# NONLINEAR OPTICS - Tutorial 2nd Harmonic Generation in KDP crystal

### December 2, 2022

This problem addresses the study and optimisation of the second harmonic generation in a KDP crystal for the conversion process 1064 nm  $\rightarrow$  532 nm, in a collinear configuration. The crystal is a negative uniaxial medium, with the principal refractive indices at room temperature given by :

 $\begin{array}{lll} \lambda = 1064 \ nm & n_0 = 1.4942 & n_e = 1.4603 \\ \lambda = 532 \ nm & n_0 = 1.5129 & n_e = 1.4709 \end{array}$ 

The KDP belongs to the symmetry group  $\overline{4}2m$ , characterized by a  $\underline{\chi}^{(2)}$  tensor in which only six terms (with the intrinsic permutation) are non-zero:  $\chi^{(2)}_{XYZ} = \chi^{(2)}_{YXZ} = \chi^{(2)}_{ZXY} = 1 \text{ pm/V}.$ The tensor is defined in the cartesian frame of the principal axis directions, direction Z coinciding

with the optical axis.

#### SHG study : perfect phase matching situation 1

In this section, we will consider that the angular difference between the vectors **D** and **E** of the electromagnetic fields along the extraordinary axis is negligible. This is equivalent to neglect the walk-off angle. The consequence of this approximation will be discussed in section 2.

#### 1.1 Type I phase matching achievement in KDP.

- 1. Find the relation between the refractive indices at  $\omega$  and  $2\omega$  for a type I phase matching in KDP.
- 2. Calculate the angle  $\theta$  between the propagation direction of the beams and the optical axis of the crystal (see figure 1 p. 3).

#### 1.2Optimization of the nonlinear interaction

The phase matching condition enables to determine the angle  $\theta$  and one has to determine the second angle  $\phi$  to completely defined the direction of the beam propagation (see figure 1(a) p. 3). This angle is settled by optimizing the effective nonlinear susceptibility  $\chi_{eff}^{(2)}$ 

- 1. For a type I phase matching case, give the expression for the nonlinear polarization components at  $2\omega$  ( $\mathbf{P}_{NL}(2\omega)$ ) long the crystallographic principal axes (X, Y, Z).
- 2. Write the nonlinear wave equation for the wave at  $2\omega$  in terms of an effective nonlinear coefficient  $\chi_{eff}^{(2)}$  to be defined.
- 3. Find the value(s) of  $\phi$  at which the nonlinear interaction is maximized.

### 1.3 Conversion efficiency

In the following, the KDP crystal has been cut such as the pump beam arrives perpendicularly to the incident facet, coinciding with a direction set by the angles  $\theta$  and  $\phi$  previously calculated. In this part a low conversion efficiency is assumed justifying the undepleted approximation.

- 1. By solving the nonlinear wave equation set in section (1.2), determine a relation for the conversion efficiency  $\frac{I_{2\omega}(L)}{I_{\omega}(0)}$ , where  $I_{2\omega}(L)$  and  $I_{\omega}(0)$  are the intensity of the doubled and fundamental beams respectively, and L the crystal length.
- 2. Evaluate the conversion efficiency of the second harmonic generation in a 10 mm long KDP crystal using a Nd:YAG laser at  $\lambda = 1064$  nm, delivering pulses with a duration  $\tau = 300$  ps and an energy of 1 mJ. The beam diameter along the crystal is supposed constant and set equal to 1 mm.
- 3. Comment about the validity of the undepleted pump approximation.

#### 1.4 Limit of the low conversion efficiency approximation

In a strong conversion efficiency situation, the undepleted pump approximation is no longer valid and one needs to solve the two coupled nonlinear wave equations at  $\omega$  and  $2\omega$ . It leads then to the following relation for the conversion efficiency :

$$\frac{I_{2\omega}(L)}{I_{\omega}(0)} = \tanh^2 \left( \frac{\sqrt{2\pi\chi_{eff}^{(2)}L}}{\sqrt{\epsilon_0 c n_{2\omega} n_{\omega}^2 . \lambda}} \sqrt{I_{\omega}(0)} \right)$$
(1)

- 1. How the conversion efficiency varies with the pump intensity at low and high pump power regimes ?
- 2. What would be the conversion efficiency in the case considered at question 2 in (1.3). Conclusion ?

## 2 Conversion efficiency limitation

### 2.1 Angular acceptance

The effect of a deviation  $\delta\theta$  of the incident beam with respect to the phase matching angle  $\theta$  is equivalent to a phase mismatch  $\Delta k$ .

1. Show that the conversion efficiency after a length L is then reduced by a factor :

$$\left[\frac{\sin(\Delta kL/2)}{\Delta kL/2}\right]^2\tag{2}$$

- 2. Determine the angular acceptance  $\delta \theta_{\frac{1}{2}}$ , for which the conversion efficiency is divided by a factor 2. Note that  $(\sin(\xi)/\xi)^2 = 1/2$  for  $\xi = 1.39$ .
- 3. In case of a phase matching angle achieved around  $\theta = \pi/2$ , why do we refer to a "noncritical" phase matching situation ?

#### 2.2 Walk-off effect

- 1. Using the figure 1(b), show that the direction of propagation for the beam at  $2\omega$  is different from that of the beam at  $\omega$ . Determine the walk-off angle between these two rays.
- 2. What is the consequence for the conversion efficiency ?
- 3. Compare with a non-critical phase matching situation.

# RESOURCES

- 1. The electric field amplitude of a wave at  $\omega_j$ , which propagates along the direction (Oz), is denoted :  $\mathcal{E}_j(z,t) = \mathbf{E}(\omega_j)e^{-i\omega_j t} + C.C.$ , with  $\mathbf{E}(\omega_j) = A_j(z)e^{ik(\omega_j)z}\mathbf{e}_j$ . The related field intensity is given by:  $I_j = 2n(\omega_j)c\epsilon_0|A_j(z)|^2$ , with  $\epsilon_0 = 8.85 \ 10^{-12} \ \mathrm{F/m}.$
- 2. The amplitude variation along the propagation distance z of a wave at  $\omega$  is governed by the following nonlinear wave equation :

$$\frac{\partial A(\omega)}{\partial z} = \frac{\imath \, \omega}{2nc\epsilon_o} \boldsymbol{e}. \mathbf{P}_{NL}(\omega) \exp(-ik(\omega)z)$$

3. The interacting waves have to be projected along the ordinary and extraordinary eigen modes for which the directions of polarization are denoted  $\mathbf{e}_o$  and  $\mathbf{e}_{\theta}$ , respectively. In the crystallographic principal axes, they can be expressed as:

$$\mathbf{e}_{o} = \begin{vmatrix} \sin \phi \\ -\cos \phi \\ 0 \end{vmatrix}, \quad \mathbf{e}_{\theta} = \begin{vmatrix} -\cos \theta \cos \phi \\ -\cos \theta \sin \phi \\ \sin \theta \end{vmatrix};$$

The extraordinary refractive index  $n_{\theta}$  is given by :  $\left(\frac{1}{n_{\theta}}\right)^2 = \left(\frac{\cos\theta}{n_o}\right)^2 + \left(\frac{\sin\theta}{n_e}\right)^2$ 



Figure 1: (a) Surface of indices for a negative uniaxial crystal and (b) their projections at  $\omega$ and  $2\omega$  in a plane containing the optical axis Z.