
C++20 Features

© 2020 Bartlomiej Filipek, https://www.bfilipek.com Last update January 2020

New keywords: char8_t, co_await, co_return, co_yield,

concept, consteval, constinit, import*, module*, requires

* identifiers with a special meaning

Concepts
Constrains on the template parameters and meaningful compiler

messages in case on an error. Can also reduce the compilation time.

template <class T>

concept SignedIntegral = std::is_integral_v<T> &&

 std::is_signed_v<T>;

template <SignedIntegral T> // no SFINAE here!

void signedIntsOnly(T val) { }

Modules
The replacement of the header files! With modules you can divide your

program into logical parts.

import helloworld; // contains the hello() function

int main() {

 hello(); // imported from the “helloworld” module!

}

Coroutines
Functions that can suspend their execution and can be resumed later,

also asynchronously. They are associated with a promise object and

might be allocated on the heap. C++20 gives language support. Use libs

like cppcoro for full functionality (generators objects).

generator<int> iota(int n = 0) {

 while(true)

 co_yield n++;

}

operator<=>
New operator that can define other operators: <, <=, >, and >=.

R operator<=>(T,T); where R can be: std::strong_ordering,

std::weak_ordering and std::partial_ordering.

 (a <=> b) < 0 if a < b

(a <=> b) > 0 if a > b

(a <=> b) == 0 if a and b are equal/equivalent.

Designated Initializers
Explicit member names in the initializer expression:

struct S { int a; int b; int c; };

S test {.a = 1, .b = 10, .c = 2};

Range-based for with initializer
Create another variable in the scope of the for loop:

for (int i = 0; const auto& x : get_collection()) {

 doSomething(x, i);

 ++i;

}

char8_t
Separate type for UTF-8 character representation, the underlying type

is unsigned char, but they are both distinct. The Library also defines

now std::u8string.

Attributes
[[likely]] - guides the compiler about more likely code path

[[unlikely]] - guides the compiler about uncommon code path

[[no_unique_address]] - useful for optimisations, like EBO

[[nodiscard]] for constructors – allows us to declare the

constructor with the attribute. Useful for ctors with side effects, or RAII.

[[nodiscard("with message")]] – provide extra info

[[nodiscard]] is also applied in many places in the Standard Library

Structured Bindings Updates
Structured bindings since C++20 are more like regular variables, you can

apply static, thread_storage or capture in a lambda.

Class non-type template parameters
Before C++20 only integral types, enums, pointer and reference types

could be used in non-type template parameters. In C++20 it’s extended

to classes that are Literal Types and have “structural equality”.

struct S { int i; };

template <S par> int foo() { return par.i + 10; }

auto result = foo<S{42}>();

explicit(bool)
Cleaner way to express if a constructor or a conversion function should

be explicit. Useful for wrapper classes. Reduces the code

duplication and SFINAE.

explicit(!is_convertible_v<T, int>) ...

constexpr Updates
constexpr is more relaxed you can use it for union, try and catch,

dynamic_cast, memory allocations, typeid. The update allows us to

create constexpr std::vector and std::string (also part of C++

Standard Library changes)! There are also constexpr algorithms like

std::sort, std::rotate, std::reverse and many more.

consteval
A new keyword that specifies an immediate function – functions that

produce constant values, at compile time only. In contrast to

constexpr functions, they cannot be called at runtime.

consteval int add(int a, int b) { return a+b; }

constexpr int r = add(100, 300);

constinit
Applied on variables with static or thread storage duration, ensures

that the variable is initialized at compile-time. Solves the problem of

static order initialisation fiasco for non-dynamic initialisation. Later the

value of the variable can change.

Ranges
A radical change how we work with collections! Rather than use two

iterators, we can work with a sequence represented by a single object.

std::vector v { 2, 8, 4, 1, 9, 3, 7, 5, 4 };

std::ranges::sort(v);

for (auto& i: v | ranges:view::reverse) cout << i;

With Ranges we also get new algorithms, views and adapters

std::format
Python like formatting library in the Standard Library!

auto s = std::format("{:-^5}, {:-<5}", 7, 9);

s has a value of „--7--, 9----” centred, and then left aligned

Also supports the Chrono library and can print dates

Chrono Calendar, Timezone and Updates
Heavily updated with Calendar and Timezones

auto now = system_clock::now();

auto cy = year_month_day{floor<days>(now)}.year();

cout << "The current year is " << cy << '\n';

Additionally we have updates like explicit file_clock, clock_cast

(time point conversion) and many other enhancements.

Multithreading and Concurrency
• jthread - automatically joins on destruction. Stop tokens allows

more control over the thread execution.

• More atomics: floats, shared_ptr, weak_ptr, atomic_ref

• Latches, semaphores and barriers – new synchronisation primitives

std::span
A on owning contiguous sequence of elements. Unlike string_view,

span is mutable and can change the elements that it points to.

vector<int> vec = {1, 2, 3, 4};

span<int> spanVec (vec);

for(auto && v : spanVec) v *= v;

Other
• Class Template Argument Deduction for aliases and aggregates,

and more CTAD in the Standard Library

• template-parameter-list for generic lambdas

• Make typename optional in more places

• Signed integers are two’s complement

• using enum – less typing for long enum class names

• Deprecating volatile where it has no obvious meaning.

• Pack expansion in lambda init-capture

• std::bind_front() - replacement for std::bind()

• String prefix and suffix checking

• std::bit_cast() and bit operations

• Heterogeneous lookup for unordered containers

• std::lerp() and std::midpoint(), Math constants

• std::source_location() – get file/line pos without macros

• Efficient sized delete for variable sized classes

• Feature test macros and the <version> header

• erase/erase_if non-member functions for most of containers!

References
isocpp.org, herbsutter.com,

en.cppreference.com/w/cpp/compiler_support,

devblogs.microsoft.com/cppblog/c20-concepts-are-here...,

C++20: the small things - Timur Doumler - Meeting C++ 2019

https://www.bfilipek.com/
https://isocpp.org/
https://herbsutter.com/
http://en.cppreference.com/w/cpp/compiler_support
https://devblogs.microsoft.com/cppblog/c20-concepts-are-here-in-visual-studio-2019-version-16-3/
https://www.youtube.com/watch?v=E_GoY-WGgmA

