L'évolution artificielle est une classe d'algorithmes (dont la catégorie la plus connue est celle des algorithmes génétiques) fondés sur des modèles simplifiés de l'adaptation des systèmes naturels. Le principe est de faire évoluer une population de solutions potentielles d'un problème, formulé en termes de recherche du maximum d'une fonction. Les moteurs de l'évolution sont un mécanisme de sélection (l'idée est typiquement de donner une probabilité de survie plus grande aux individus les mieux classés) et des opérateurs génétiques (mutation, croisement, etc.). Dans les termes de l'intelligence artificielle, la fonction à optimiser ("fitness") est ainsi la représentation de la connaissance spécifique au problème et les mécanismes évolutionnaires contiennent la connaissance générale (moteur de résolution). On obtient ainsi des outils d'optimisation très robustes et efficaces dans de nombreux cas où les autres méthodes échouent, spécialement dans le cas de problèmes discrets, non-linéaires et de fonctions très irrégulières. Sur le plan théorique, des théorèmes de convergence viennent depuis peu compléter la connaissance quelque peu empirique de la performance de ces algorithmes. Les applications au monde réel sont nombreuses et étonnamment variées: contrôle d'unités de génie chimique, conception de profils en aéronautique, commande de robots, théorie des jeux, économie, programmation automatique, traitement du signal et vision artificielle.
- Enseignant: Frédérika AUGÉ-ROCHEREAU
- Enseignant: Mélanie LIMACHE GOMEZ
- Enseignant: Evelyne LUTTON
- Enseignant: Alejandro REYMOND
- Enseignant: Alberto TONDA
- Enseignant responsable de l'UE: David FILLIAT