NONLINEAR OPTICS

2nd ORDER NONLINEARITIES

- Frequency generation Parametric processes
 - optical parametric fluoresence and
 - amplification
 - optical parametric oscillation : OPO
- Quasi-phase matched materials

Lecture 5 /7 : learning outcomes

By the end of this lecture, students will be able to...

• Evaluate nonlinear interaction performances/efficiencies under approximations that should be specified, explained and justified (T2)

By the end of this lecture, students will be skilled at...

• deriving and solving the nonlinear wave equation in a parametric situation under the undepleted pump approximation (S3)

• Determining the phase matching conditions for a given nonlinear interaction and achieving/fulfilling this condition by exploiting birefringence properties of materials and/or QPM technique (S2)

• Calculating nonlinear interaction performances/efficiencies in situations governed by analytical solutions or expressions (S4)

By the end of this lecture, students will understand ...

- Nonlinear effects are a key points in the development of many applications in photonics (especially in relation with laser physics) (U1)
- Nonlinear interactions lead to energy transfer between optical beams, and/or between matter and beams, enabling in some cases the realization of nonlinear optical amplification and/or oscillation (U3)

Three-wave Mixing Interactions

3 - Optical Parametric Amplification and Oscillation

Difference frequency generation

1. Parametric Amplification

$$\frac{dA_1}{dz} = \\ \frac{dA_2}{dz} =$$

Undepleted pump approximation: A₃(z)=Cste

3 - Optical Parametric Amplification and Oscillation

Difference frequency generation

1. Parametric Amplification

$$\frac{dA_1}{dz} = \frac{\imath\omega_1}{2n_1c} \chi_{\text{eff}}^{(2)} A_3 A_2^{\star} e^{\imath\Delta kz}$$
$$\frac{dA_2}{dz} = \frac{\imath\omega_2}{2n_2c} \chi_{\text{eff}}^{(2)} A_3 A_1^{\star} e^{\imath\Delta kz}$$

 $\omega_2 = \omega_3 - \omega_1$

Idler Pump Signal

Undepleted pump approximation: A₃(z)=Cste

$$\Delta k = k_3 - k_2 - k_1$$

 $\chi_{\text{eff}}^{(2)} = 2 \times e_1 \cdot \underline{\chi}^{(2)}(\omega_1; \omega_3, -\omega_2) e_3 e_2 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_1) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_2 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_3 e_1 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_2 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_2 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_2 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_2 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_2 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_2 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_2 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_2 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_2 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_2 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_2 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_2 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_2 = 2 \times e_2 \cdot \underline{\chi}^{(2)}(\omega_2; \omega_3, -\omega_2) e_2 = 2 \times e_2 \cdot \underline{\chi$

N. Dubreuil - NONLINEAR OPTICS

3 - ... Parametric Amplification ...

Resolution	$a_1(z) = \sqrt{\frac{n_1}{\omega_1}} A_1(z) e^{-\imath \Delta k z/2}$	
	$a_2^{\star}(z) = \sqrt{\frac{n_2}{\omega_2}} A_2^{\star}(z) e^{+i\Delta kz/2}$	
	$a_3(z) = \sqrt{\frac{n_3}{\omega_3}} A_3(z).$	
$\int \frac{\frac{da_1}{dz} + i}{\frac{da_2^{\star}}{dz} - i}$	$\frac{\Delta k}{2}a_1 = i\gamma_0 a_2^\star,$ $\frac{\Delta k}{2}a_2^\star = i\gamma_0^\star a_1,$	$\gamma_0 = \frac{\chi_{\text{eff}}^{(2)}}{c} \sqrt{\frac{\omega_1 \omega_2}{n_1 n_2}} A_3.$
$\frac{d^2a}{dz}$	$\frac{a_{1,2}}{z^2} - \gamma^2 a_{1,2} = 0$	$\gamma^2 = \gamma_0 ^2 - \left(\frac{\Delta k}{2}\right)^2$

N. Dubreuil - NONLINEAR OPTICS

3 - ... Parametric Amplification ...

Resolution

$$\frac{d^2a_{1,2}}{dz^2} - \gamma^2 a_{1,2} = 0,$$

$$\gamma^2 = |\gamma_0|^2 - \left(\frac{\Delta k}{2}\right)^2$$

γ² < 0 : strong phase miss-matching - oscillating solution
 => no amplification

• $\gamma^2 > 0$: solution of the form $a_{1,2}(z) = C_{1,2} \exp(-\gamma z) + D_{1,2} \exp(+\gamma z)$

Boundary conditions :

$$a_1(z=0) = \sqrt{\frac{n_1}{\omega_1}} A_1(0)$$
 and $a_2(z=0) = \sqrt{\frac{n_2}{\omega_2}} A_2(0)$

N. Dubreuil - NONLINEAR OPTICS

3 - ... Parametric Amplification ...

Solutions:

$$\begin{aligned}
Signal & Idler \\
A_{1,2}(z) &= A_{1,2}(0) \left[\cosh(\gamma z) - \frac{i\Delta k}{2\gamma} \sinh(\gamma z) \right] e^{i\Delta k z/2} \\
&+ i \frac{K_{1,2}}{\gamma} A_{2,1}^{\star}(0) \sinh(\gamma z) e^{i\Delta k z/2}
\end{aligned}$$

$$K_{1,2} = \frac{\omega_{1,2}}{n_{1,2}c} \chi_{\text{eff}}^{(2)} A_3$$

Comments :

INSTITUT

d'OPTIQUE

• For a given wavevector missmatch, one can set the pump intensity to a threshold value in order to achieve $\gamma^2 = 0$:

$$I_{3th} = \frac{\left(\Delta k\right)^2 n_1 n_2 n_3 c^3 \varepsilon_0}{2 \left(\chi_{eff}\right)^2 \omega_1 \omega_2}$$

-
$$I_{3th}$$
 is minimum for $\omega_1 = \omega_2 = \frac{\omega_3}{2}$

- and equal to 0 for $\Delta k=0$

N. Dubreuil - NONLINEAR OPTICS

7

3 - ... Parametric Amplification ...

3 - ... Parametric Amplification ...

3 - ... Parametric Amplification ...

2. Parametric Fluorescence

Boundary conditions : $A_1(0) = 0$, $A_2(0) = 0$

⇒ **QUANTUM DESCRIPTION** is required (*)

The annihilation of a photon @ ω_3 is accompanied by the creation **simultaneously** of one photon @ ω_1 and one photon @ ω_2

 $\omega_3 = \omega_1 + \omega_2$: conservation of energy

 $\vec{k}_3 = \vec{k}_1 + \vec{k}_2$: the phase-matching relation is a VECTORIAL relation and is interpreted as the law of conservation of momentum

This last relation indicates the directions of emission the signal and idler waves

 k_1 k_{2} \vec{k}_3

(*) : see Quantum Optics course of next year INSTITUT d'OPTIQUE NONLINEAR OPTICS

Optical Parametric Generation

© LCFIO-Manolia- S. Lebrun

Considering a 2nd order NL medium placed inside an optical cavity - The amplification is realized through pumping @ ω_3

3 - Optical Parametric ... Oscillation

Considering a 2nd order NL medium placed inside an optical cavity - The amplification is realized through pumping @ ω_3

Considering a 2nd order NL medium placed inside an optical cavity - The amplification is realized through pumping @ ω_3

3 - Optical Parametric ... Oscillation

N. Dubreuil - NONLINEAR OPTICS

4 - Quasi-Phase Matched Materials

Periodically poled material :

c-axis is alternatively oriented along a positive and negative direction with a period $\Lambda = 2 \times \text{Coherent Length}$

Achievement of a quasi-phase matching condition :

• in materials for which birefringent phase matching can not be achieved

• OR enables configuration along a large nonlinear coefficient, $\chi^{(2)}_{ZZZ}$ for which all the waves must be polarized in the same direction

N. Dubreuil - NONLINEAR OPTICS

19

4 - Quasi-Phase Matched Materials

Material poling is achieved by applying a static field between electrodes, leading to a permanent domain reversal of the material.

→ Periodic inversion of the effective NL susceptibility sign

Illustration : SHG in a configuration that exploits the strong NL coef $\chi^{(2)}_{ZZZ}$

Nonlinear wave equation @ 2ω

$$\begin{aligned} \frac{dA_{2\omega}(z)}{dz} &= \frac{\imath(2\omega)}{2n_{2\omega}c} \chi_{\text{eff}}^{(2)} \ A_{\omega}^2 e^{\imath \Delta \boldsymbol{k} \cdot \boldsymbol{z}} \\ \text{with} \ \chi_{\text{eff}}^{(2)} &= \boldsymbol{e}_Z \cdot \chi_{ZZZ}^{(2)} \boldsymbol{e}_Z \boldsymbol{e}_Z \end{aligned}$$

→ Introduction of a periodic spatial variation : $\chi^{(2)}_{\text{eff}}(z) = \chi^{(2)}_{\text{eff},0} \cos(Kz)$

$$\begin{split} \frac{dA_{2\omega}(z)}{dz} &= \frac{\imath(2\omega)}{2n_{2\omega}c} \chi_{\text{eff},0}^{(2)} \ A_{\omega}^2 \ \cos(Kz) e^{\imath\Delta \boldsymbol{k}\cdot\boldsymbol{z}}, \\ &= \frac{\imath(2\omega)}{2n_{2\omega}c} \chi_{\text{eff},0}^{(2)} \ A_{\omega}^2 \ \frac{e^{\imath Kz} + e^{-\imath Kz}}{2} e^{\imath\Delta \boldsymbol{k}\cdot\boldsymbol{z}} \end{split}$$

→ A quasi-phase matched (QPM) situation is achieved since

$$K = \Delta \boldsymbol{k} = 2\boldsymbol{k}_{\omega} - \boldsymbol{k}_{2\omega}$$

→ CONCLUSION : a periodic inversion of the sign the NL susceptibility, with a period $\Lambda = 2 \times L_c$ leads to a growth in the intensity @ 2ω

Reminder : Lc refers to the coherence length $\,\pi/\Delta k = L_c$

N. Dubreuil - NONLINEAR OPTICS

4 - Quasi-Phase Matched Materials

4 - Quasi-Phase Matched Materials

Comparison in the power evolution under perfect phase matching (i), non-phase matching (ii) and quasi-phase matching (iii) situations. The signs represent the sign of the effective nonlinear susceptibility

EXAMPLE : Singly resonant OPO cavity

Development of a tunable Optical Parametric Oscillator (OPO) @ 1550 nm

- short pulse (1-10ps) with narrow spectral linewidth
- high repetition rate
- Tunable : [1530-1600 nm]

EXAMPLE : Singly resonant OPO cavity

EXAMPLE : Singly resonant OPO cavity

- Stable bow tie singly resonant cavity
- Synchronously pumped cavity : cavity round trip matches the repetition rate of the pump laser $L_{OPO} = 3.75 \text{ m}$

(radius of curvature of the concave mirrors : 25.9 cm)

27

EXAMPLE : Singly resonant OPO cavity

• Keeping pulse duration around 10 ps

A. Ryasnyanskiy, et al. JEOS. RP 3 :08037, 2008.

N. Dubreuil - NONLINEAR OPTICS

28