NONLINEAR OPTICS COURSE

- Course objectives
- Essential questions addressed by the course
- Final learning outcomes
- Intermediate learning outcomes
- Ressources on eCampus: lectures notes, learning activities, exercises
- Evaluation:
 - Learning activities on eCampus = Bonus (+2 points)
 - Homework (January) = 30%
 - Written exam (no document) = 70%

N. Dubreuil - NONLINEAR OPTICS

Nonlinear Optics : Course objectives

- Introduce nonlinear optical interactions that occurs when an optical beam at high intensity propagates through a material medium
- Present useful tools to understand the basic concepts of nonlinear optics
- Derive standard models to describe the mostly used nonlinear interactions (2nd and 3rd orders),
- Evaluate the efficiency and order of magnitudes in specific cases.
- Study a variety of phenomena and applications: generation of 2nd, 3rd harmonic generation, parametric amplification and oscillation with the realization of widely tunable coherent oscillators (OPO), generation of frequency comb, self-phase modulation effects, self-focusing or de-focusing of beams, soliton effects, four-wave mixing...

Nonlinear Optics : Essential Questions

- Capability of light matter interactions in modifying light properties, leading to frequency generation, self-action or cross-actions of light on beam propagation, optical amplification, phase shift, rectification...
- Limit of the classical models in depicting the origin of the nonlinearities and some nonlinear interactions → QUANTUM description

N. Dubreuil - NONLINEAR OPTICS

Nonlinear Optics : Final learning outcomes

By the end of the course, students will be able to

- *describe* the origin of the nonlinear optical interactions that lead to the generation of novel optical frequencies
- evaluate and calculate 2nd and 3rd order nonlinear interaction performances/efficiencies under approximations that should be specified, explained and justified
- *design* and *optimize* a 3 or 4 wave mixing configuration to meet given performances. The approach and values shall be justified and presented in a written or oral report.
- model 2nd and 3rd order nonlinear interactions under assumptions to be specified and *implement* related numerical simulations.

intermediate learning outcomes

MEANING			
Understanding – Students will understand that		Essential Questions	
 U1 - Nonlinear effects are a key points in the development of many applications in photonics (especially in relation with laser physics) U2 - Understand interplays between linear and nonlinear effects U3 - Nonlinear interactions lead to energy transfer between optical beams, and/or between matter and beams, enabling in some cases the realization of nonlinear optical amplification and/or oscillation. U4 - Nonlinear optics is an essential tool to create novel optical frequencies generated through the interaction of incident beams within nonlinear materials U5 - Nonlinear effects are subject to phase matching conditions 		 Q1 - Capability of light matter interactions in modifying light properties : frequency generation, self-action or cross-actions of light on beam propagation, optical amplification, phase shift, rectification Q2 - Use of a perturbative approach in describing and deriving a NON LINEAR problem in physics Q3 - Link between the microscopic and macroscopic terms in Maxwell's equations (induced dipole, macroscopic polarization and fields) Q4 - Link between the frequency relation and the law of energy conservation, the phase matching relation and the law of momentum conservation 	
	ACQUI	SITIONS	
Knowledge – Students will know	Skill –	Skill – Students will be skilled at	
 K1 - the constitutive relations of nonlinear optics (D = ε₀E + P and P = ε₀χ⁽¹⁾E + ε₀χ⁽²⁾EE + ε₀χ⁽³⁾EEE + ···) K2 - the nonlinear effects that arise in a 2nd and 3rd order nonlinear materials K3 - the origin of the nonlinear susceptibilities (classical origin) K4 - the basic properties of nonlinear susceptibility tensors 	incio S2 - De achi and, S3 - Sc solu S4 - Ca	 S1 - Manipulating the nonlinear susceptibility tensor components and, with given incident fields, calculate the components of nonlinear polarisation vector S2 - Determining the phase matching conditions for a given nonlinear interaction and achieving/fulfilling this condition by exploiting birefringence properties of materials and/or QPM technique S3 - Solving the nonlinear equation in parametric situations and derive analytical solutions under the undepleted pump approximation S4 - Calculating nonlinear interaction performances/efficiencies in situations governed by analytical solutions or expressions 	

N. Dubreuil - NONLINEAR OPTICS

Lecture 1/7 : intermediate learning

outcomes

By the end of this lecture, you will be able to ...

• derive the relation between the macroscopic polarization and the electric field (the so-called constitutive relations of nonlinear optics) (K1)

- cite nonlinear effects that arise in a 2nd and 3rd order nonlinear materials (K2)
- provide a classical description for the origin of the nonlinear susceptibilities (K3)

By the end of this lecture, you will start to understand ...

• the capability of light matter interactions in modifying light properties :

frequency generation, optical rectification... (Q1)

• how a perturbative approache enables in describing and deriving a NON LINEAR problem in physics (Q2)

• the link between the microscopic and macroscopic terms in Maxwell's equations (induced dipole, macroscopic polarization and fields) (Q3)

