takes in a
one-step state 𝑠 as input, and outputs predicted Q values for each action
𝑎. It contains two fully-connected layers, each followed by a ReLU
activation function. The output layer size equals the action space size
𝐶 to predict Q values for all possible actions.

The network parameters 𝜃 are optimized by regressing to Q targets:

𝐿(𝜃) = (𝑟 + 𝛾 ∗ max
𝑎′

𝑄(𝑠′, 𝑎′; 𝜃) −𝑄(𝑠, 𝑎; 𝜃))2, (4)

where 𝑠, 𝑎 are current state–action, 𝑟 is immediate reward, 𝑠′ is next
state, 𝛾 is discount factor. Target network parameters 𝜃− are periodi-
cally copied from the current network.

Training Process: The algorithm starts from initial state 𝑠0 and
iterates Algorithm 1.

3.4. Generating grouping schemes

The optimized rule subset obtained from the reinforcement learning
model consists of a rule matrix and a score matrix. The rule matrix 𝑅𝑢𝑙𝑒
is sized 𝑅 ×𝐾, where 𝑅 is the number of rules and 𝐾 is the number of
clusters. 𝑅𝑢𝑙𝑒𝑖,𝑗 denotes the number of students of cluster 𝑗 contained
in rule 𝑖. The score matrix 𝑆𝑐𝑜𝑟𝑒 is sized 𝑅, where 𝑅𝑢𝑙𝑒𝑖 represents the
score for rule 𝑖.

Additionally, from the clustering step we can obtain the student
count matrix 𝑆𝑡𝑢𝑑𝑒𝑛𝑡 of size 𝐾, where 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑖 denotes the number
of students with personas 𝑖. Based on matrices 𝑅𝑢𝑙𝑒 and 𝑆𝑡𝑢𝑑𝑒𝑛𝑡, we
4

Algorithm 1 Deep Reinforcement Learning for Rule Selection
Require: Candidate rule set 𝑅, Maximum number of rules 𝑁
Ensure: Selected optimized rule subset 𝑆
1: Initialize replay memory 𝐷
2: Initialize policy network 𝑄, random weights 𝜃
3: Initialize state 𝑠0 as empty set
4: for episode = 1, 2, ..., 𝐸 do
5: Receive initial state 𝑠0
6: for 𝑡 = 1, 2, ..., 𝑇 do
7: With probability 𝜖 select random action 𝑎
8: Otherwise select 𝑎 = argmax𝑎 𝑄(𝑠, 𝑎; 𝜃)
9: Execute 𝑎, add rule 𝑟𝑎 to current set 𝑆

10: Observe reward 𝑟 and new state 𝑠′

11: Store transition (𝑠, 𝑎, 𝑟, 𝑠′) in 𝐷
12: end for
13: if |𝑆| == 𝑁 then
14: break
15: end if
16: Sample batch randomly from 𝐷
17: Update 𝜃 via batch regression
18: end for
19: Output optimized rule subset 𝑆
20: Calculate rewards from teaching feedback, add to 𝐷, update 𝜃
21: Update 𝑆𝑐𝑜𝑟𝑒

establish the following linear programming model to solve for the usage
count of each rule:

maximize𝑥

𝑛
∑

𝑖=1
𝑆𝑐𝑜𝑟𝑒𝑖 ⋅ 𝑥𝑖, (5a)

subject to
𝑛
∑

𝑖=1
𝑅𝑢𝑙𝑒𝑗𝑖 ⋅ 𝑥𝑖 = 𝑆𝑡𝑢𝑑𝑒𝑛𝑡𝑗 for 𝑗 = 1, 2,… , 𝐾, (5b)

𝑥𝑖 ≥ 0 for 𝑖 = 1, 2,… , 𝑅. (5c)

The objective (5) is to maximize the total score based on rule
usage counts. Constraint (5b) ensures each student is assigned to
groups according to their personas counts. Constraint (5c) enforces non-
negativity of the rule usage counts. To solve this linear programming
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Fig. 2. Elbow and t-SNE visualizations.
model, we utilize the PuLP library in Python, a fast implementation of
simplex algorithm [44].

Solving this optimized configuration of rule usage counts yields a
high-quality grouping scheme. The scalability of clustering and flexi-
bility of DRL are combined successfully to improve grouping efficiency,
enabling PSG to maintain performance in large-scale student grouping
scenarios.

4. Experiments

4.1. Experimental setup

Dataset: To comprehensively evaluate PSG, we generated a dataset
of 10,000 students referring to a MOOCs platform’s student feature dis-
tribution and conducted experiments on it. Each student is represented
by a 10-dimensional feature vector. These features are standardized to
z-scores. The experimental goal is to divide these students into groups
of equal size. Additionally, we obtained 200 manually designed rules
from teachers that will be utilized in subsequent steps. As shown in
Fig. 2(a), the elbow method analysis indicates the suitable number of
clusters for this dataset is around 10. Based on the Xmeans algorithm,
we set 𝐾 = 10. Fig. 2(b) shows the t-SNE visualization of clustering
results reduced to 2 dimensions.

Our dataset is sourced from Educoder,2 a professional online edu-
cation platform in collaboration with numerous universities and com-
panies. The dataset includes multi-dimensional distributions of student
information, grouping information, and group scores. It encompasses
multiple instances of group discussions and assignments, with varying
group sizes. Specifically, it comprises data for 3966 groups with a size
of 2, 4167 groups with a size of 3, 1841 groups with a size of 4,
1759 groups with a size of 5, and 912 groups with a size of 6. We
have processed the data by removing outliers and standardizing it,
enabling meaningful comparisons across different instances of group
assignments. In our experiments, our primary focus was on using
groups with a size of 4. Baseline: We selected the random assignment
strategy as the baseline. This random baseline is a simple and trivial
approach that relies on arbitrary grouping decisions without utilizing
any optimization algorithms or learning processes. Under this baseline,
student groups are formed entirely randomly, without considering edu-
cational requirements, individual student differences, or other relevant
factors.

DRL setting: We utilize reinforcement learning to select 20 rules
out of the 200 for linear programming. A DQN with two hidden
layers (each containing 128 units) was implemented in PyTorch for

2 https://www.educoder.net/.
5

rule selection. The input state is a 200-dim binary vector representing
currently selected rules. The output action is the rule ID to be selected.
The reward consists of the linear programming runner result, repeating
rule selection penalty and grouping failure penalty.

PSG evaluation method: We first initialized the algorithm frame-
work for generating the initial grouping scheme in the experimental
setup. Based on this initial policy the evolved policy, we evaluated its
performance in the context of classroom teaching. During the teaching
sessions, educators thoroughly reviewed and assessed the proposed
grouping scheme based on criteria such as effectiveness, rationality,
and alignment with practical needs. Subsequently, the educators pro-
vided corresponding score feedback. Scoring is based on the average of
scores from multiple raters.

4.2. Comparative study

Comparison between different groups with different PSG cat-
egory: To establish the foundation of the PSG method, we aimed to
demonstrate the correlation between the composition of groups and
their performance. Employing the PSG approach, we compared the
score distributions of groups with different PSG types, as shown in
Fig. 3(a). It is evident that groups with different PSG types exhibit dis-
tinct score distributions. Thus, it is feasible to enhance overall student
performance by selecting appropriate group compositions. To validate
the effectiveness of the scoring model, we utilized 80% of the data
for training and the remaining 20% for testing. After 3000 epochs of
training, the scoring model successfully predicted performance scores
for different group types, as depicted in Fig. 3(b). This information
can be utilized to guide the learning process of reinforcement learning
models.

Comparison between two iterations:We trained for 200,000 steps
on the unmodified 200 rules from teachers, and the reward trend is
shown in Fig. 4(a). Subsequently, we manually evaluate the output and
update rules using the evaluation. We continue training for 200,000
steps. The reward trend is shown in Fig. 4(b). It can be observed that
after rules are modified, the reward drops in the short term but recovers
after some training. Also, the second training converges faster than the
first. Please notice that, due to the recent revision in scoring, we cannot
directly compare the reward values. Consequently, our analysis will
focus solely on observing the trend of the reward values.

Comparison between Random Grouping and PSG: By incorpo-
rating the reinforcement learning reward mechanism, PSG gradually
learned and adjusted its strategies to achieve higher teacher ratings.
Through multiple iterations of evaluation and adjustments, the rein-
forcement learning model continuously updated its policies based on
educator feedback, resulting in improved grouping schemes. The com-
parison with the random baseline presented in Table 1 demonstrated
the significant performance enhancement achieved by our reinforce-
ment learning method, leading to superior grouping outcomes.

https://www.educoder.net/
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Fig. 3. PSG category comparison & score prediction model visualization.
Fig. 4. Reward graph.
Table 1
Comparison between random grouping and PSG.

Iteration Random grouping PSG

Iteration 1 5 5
Iteration 2 5 5.5
Iteration 3 5 6
Iteration 4 5 7

4.3. Ablation study

Ablation Study of DRL: To demonstrate the necessity of the re-
inforcement learning part of the PSG algorithm, we conduct ablation
experiments on MOOCs dataset. We measure the time it takes to
generate a grouping proposal for a trained RL model. The baseline in
the comparison is not using reinforcement learning but directly using
linear programming to group according to rules. From the results in
Table 2, it can be seen that the time cost grows slowly with dataset
size increasing, demonstrating the computational efficiency of PSG.
We conclude that efficiently acquiring a subset of rules via DRL for
grouping improves efficiency and PSG can maintain good performance
in large-scale student groupings.
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Table 2
Ablation study of DRL.

Group size Rules count Without DRL PSG

4 200 0.05 s 0.2 s
20 1000 1.93 s 0.5 s
100 10,000 27.76 s 1.2 s

5. Conclusion and future work

In this work, we propose PSG, which applies deep reinforcement
learning and linear programming techniques for automated student
group generation in collaborative learning environments. Students are
first efficiently partitioned based on their multidimensional behavioral
information using k-means clustering to generate personas-based clus-
ters. A DRL agent then learns effective strategies by combining it with
a linear programming solver to select personalized grouping rules.
Experiments show that PSG achieves superior performance in student
group formation compared to baselines in meeting pedagogical goals.

Future work might include trying different reinforcement learning
algorithms, optimizing the reinforcement learning reward function,
improving performance, and deploying it in real online classroom envi-
ronments. We believe PSG can provide a new perspective on enhancing
collaborative learning through intelligent student grouping.
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